Abstract

With the increase of the A-line speed of optical coherence tomography (OCT) systems, real-time processing of acquired data has become a bottleneck. The shared-memory parallel computing technique is used to process OCT data in real time. The real-time processing power of a quad-core personal computer (PC) is analyzed. It is shown that the quad-core PC could provide real-time OCT data processing ability of more than 80K A-lines per second. A real-time, fiber-based, swept source polarization-sensitive OCT system with 20K A-line speed is demonstrated with this technique. The real-time 2D and 3D polarization-sensitive imaging of chicken muscle and pig tendon is also demonstrated.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903-908 (1992).
    [CrossRef]
  3. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934-936 (1997).
    [CrossRef] [PubMed]
  4. J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 1200-1204 (1999).
    [CrossRef]
  5. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355-1357 (2000).
    [CrossRef]
  6. B. H. Park, C. Saxer, T. Chen, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474-479 (2001).
    [CrossRef] [PubMed]
  7. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11, 782-793 (2003).
    [CrossRef] [PubMed]
  8. B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiberbased multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express 13, 3931-3944 (2005).
    [CrossRef] [PubMed]
  9. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29, 2512-2514 (2004).
    [CrossRef] [PubMed]
  10. S. Jiao, W. Yu, G. Stoica, and L. V. Wang, “Optical-fiber-based Mueller optical coherence tomography,” Opt. Lett. 28, 1206-1208 (2003).
    [CrossRef] [PubMed]
  11. G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24, 537-539 (1999).
    [CrossRef]
  12. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express 14, 6502-6515(2006).
    [CrossRef] [PubMed]
  13. J. Zhang, W. Jung, J. Nelson, and Z. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express 12, 6033-6039 (2004).
    [CrossRef] [PubMed]
  14. J. Zhang, S. Guo, W. Jung, J. S. Nelson, and Z. Chen, “Determination of birefringence and absolute optic axis orientation using polarization-sensitive optical coherence tomography with PM fibers,” Opt. Express 11, 3262-3270 (2003).
    [CrossRef] [PubMed]
  15. D. P. Dave´, T. Akkin, and T. E. Milner, “Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefringence,” Opt. Lett. 28, 1775-1777 (2003).
    [CrossRef] [PubMed]
  16. M. K. Al-Qaisi and T. Akkin, “Polarization-sensitive optical coherence tomography based on polarization-maintaining fibers and frequency multiplexing,” Opt. Express 16, 13032(2008).
    [CrossRef] [PubMed]
  17. W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express 16, 1096-1103 (2008).
    [CrossRef] [PubMed]
  18. W. Y. Oh, B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Single-detector polarization-sensitive optical frequency domain imaging using high-speed intra A-line polarization modulation,” Opt. Lett. 33, 1330-1332 (2008).
    [CrossRef] [PubMed]
  19. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892-5906 (2008).
    [CrossRef] [PubMed]
  20. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express 14, 6502-6515 (2006).
    [CrossRef] [PubMed]
  21. B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express 15, 1054-1063(2007).
    [CrossRef] [PubMed]
  22. B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15, 2421-2431 (2007).
    [CrossRef] [PubMed]
  23. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067-2069 (2003).
    [CrossRef] [PubMed]
  24. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183-2189 (2003).
    [CrossRef] [PubMed]
  25. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30, 3159-3161 (2005).
    [CrossRef] [PubMed]
  26. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975-2977 (2006).
    [CrossRef] [PubMed]
  27. N. A. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367-376 (2004).
    [CrossRef] [PubMed]
  28. A. W. Schaefer, J. Joshua Reynolds, D. L. Marks, and S. A. Boppart, “Real-time digital signal processing-based optical coherence tomography and doppler optical coherence tomography,” IEEE Trans. Biomed. Eng. 51, 186-190 (2004).
    [CrossRef] [PubMed]
  29. S. Yan, D. Piao, Y. Chen, and Q. Zhu, “Digital signal processor-based real-time optical Doppler tomography system,” J. Biomed. Opt. 9, 454-463 (2004).
    [CrossRef] [PubMed]
  30. J. Su, J. Zhang, L. Yu, H. G. Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt. 13, 030506 (2008).
    [CrossRef] [PubMed]
  31. T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79, 114301 (2008).
    [CrossRef] [PubMed]
  32. A. Lafferty, Parallel Computing: Introduction (William Andrew, 1993).
  33. G. Amdahl, “The validity of the single processor approach to achieving large-scale computing capabilities,” in Proceedings of AFIPS Spring Joint Computer Conference (AFIPS, 1967), pp. 483-485.
  34. OpenMP Architecture Review Board, , “The OpenMP API specification for parallel programming,” http://www.openmp.org/.
  35. FFTW version 3.2.1, www.fftw.org.
  36. “General-purpose computation on graphics hardware,”http://www.gpgpu.org.

2008 (6)

2007 (2)

2006 (3)

2005 (2)

2004 (5)

2003 (6)

2001 (1)

B. H. Park, C. Saxer, T. Chen, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474-479 (2001).
[CrossRef] [PubMed]

2000 (1)

1999 (2)

G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24, 537-539 (1999).
[CrossRef]

J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 1200-1204 (1999).
[CrossRef]

1997 (1)

1992 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Adler, D. C.

Akkin, T.

Al-Qaisi, M. K.

Amdahl, G.

G. Amdahl, “The validity of the single processor approach to achieving large-scale computing capabilities,” in Proceedings of AFIPS Spring Joint Computer Conference (AFIPS, 1967), pp. 483-485.

Baumann, B.

Boppart, S. A.

A. W. Schaefer, J. Joshua Reynolds, D. L. Marks, and S. A. Boppart, “Real-time digital signal processing-based optical coherence tomography and doppler optical coherence tomography,” IEEE Trans. Biomed. Eng. 51, 186-190 (2004).
[CrossRef] [PubMed]

Bouma, B.

Bouma, B. E.

Brenner, M.

J. Su, J. Zhang, L. Yu, H. G. Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt. 13, 030506 (2008).
[CrossRef] [PubMed]

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, T.

N. A. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367-376 (2004).
[CrossRef] [PubMed]

B. H. Park, C. Saxer, T. Chen, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474-479 (2001).
[CrossRef] [PubMed]

Chen, T. C.

Chen, Y.

S. Yan, D. Piao, Y. Chen, and Q. Zhu, “Digital signal processor-based real-time optical Doppler tomography system,” J. Biomed. Opt. 9, 454-463 (2004).
[CrossRef] [PubMed]

Chen, Z.

J. Su, J. Zhang, L. Yu, H. G. Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt. 13, 030506 (2008).
[CrossRef] [PubMed]

J. Zhang, W. Jung, J. Nelson, and Z. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express 12, 6033-6039 (2004).
[CrossRef] [PubMed]

J. Zhang, S. Guo, W. Jung, J. S. Nelson, and Z. Chen, “Determination of birefringence and absolute optic axis orientation using polarization-sensitive optical coherence tomography with PM fibers,” Opt. Express 11, 3262-3270 (2003).
[CrossRef] [PubMed]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355-1357 (2000).
[CrossRef]

J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 1200-1204 (1999).
[CrossRef]

Choma, M. A.

Colt, H. G.

J. Su, J. Zhang, L. Yu, H. G. Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt. 13, 030506 (2008).
[CrossRef] [PubMed]

Dave´, D. P.

de Boer, J.

de Boer, J. F.

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express 16, 1096-1103 (2008).
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15, 2421-2431 (2007).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29, 2512-2514 (2004).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11, 782-793 (2003).
[CrossRef] [PubMed]

B. H. Park, C. Saxer, T. Chen, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474-479 (2001).
[CrossRef] [PubMed]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355-1357 (2000).
[CrossRef]

J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 1200-1204 (1999).
[CrossRef]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934-936 (1997).
[CrossRef] [PubMed]

Desjardins, A. E.

Ferguson, R. D.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79, 114301 (2008).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Guo, S.

Hammer, D. X.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79, 114301 (2008).
[CrossRef] [PubMed]

Hee, M. R.

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903-908 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Huang, D.

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903-908 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Iftimia, N. V.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79, 114301 (2008).
[CrossRef] [PubMed]

Izatt, J. A.

Jiao, S.

Jung, W.

Lafferty, A.

A. Lafferty, Parallel Computing: Introduction (William Andrew, 1993).

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Madjarova, V. D.

Makita, S.

Marks, D. L.

A. W. Schaefer, J. Joshua Reynolds, D. L. Marks, and S. A. Boppart, “Real-time digital signal processing-based optical coherence tomography and doppler optical coherence tomography,” IEEE Trans. Biomed. Eng. 51, 186-190 (2004).
[CrossRef] [PubMed]

Milner, T. E.

Mujat, M.

Nassif, N. A.

Nelson, J.

Nelson, J. S.

Oh, W. Y.

Park, B.

Park, B. H.

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express 16, 1096-1103 (2008).
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15, 2421-2431 (2007).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29, 2512-2514 (2004).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11, 782-793 (2003).
[CrossRef] [PubMed]

B. H. Park, C. Saxer, T. Chen, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474-479 (2001).
[CrossRef] [PubMed]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355-1357 (2000).
[CrossRef]

J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 1200-1204 (1999).
[CrossRef]

Pham, T. H.

J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 1200-1204 (1999).
[CrossRef]

Piao, D.

S. Yan, D. Piao, Y. Chen, and Q. Zhu, “Digital signal processor-based real-time optical Doppler tomography system,” J. Biomed. Opt. 9, 454-463 (2004).
[CrossRef] [PubMed]

Pierce, M.

Pierce, M. C.

Pircher, M.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Reynolds, J. Joshua

A. W. Schaefer, J. Joshua Reynolds, D. L. Marks, and S. A. Boppart, “Real-time digital signal processing-based optical coherence tomography and doppler optical coherence tomography,” IEEE Trans. Biomed. Eng. 51, 186-190 (2004).
[CrossRef] [PubMed]

Sarunic, M. V.

Saxer, C.

B. H. Park, C. Saxer, T. Chen, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474-479 (2001).
[CrossRef] [PubMed]

Saxer, C. E.

Schaefer, A. W.

A. W. Schaefer, J. Joshua Reynolds, D. L. Marks, and S. A. Boppart, “Real-time digital signal processing-based optical coherence tomography and doppler optical coherence tomography,” IEEE Trans. Biomed. Eng. 51, 186-190 (2004).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Shishkov, M.

Srinivas, S. M.

B. H. Park, C. Saxer, T. Chen, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474-479 (2001).
[CrossRef] [PubMed]

J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 1200-1204 (1999).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Stoica, G.

Su, J.

J. Su, J. Zhang, L. Yu, H. G. Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt. 13, 030506 (2008).
[CrossRef] [PubMed]

Swanson, E. A.

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903-908 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Tearney, G.

Tearney, G. J.

Ustun, T. E.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79, 114301 (2008).
[CrossRef] [PubMed]

Vakoc, B. J.

van Gemert, M. J. C.

Wang, L. V.

Yamanari, M.

Yan, S.

S. Yan, D. Piao, Y. Chen, and Q. Zhu, “Digital signal processor-based real-time optical Doppler tomography system,” J. Biomed. Opt. 9, 454-463 (2004).
[CrossRef] [PubMed]

Yang, C.

Yao, G.

Yasuno, Y.

Yatagai, T.

Yu, L.

J. Su, J. Zhang, L. Yu, H. G. Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt. 13, 030506 (2008).
[CrossRef] [PubMed]

Yu, W.

Yun, S.

Yun, S. H.

Yun, S.-H.

Zhang, J.

Zhao, Y.

Zhu, Q.

S. Yan, D. Piao, Y. Chen, and Q. Zhu, “Digital signal processor-based real-time optical Doppler tomography system,” J. Biomed. Opt. 9, 454-463 (2004).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 1200-1204 (1999).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

A. W. Schaefer, J. Joshua Reynolds, D. L. Marks, and S. A. Boppart, “Real-time digital signal processing-based optical coherence tomography and doppler optical coherence tomography,” IEEE Trans. Biomed. Eng. 51, 186-190 (2004).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

S. Yan, D. Piao, Y. Chen, and Q. Zhu, “Digital signal processor-based real-time optical Doppler tomography system,” J. Biomed. Opt. 9, 454-463 (2004).
[CrossRef] [PubMed]

J. Su, J. Zhang, L. Yu, H. G. Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt. 13, 030506 (2008).
[CrossRef] [PubMed]

B. H. Park, C. Saxer, T. Chen, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474-479 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Express (13)

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11, 782-793 (2003).
[CrossRef] [PubMed]

J. Zhang, W. Jung, J. Nelson, and Z. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express 12, 6033-6039 (2004).
[CrossRef] [PubMed]

B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiberbased multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express 13, 3931-3944 (2005).
[CrossRef] [PubMed]

J. Zhang, S. Guo, W. Jung, J. S. Nelson, and Z. Chen, “Determination of birefringence and absolute optic axis orientation using polarization-sensitive optical coherence tomography with PM fibers,” Opt. Express 11, 3262-3270 (2003).
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367-376 (2004).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183-2189 (2003).
[CrossRef] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express 15, 1054-1063(2007).
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15, 2421-2431 (2007).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express 16, 1096-1103 (2008).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892-5906 (2008).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express 14, 6502-6515 (2006).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express 14, 6502-6515(2006).
[CrossRef] [PubMed]

M. K. Al-Qaisi and T. Akkin, “Polarization-sensitive optical coherence tomography based on polarization-maintaining fibers and frequency multiplexing,” Opt. Express 16, 13032(2008).
[CrossRef] [PubMed]

Opt. Lett. (10)

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975-2977 (2006).
[CrossRef] [PubMed]

W. Y. Oh, B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Single-detector polarization-sensitive optical frequency domain imaging using high-speed intra A-line polarization modulation,” Opt. Lett. 33, 1330-1332 (2008).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29, 2512-2514 (2004).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30, 3159-3161 (2005).
[CrossRef] [PubMed]

S. Jiao, W. Yu, G. Stoica, and L. V. Wang, “Optical-fiber-based Mueller optical coherence tomography,” Opt. Lett. 28, 1206-1208 (2003).
[CrossRef] [PubMed]

D. P. Dave´, T. Akkin, and T. E. Milner, “Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefringence,” Opt. Lett. 28, 1775-1777 (2003).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934-936 (1997).
[CrossRef] [PubMed]

G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24, 537-539 (1999).
[CrossRef]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355-1357 (2000).
[CrossRef]

Rev. Sci. Instrum. (1)

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79, 114301 (2008).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (5)

A. Lafferty, Parallel Computing: Introduction (William Andrew, 1993).

G. Amdahl, “The validity of the single processor approach to achieving large-scale computing capabilities,” in Proceedings of AFIPS Spring Joint Computer Conference (AFIPS, 1967), pp. 483-485.

OpenMP Architecture Review Board, , “The OpenMP API specification for parallel programming,” http://www.openmp.org/.

FFTW version 3.2.1, www.fftw.org.

“General-purpose computation on graphics hardware,”http://www.gpgpu.org.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Speed-up curve for 1024-point, complex FFT (double precision versus single precision) with different numbers of cores involved in the parallel computing.

Fig. 2
Fig. 2

Software architecture for OCT and PSOCT systems. Three threads are shown here (the controlling thread is not shown). They are the data acquisition and fetching thread, processing thread, and displaying thread. The processing thread has three parallel processing sections that will process the data for different A lines.

Fig. 3
Fig. 3

Schematic of fiber-based PSOCT system. SPC, static polarization controller; PM, polarization modulator; LP, linear polarizer; PMF, PM fiber; PBS, polarization beam splitter; BD, balanced detector.

Fig. 4
Fig. 4

Data processing flow for the PSOCT. LH (LV) is the acquired horizontally (vertically) polarized component of the interference signal for linear polarization input. CH (CV) is the acquired horizontally (vertically) polarized component of the interference signal for circular polarization input. LH′, LV′, CH′, and CV′ are the frequency resampled data for LH, LV, CH, and CV. SLH, SLV, SCH, and SCV are the fast Fourier transform of LH′, LV′, CH′, and CV′. From SLH and SLV, we can get the Stokes pa rameters (LI, LQ, LU, and LV) for linear polarization input. Accordingly, we can get the stokes parameters (CI, CQ, CU, and CV) for circular polarization input. The intensity images were obtained from the average of LI and CI. The phase retardation is calculated according to the method in [5, 6].

Fig. 5
Fig. 5

Time consumption for processing one single A-line of PSOCT data.

Fig. 6
Fig. 6

Polarization sensitive images for chicken muscle ex vivo: (a) intensity image, (b) phase retardation image. Scale bar, 250 μm .

Fig. 7
Fig. 7

3D polarization sensitive images for pig tendon ex vivo: (a) intensity image, (b) phase retardation image.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S = 1 1 P + P / N ,

Metrics