Abstract

The optical stretcher is a dual-beam trap capable of stretching individual cells. Previous studies have used either ray- or wave-optical models to compute the optical pressure on the surface of a spherical cell. We have extended the ray-optics model to account for focusing by the spherical interface and the effects of multiple internal reflections. Simulation results for red-blood cells (RBCs) show that internal reflections can lead to significant perturbation of the deformation, leading to a systematic error in the determination of cellular elasticity. Calibration studies show excellent agreement between the predicted and measured escape force, and RBC stiffness measurements are consistent with literature values. Measurements of the elasticity of murine osteogenic cells reveal that these cells are approximately 5.4 times stiffer than RBCs.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Kas, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451-5454 (2000).
    [CrossRef] [PubMed]
  2. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767-784 (2001).
    [CrossRef] [PubMed]
  3. K. J. Van Vliet, G. Bao, and S. Suresh, “The biomechanics toolbox: experimental approaches for living cells and biomolecules,” Acta Mater. 51, 5881-5905 (2003).
    [CrossRef]
  4. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
    [CrossRef] [PubMed]
  5. B. Lincoln, F. Wottawah, S. Schinkinger, S. Ebert, and J. Guck, “High-throughput rheological measurements with an optical stretcher,” Methods Cell Biol. 83, 397-423 (2007).
    [CrossRef] [PubMed]
  6. R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, T. Moon, and J. Kas, “Quantifying the contribution of actin networks to the elastic strength of fibroblasts,” J. Theor. Biol. 242, 502-516 (2006).
    [CrossRef] [PubMed]
  7. G. Roosen, “A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,” Opt. Commun. 21, 189-194 (1977).
    [CrossRef]
  8. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiberoptic light-force trap,” Opt. Lett. 18, 1867-1869 (1993).
    [CrossRef] [PubMed]
  9. J. R. Stephenson, “Computational modeling of the optical stretcher: an evaluation of the stretching force and trap stability for cubic and spherical objects,” Masters thesis (Creighton University, 2002).
  10. A. Yariv and A. Yariv, Optical Electronics in Modern Communications (Oxford University, 1997).
  11. J. R. Stephenson, “Size- and geometry-dependent trapping efficiency of the optical stretcher,” presented at the March Meeting of the American Physics Society (Albuquerque, New Mexico, 23 April 2002).
  12. R. Greenler, Rainbows, Halos, and Glories (Cambridge University, 1980).
  13. P. B. Bareil, Y. L. Sheng, and A. Chiou, “Local stress distribution on the surface of a spherical cell in an optical stretcher,” Opt. Express 14, 12503-12509 (2006).
    [CrossRef]
  14. A. Ekpenyong, “Hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher,” Masters thesis (Creighton University, 2008).
  15. W. H. Press, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University, 1992).
  16. J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J Biomed. Opt. 10, 064013 (2005).
    [CrossRef]
  17. N. Ghosh-Choudhury, J. J. Windle, B. A. Koop, M. A. Harris, D. L. Guerrero, J. M. Wozney, G. R. Mundy, and S. E. Harris, “Immortalized murine osteoblasts derived from BMP 2-T-antigen expressing transgenic mice,” Endocrinology 137, 331-339(1996).
    [CrossRef] [PubMed]
  18. L. F. Bonewald, “Establishment and characterization of an osteocyte-like cell line, MLO-Y4,” J. Bone Miner. Met. 17, 61-65 (1999).
    [CrossRef]
  19. K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U. S. A. 104, 8287-8292 (2007).
    [CrossRef] [PubMed]
  20. B. Lincoln, H. M. Erickson, S. Schinkinger, F. Wottawah, D. Mitchell, S. Ulvick, C. Bilby, and J. Guck, “Deformability-based flow cytometry,” Cytometry A 59, 203-209 (2004).
    [CrossRef] [PubMed]
  21. Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U. S. A. 105, 13730-13735(2008).
    [CrossRef] [PubMed]
  22. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717-719 (2007).
    [CrossRef] [PubMed]
  23. F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Optical stress on the surface of a particle: homogeneous sphere,” Phys. Rev. A 79, 053808 (2009).
    [CrossRef]
  24. J. Huff, “Laser induced heating in the optical stretcher,” Masters thesis (Creighton University, 2005).
  25. S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15, 15493-15499 (2007).
    [CrossRef] [PubMed]
  26. G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41, 10-16(2008).
    [CrossRef] [PubMed]
  27. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
    [CrossRef] [PubMed]
  28. M. J. Rosenbluth, W. A. Lam, and D. A. Fletcher, “Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry,” Lab. Chip 8, 1062-1070(2008).
    [CrossRef] [PubMed]
  29. S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1, 15-30 (2005).
    [CrossRef]

2009

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Optical stress on the surface of a particle: homogeneous sphere,” Phys. Rev. A 79, 053808 (2009).
[CrossRef]

2008

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41, 10-16(2008).
[CrossRef] [PubMed]

M. J. Rosenbluth, W. A. Lam, and D. A. Fletcher, “Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry,” Lab. Chip 8, 1062-1070(2008).
[CrossRef] [PubMed]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U. S. A. 105, 13730-13735(2008).
[CrossRef] [PubMed]

2007

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717-719 (2007).
[CrossRef] [PubMed]

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U. S. A. 104, 8287-8292 (2007).
[CrossRef] [PubMed]

B. Lincoln, F. Wottawah, S. Schinkinger, S. Ebert, and J. Guck, “High-throughput rheological measurements with an optical stretcher,” Methods Cell Biol. 83, 397-423 (2007).
[CrossRef] [PubMed]

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15, 15493-15499 (2007).
[CrossRef] [PubMed]

2006

P. B. Bareil, Y. L. Sheng, and A. Chiou, “Local stress distribution on the surface of a spherical cell in an optical stretcher,” Opt. Express 14, 12503-12509 (2006).
[CrossRef]

R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, T. Moon, and J. Kas, “Quantifying the contribution of actin networks to the elastic strength of fibroblasts,” J. Theor. Biol. 242, 502-516 (2006).
[CrossRef] [PubMed]

2005

J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J Biomed. Opt. 10, 064013 (2005).
[CrossRef]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1, 15-30 (2005).
[CrossRef]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

2004

B. Lincoln, H. M. Erickson, S. Schinkinger, F. Wottawah, D. Mitchell, S. Ulvick, C. Bilby, and J. Guck, “Deformability-based flow cytometry,” Cytometry A 59, 203-209 (2004).
[CrossRef] [PubMed]

2003

K. J. Van Vliet, G. Bao, and S. Suresh, “The biomechanics toolbox: experimental approaches for living cells and biomolecules,” Acta Mater. 51, 5881-5905 (2003).
[CrossRef]

2001

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

2000

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Kas, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451-5454 (2000).
[CrossRef] [PubMed]

1999

L. F. Bonewald, “Establishment and characterization of an osteocyte-like cell line, MLO-Y4,” J. Bone Miner. Met. 17, 61-65 (1999).
[CrossRef]

1996

N. Ghosh-Choudhury, J. J. Windle, B. A. Koop, M. A. Harris, D. L. Guerrero, J. M. Wozney, G. R. Mundy, and S. E. Harris, “Immortalized murine osteoblasts derived from BMP 2-T-antigen expressing transgenic mice,” Endocrinology 137, 331-339(1996).
[CrossRef] [PubMed]

1993

1977

G. Roosen, “A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,” Opt. Commun. 21, 189-194 (1977).
[CrossRef]

Ananthakrishnan, R.

R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, T. Moon, and J. Kas, “Quantifying the contribution of actin networks to the elastic strength of fibroblasts,” J. Theor. Biol. 242, 502-516 (2006).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Kas, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451-5454 (2000).
[CrossRef] [PubMed]

Badizadegan, K.

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41, 10-16(2008).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717-719 (2007).
[CrossRef] [PubMed]

Bao, G.

K. J. Van Vliet, G. Bao, and S. Suresh, “The biomechanics toolbox: experimental approaches for living cells and biomolecules,” Acta Mater. 51, 5881-5905 (2003).
[CrossRef]

Bareil, P. B.

Beil, M.

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1, 15-30 (2005).
[CrossRef]

Bilby, C.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

B. Lincoln, H. M. Erickson, S. Schinkinger, F. Wottawah, D. Mitchell, S. Ulvick, C. Bilby, and J. Guck, “Deformability-based flow cytometry,” Cytometry A 59, 203-209 (2004).
[CrossRef] [PubMed]

Bonewald, L. F.

L. F. Bonewald, “Establishment and characterization of an osteocyte-like cell line, MLO-Y4,” J. Bone Miner. Met. 17, 61-65 (1999).
[CrossRef]

Chen, J. Y.

J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J Biomed. Opt. 10, 064013 (2005).
[CrossRef]

Chiou, A.

Choi, W.

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41, 10-16(2008).
[CrossRef] [PubMed]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U. S. A. 105, 13730-13735(2008).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717-719 (2007).
[CrossRef] [PubMed]

Constable, A.

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Kas, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451-5454 (2000).
[CrossRef] [PubMed]

Dao, M.

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1, 15-30 (2005).
[CrossRef]

Dasari, R. R.

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41, 10-16(2008).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717-719 (2007).
[CrossRef] [PubMed]

Diez-Silva, M.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U. S. A. 105, 13730-13735(2008).
[CrossRef] [PubMed]

Ebert, S.

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15, 15493-15499 (2007).
[CrossRef] [PubMed]

B. Lincoln, F. Wottawah, S. Schinkinger, S. Ebert, and J. Guck, “High-throughput rheological measurements with an optical stretcher,” Methods Cell Biol. 83, 397-423 (2007).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Ekpenyong, A.

A. Ekpenyong, “Hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher,” Masters thesis (Creighton University, 2008).

Erickson, H. M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

B. Lincoln, H. M. Erickson, S. Schinkinger, F. Wottawah, D. Mitchell, S. Ulvick, C. Bilby, and J. Guck, “Deformability-based flow cytometry,” Cytometry A 59, 203-209 (2004).
[CrossRef] [PubMed]

Fang-Yen, C.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717-719 (2007).
[CrossRef] [PubMed]

Feld, M. S.

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41, 10-16(2008).
[CrossRef] [PubMed]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U. S. A. 105, 13730-13735(2008).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717-719 (2007).
[CrossRef] [PubMed]

Fletcher, D. A.

M. J. Rosenbluth, W. A. Lam, and D. A. Fletcher, “Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry,” Lab. Chip 8, 1062-1070(2008).
[CrossRef] [PubMed]

Foja, C.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U. S. A. 104, 8287-8292 (2007).
[CrossRef] [PubMed]

Franze, K.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U. S. A. 104, 8287-8292 (2007).
[CrossRef] [PubMed]

Ghosh-Choudhury, N.

N. Ghosh-Choudhury, J. J. Windle, B. A. Koop, M. A. Harris, D. L. Guerrero, J. M. Wozney, G. R. Mundy, and S. E. Harris, “Immortalized murine osteoblasts derived from BMP 2-T-antigen expressing transgenic mice,” Endocrinology 137, 331-339(1996).
[CrossRef] [PubMed]

Gouesbet, G.

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Optical stress on the surface of a particle: homogeneous sphere,” Phys. Rev. A 79, 053808 (2009).
[CrossRef]

Greenler, R.

R. Greenler, Rainbows, Halos, and Glories (Cambridge University, 1980).

Grosche, J.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U. S. A. 104, 8287-8292 (2007).
[CrossRef] [PubMed]

Gu, M.

J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J Biomed. Opt. 10, 064013 (2005).
[CrossRef]

Guck, J.

B. Lincoln, F. Wottawah, S. Schinkinger, S. Ebert, and J. Guck, “High-throughput rheological measurements with an optical stretcher,” Methods Cell Biol. 83, 397-423 (2007).
[CrossRef] [PubMed]

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U. S. A. 104, 8287-8292 (2007).
[CrossRef] [PubMed]

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15, 15493-15499 (2007).
[CrossRef] [PubMed]

R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, T. Moon, and J. Kas, “Quantifying the contribution of actin networks to the elastic strength of fibroblasts,” J. Theor. Biol. 242, 502-516 (2006).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

B. Lincoln, H. M. Erickson, S. Schinkinger, F. Wottawah, D. Mitchell, S. Ulvick, C. Bilby, and J. Guck, “Deformability-based flow cytometry,” Cytometry A 59, 203-209 (2004).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Kas, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451-5454 (2000).
[CrossRef] [PubMed]

Guerrero, D. L.

N. Ghosh-Choudhury, J. J. Windle, B. A. Koop, M. A. Harris, D. L. Guerrero, J. M. Wozney, G. R. Mundy, and S. E. Harris, “Immortalized murine osteoblasts derived from BMP 2-T-antigen expressing transgenic mice,” Endocrinology 137, 331-339(1996).
[CrossRef] [PubMed]

Harris, M. A.

N. Ghosh-Choudhury, J. J. Windle, B. A. Koop, M. A. Harris, D. L. Guerrero, J. M. Wozney, G. R. Mundy, and S. E. Harris, “Immortalized murine osteoblasts derived from BMP 2-T-antigen expressing transgenic mice,” Endocrinology 137, 331-339(1996).
[CrossRef] [PubMed]

Harris, S. E.

N. Ghosh-Choudhury, J. J. Windle, B. A. Koop, M. A. Harris, D. L. Guerrero, J. M. Wozney, G. R. Mundy, and S. E. Harris, “Immortalized murine osteoblasts derived from BMP 2-T-antigen expressing transgenic mice,” Endocrinology 137, 331-339(1996).
[CrossRef] [PubMed]

Huff, J.

J. Huff, “Laser induced heating in the optical stretcher,” Masters thesis (Creighton University, 2005).

Kas, J.

R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, T. Moon, and J. Kas, “Quantifying the contribution of actin networks to the elastic strength of fibroblasts,” J. Theor. Biol. 242, 502-516 (2006).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Kas, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451-5454 (2000).
[CrossRef] [PubMed]

Kim, J.

Koop, B. A.

N. Ghosh-Choudhury, J. J. Windle, B. A. Koop, M. A. Harris, D. L. Guerrero, J. M. Wozney, G. R. Mundy, and S. E. Harris, “Immortalized murine osteoblasts derived from BMP 2-T-antigen expressing transgenic mice,” Endocrinology 137, 331-339(1996).
[CrossRef] [PubMed]

Lam, W. A.

M. J. Rosenbluth, W. A. Lam, and D. A. Fletcher, “Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry,” Lab. Chip 8, 1062-1070(2008).
[CrossRef] [PubMed]

Lenz, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Lim, C. T.

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1, 15-30 (2005).
[CrossRef]

Lin, Z. F.

J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J Biomed. Opt. 10, 064013 (2005).
[CrossRef]

Lincoln, B.

B. Lincoln, F. Wottawah, S. Schinkinger, S. Ebert, and J. Guck, “High-throughput rheological measurements with an optical stretcher,” Methods Cell Biol. 83, 397-423 (2007).
[CrossRef] [PubMed]

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15, 15493-15499 (2007).
[CrossRef] [PubMed]

R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, T. Moon, and J. Kas, “Quantifying the contribution of actin networks to the elastic strength of fibroblasts,” J. Theor. Biol. 242, 502-516 (2006).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

B. Lincoln, H. M. Erickson, S. Schinkinger, F. Wottawah, D. Mitchell, S. Ulvick, C. Bilby, and J. Guck, “Deformability-based flow cytometry,” Cytometry A 59, 203-209 (2004).
[CrossRef] [PubMed]

Lock, J. A.

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Optical stress on the surface of a particle: homogeneous sphere,” Phys. Rev. A 79, 053808 (2009).
[CrossRef]

Lue, N.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717-719 (2007).
[CrossRef] [PubMed]

Lykotrafitis, G.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U. S. A. 105, 13730-13735(2008).
[CrossRef] [PubMed]

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

Mervis, J.

Micoulet, A.

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1, 15-30 (2005).
[CrossRef]

Mills, J. P.

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1, 15-30 (2005).
[CrossRef]

Mitchell, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

B. Lincoln, H. M. Erickson, S. Schinkinger, F. Wottawah, D. Mitchell, S. Ulvick, C. Bilby, and J. Guck, “Deformability-based flow cytometry,” Cytometry A 59, 203-209 (2004).
[CrossRef] [PubMed]

Moon, T.

R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, T. Moon, and J. Kas, “Quantifying the contribution of actin networks to the elastic strength of fibroblasts,” J. Theor. Biol. 242, 502-516 (2006).
[CrossRef] [PubMed]

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Kas, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451-5454 (2000).
[CrossRef] [PubMed]

Mundy, G. R.

N. Ghosh-Choudhury, J. J. Windle, B. A. Koop, M. A. Harris, D. L. Guerrero, J. M. Wozney, G. R. Mundy, and S. E. Harris, “Immortalized murine osteoblasts derived from BMP 2-T-antigen expressing transgenic mice,” Endocrinology 137, 331-339(1996).
[CrossRef] [PubMed]

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717-719 (2007).
[CrossRef] [PubMed]

Park, Y.

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41, 10-16(2008).
[CrossRef] [PubMed]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U. S. A. 105, 13730-13735(2008).
[CrossRef] [PubMed]

Popescu, G.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U. S. A. 105, 13730-13735(2008).
[CrossRef] [PubMed]

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41, 10-16(2008).
[CrossRef] [PubMed]

Prentiss, M.

Press, W. H.

W. H. Press, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University, 1992).

Reichenbach, A.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U. S. A. 104, 8287-8292 (2007).
[CrossRef] [PubMed]

Romeyke, M.

R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, T. Moon, and J. Kas, “Quantifying the contribution of actin networks to the elastic strength of fibroblasts,” J. Theor. Biol. 242, 502-516 (2006).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Roosen, G.

G. Roosen, “A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,” Opt. Commun. 21, 189-194 (1977).
[CrossRef]

Rosenbluth, M. J.

M. J. Rosenbluth, W. A. Lam, and D. A. Fletcher, “Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry,” Lab. Chip 8, 1062-1070(2008).
[CrossRef] [PubMed]

Schild, D.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U. S. A. 104, 8287-8292 (2007).
[CrossRef] [PubMed]

Schinkinger, S.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U. S. A. 104, 8287-8292 (2007).
[CrossRef] [PubMed]

B. Lincoln, F. Wottawah, S. Schinkinger, S. Ebert, and J. Guck, “High-throughput rheological measurements with an optical stretcher,” Methods Cell Biol. 83, 397-423 (2007).
[CrossRef] [PubMed]

R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, T. Moon, and J. Kas, “Quantifying the contribution of actin networks to the elastic strength of fibroblasts,” J. Theor. Biol. 242, 502-516 (2006).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

B. Lincoln, H. M. Erickson, S. Schinkinger, F. Wottawah, D. Mitchell, S. Ulvick, C. Bilby, and J. Guck, “Deformability-based flow cytometry,” Cytometry A 59, 203-209 (2004).
[CrossRef] [PubMed]

Seufferlein, T.

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1, 15-30 (2005).
[CrossRef]

Sheng, Y. L.

Skatchkov, S. N.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U. S. A. 104, 8287-8292 (2007).
[CrossRef] [PubMed]

Spatz, J.

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1, 15-30 (2005).
[CrossRef]

Stephenson, J. R.

J. R. Stephenson, “Size- and geometry-dependent trapping efficiency of the optical stretcher,” presented at the March Meeting of the American Physics Society (Albuquerque, New Mexico, 23 April 2002).

J. R. Stephenson, “Computational modeling of the optical stretcher: an evaluation of the stretching force and trap stability for cubic and spherical objects,” Masters thesis (Creighton University, 2002).

Suresh, S.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U. S. A. 105, 13730-13735(2008).
[CrossRef] [PubMed]

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1, 15-30 (2005).
[CrossRef]

K. J. Van Vliet, G. Bao, and S. Suresh, “The biomechanics toolbox: experimental approaches for living cells and biomolecules,” Acta Mater. 51, 5881-5905 (2003).
[CrossRef]

Travis, K.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U. S. A. 104, 8287-8292 (2007).
[CrossRef] [PubMed]

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15, 15493-15499 (2007).
[CrossRef] [PubMed]

Tropea, C.

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Optical stress on the surface of a particle: homogeneous sphere,” Phys. Rev. A 79, 053808 (2009).
[CrossRef]

Uckermann, O.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U. S. A. 104, 8287-8292 (2007).
[CrossRef] [PubMed]

Ulvick, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

B. Lincoln, H. M. Erickson, S. Schinkinger, F. Wottawah, D. Mitchell, S. Ulvick, C. Bilby, and J. Guck, “Deformability-based flow cytometry,” Cytometry A 59, 203-209 (2004).
[CrossRef] [PubMed]

Van Vliet, K. J.

K. J. Van Vliet, G. Bao, and S. Suresh, “The biomechanics toolbox: experimental approaches for living cells and biomolecules,” Acta Mater. 51, 5881-5905 (2003).
[CrossRef]

Wang, P. N.

J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J Biomed. Opt. 10, 064013 (2005).
[CrossRef]

Windle, J. J.

N. Ghosh-Choudhury, J. J. Windle, B. A. Koop, M. A. Harris, D. L. Guerrero, J. M. Wozney, G. R. Mundy, and S. E. Harris, “Immortalized murine osteoblasts derived from BMP 2-T-antigen expressing transgenic mice,” Endocrinology 137, 331-339(1996).
[CrossRef] [PubMed]

Wottawah, F.

B. Lincoln, F. Wottawah, S. Schinkinger, S. Ebert, and J. Guck, “High-throughput rheological measurements with an optical stretcher,” Methods Cell Biol. 83, 397-423 (2007).
[CrossRef] [PubMed]

R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, T. Moon, and J. Kas, “Quantifying the contribution of actin networks to the elastic strength of fibroblasts,” J. Theor. Biol. 242, 502-516 (2006).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

B. Lincoln, H. M. Erickson, S. Schinkinger, F. Wottawah, D. Mitchell, S. Ulvick, C. Bilby, and J. Guck, “Deformability-based flow cytometry,” Cytometry A 59, 203-209 (2004).
[CrossRef] [PubMed]

Wozney, J. M.

N. Ghosh-Choudhury, J. J. Windle, B. A. Koop, M. A. Harris, D. L. Guerrero, J. M. Wozney, G. R. Mundy, and S. E. Harris, “Immortalized murine osteoblasts derived from BMP 2-T-antigen expressing transgenic mice,” Endocrinology 137, 331-339(1996).
[CrossRef] [PubMed]

Xu, F.

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Optical stress on the surface of a particle: homogeneous sphere,” Phys. Rev. A 79, 053808 (2009).
[CrossRef]

Xu, L.

J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J Biomed. Opt. 10, 064013 (2005).
[CrossRef]

Yariv, A.

A. Yariv and A. Yariv, Optical Electronics in Modern Communications (Oxford University, 1997).

A. Yariv and A. Yariv, Optical Electronics in Modern Communications (Oxford University, 1997).

Yu, J. T.

J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J Biomed. Opt. 10, 064013 (2005).
[CrossRef]

Zarinetchi, F.

Acta Biomater.

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1, 15-30 (2005).
[CrossRef]

Acta Mater.

K. J. Van Vliet, G. Bao, and S. Suresh, “The biomechanics toolbox: experimental approaches for living cells and biomolecules,” Acta Mater. 51, 5881-5905 (2003).
[CrossRef]

Biophys. J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Blood Cells Mol. Dis.

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41, 10-16(2008).
[CrossRef] [PubMed]

Cytometry A

B. Lincoln, H. M. Erickson, S. Schinkinger, F. Wottawah, D. Mitchell, S. Ulvick, C. Bilby, and J. Guck, “Deformability-based flow cytometry,” Cytometry A 59, 203-209 (2004).
[CrossRef] [PubMed]

Endocrinology

N. Ghosh-Choudhury, J. J. Windle, B. A. Koop, M. A. Harris, D. L. Guerrero, J. M. Wozney, G. R. Mundy, and S. E. Harris, “Immortalized murine osteoblasts derived from BMP 2-T-antigen expressing transgenic mice,” Endocrinology 137, 331-339(1996).
[CrossRef] [PubMed]

J Biomed. Opt.

J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J Biomed. Opt. 10, 064013 (2005).
[CrossRef]

J. Bone Miner. Met.

L. F. Bonewald, “Establishment and characterization of an osteocyte-like cell line, MLO-Y4,” J. Bone Miner. Met. 17, 61-65 (1999).
[CrossRef]

J. Theor. Biol.

R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, T. Moon, and J. Kas, “Quantifying the contribution of actin networks to the elastic strength of fibroblasts,” J. Theor. Biol. 242, 502-516 (2006).
[CrossRef] [PubMed]

Lab. Chip

M. J. Rosenbluth, W. A. Lam, and D. A. Fletcher, “Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry,” Lab. Chip 8, 1062-1070(2008).
[CrossRef] [PubMed]

Methods Cell Biol.

B. Lincoln, F. Wottawah, S. Schinkinger, S. Ebert, and J. Guck, “High-throughput rheological measurements with an optical stretcher,” Methods Cell Biol. 83, 397-423 (2007).
[CrossRef] [PubMed]

Nat. Methods

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717-719 (2007).
[CrossRef] [PubMed]

Opt. Commun.

G. Roosen, “A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,” Opt. Commun. 21, 189-194 (1977).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Optical stress on the surface of a particle: homogeneous sphere,” Phys. Rev. A 79, 053808 (2009).
[CrossRef]

Phys. Rev. Lett.

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Kas, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451-5454 (2000).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U. S. A.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U. S. A. 104, 8287-8292 (2007).
[CrossRef] [PubMed]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U. S. A. 105, 13730-13735(2008).
[CrossRef] [PubMed]

Other

J. Huff, “Laser induced heating in the optical stretcher,” Masters thesis (Creighton University, 2005).

J. R. Stephenson, “Computational modeling of the optical stretcher: an evaluation of the stretching force and trap stability for cubic and spherical objects,” Masters thesis (Creighton University, 2002).

A. Yariv and A. Yariv, Optical Electronics in Modern Communications (Oxford University, 1997).

J. R. Stephenson, “Size- and geometry-dependent trapping efficiency of the optical stretcher,” presented at the March Meeting of the American Physics Society (Albuquerque, New Mexico, 23 April 2002).

R. Greenler, Rainbows, Halos, and Glories (Cambridge University, 1980).

A. Ekpenyong, “Hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher,” Masters thesis (Creighton University, 2008).

W. H. Press, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Calculated stress distributions on a 10 μm diameter sphere trapped in an optical stretcher with a fiber separation of 200 μm . The cosine-squared approximation (dotted line) is compared to the RO model (solid line) (a) ignoring or (b)  allowing for multiple internal reflections.

Fig. 2
Fig. 2

Percent deviation of the calculated cellular elasticity ( E h ) from the true value, using major- or minor-axis deformations and the cosine-squared approximation [Eq. (3)] to calculate the stiffness. (a) and (b) show the case when internal reflections are suppressed, while (c) and (d) include multiple internal reflections. Regions bounded by ± 10 % deviation lines indicate stretcher configurations where a cosine-squared stress distribution is a good approximation to the RO model. Use of this approximation for other combinations of fiber separation and cell radius will introduce a significant systematic error in the calculation of E h .

Fig. 3
Fig. 3

Layout of the near-infrared optical stretcher. Nd-YAG laser light is fiber-optic coupled into two single mode fibers by a 50 50 beam splitter (BS). The image shows an osteoblast-like cell that is trapped in the stretcher. The fiber separation is 150 μm , and the scale bar is 20 μm .

Fig. 4
Fig. 4

(a) Axial and (b) radial trapping forces exerted on a 7.8 μm diameter polystyrene sphere calculated for fiber separations ranging from 110 310 μm . For these simulations, the center of the stretcher is held fixed (at an axial position of 25 μm and a radial position of 0 μm ) in the center of a glass capillary tube.

Fig. 5
Fig. 5

Measurement of the escape force for polystyrene spheres trapped in the optical stretcher. (a) Plot of the sphere position versus time as the sphere is trapped, held, and then pulled out by the viscous drag of fluid flow. The slopes of the lines give the speed of the sphere. (b) Comparison of the theoretical and experimentally determined escape forces required to pull a 7.8 μm polystyrene sphere from the optical stretcher. Fiber separations of 200 and 250 μm and several laser powers were used. Error bars represent the standard error for experiments conducted under similar conditions. The equation of the best-fit line is shown.

Fig. 6
Fig. 6

Examples of (a) RBC, (b) MLO-Y4, and (c) 2T3 deformation during optical stretching. The laser stretcher is oriented vertically relative to these images, and the laser power is shown below each image. The 10 μm scalebar applies to all image panels.

Fig. 7
Fig. 7

Sample (a) RBC, (b) MLO-Y4, and (c) 2T3 major-axis (closed symbols) and minor-axis (open symbols) deformations measured in response to optical stretching. The datapoints and errorbars report the average and standard deviation of at least 15 single-cell measurements made at each laser power. The stress was calculated from the RO model simulation of the experiment. The cell stiffness is inversely proportional to the slopes of the best-fit lines.

Fig. 8
Fig. 8

Summary of single-cell RBC, MLO-Y4, and 2T3 elasticity measurements. While there is variance in each population, osteogenic cells appear to be about 5.4 times stiffer than RBCs.

Tables (1)

Tables Icon

Table 1 Summary of Empirical Deformation Equations for Major, u r ( 0 ) , and Minor, u r ( 90 ) , Axes, Determined for Several Fiber Separations a

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

P ( θ ) = ( T ( θ i ) · | n t cos θ t n i cos θ i | R ( θ i ) · 2 · n i cos θ i | ) · I ( θ ) c
σ ( θ ) = σ 0 cos 2 ( θ ) ,
u r ( θ ) = ρ 2 σ o 4 E h [ ( 5 + ν ) cos 2 ( θ ) 1 ν ] ,
u θ ( θ ) = ρ 2 σ o ( 1 + ν ) 2 E h cos ( θ ) sin ( θ ) .
d u θ d θ = 2 u r ρ 2 σ r ( θ ) ( 1 ν ) 2 E h u θ cot θ ,
d u r ( 1 + ν ) d θ = ρ u θ cot θ + ρ d u θ d θ ν u θ u θ cot 2 θ .
d 2 u θ d θ 2 = 2 1 ν [ u θ ( ν + cot 2 θ + ( 1 + ν ) 2 csc 2 θ ) 2 d u θ d θ cot θ ] + ρ 2 ( 1 + ν ) σ r ( θ ) E h ,
u r = 1 2 [ d u θ d θ + ρ 2 σ r ( θ ) ( 1 ν ) E h + u θ cot θ ] .
u r ( 0 ) = A σ avg ( E h ) a ( 1 + ν ) b ρ c ,
u r ( 90 ) = B σ avg ( E h ) d ( 1 + ν ) e ρ f ,
F = 6 π · ρ · η · v ,
F r , net = A P ( θ ) r ^ · d A = ρ 2 A P ( θ ) sin ϕ sin 2 θ d θ d ϕ .

Metrics