Abstract

We describe a scanning time-of-flight system which uses the time-correlated single-photon counting technique to produce three-dimensional depth images of distant, noncooperative surfaces when these targets are illuminated by a kHz to MHz repetition rate pulsed laser source. The data for the scene are acquired using a scanning optical system and an individual single-photon detector. Depth images have been successfully acquired with centimeter xyz resolution, in daylight conditions, for low-signature targets in field trials at distances of up to 325m using an output illumination with an average optical power of less than 50μW.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Chen, G. M. Brown, and M. M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
    [CrossRef]
  2. M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10-19 (2001).
    [CrossRef]
  3. C. Mallet and F. Bretar, “Full-waveform topographic lidar: state-of-the-art,” ISPRS J. Photogramm. Remote Sens. 64, 1-16 (2009).
    [CrossRef]
  4. M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O'Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671-7678 (2002).
    [CrossRef]
  5. J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34, 503-549 (2002).
    [CrossRef]
  6. C. Ho, K. L. Albright, A. W. Bird, J. Bradley, D. E. Casperson, M. Hindman, W. C. Priedhorsky, W. R. Scarlett, R. C. Smith, J. Theiler, and S. K. Wilson, “Demonstration of literal three-dimensional imaging,” Appl. Opt. 38, 1833-1840(1999).
    [CrossRef]
  7. R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15, 23-36(2005).
  8. J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, and A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22, 543-545(1997).
    [CrossRef]
  9. W. C. Priedhorsky, R. C. Smith, and C. Ho, “Laser ranging and mapping with a photon-counting detector,” Appl. Opt. 35, 441-452 (1996).
    [CrossRef]
  10. S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712-716 (2000).
    [CrossRef]
  11. B. W. Schilling, D. N. Barr, G. C. Templeton, L. J. Mizerka, and C. W. Trussell, “Multiple-return laser radar for three-dimensional imaging through obscurations,” Appl. Opt. 41, 2791-2799 (2002).
    [CrossRef]
  12. G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112(2005).
    [CrossRef]
  13. G. S. Buller, R. E. Warburton, S. Pellegrini, J. S. Ng, J. P. R. David, L. J. J. Tan, A. B. Krysa, and S. Cova, “Single-photon avalanche diode detectors for quantum key distribution,” IET Optoelectron. 1, 249-254 (2007).
    [CrossRef]
  14. P. Gatt, S. Johnson, and T. Nichols, “Geiger-mode avalanche photodiode ladar receiver performance characteristics and detection statistics,” Appl. Opt. 48, 3262-3276 (2009).
    [CrossRef]
  15. D. G. Fouche, “Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors,” Appl. Opt. 42, 5388-5398 (2003).
    [CrossRef]
  16. J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, and A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. 37, 7298-7304 (1998).
    [CrossRef]
  17. J. Massa, G. Buller, A. Walker, G. Smith, S. Cova, M. Umasuthan, and A. Wallace, “Optical design and evaluation of a three-dimensional imaging and ranging system based on time-correlated single-photon counting,” Appl. Opt. 41, 1063-1070 (2002).
    [CrossRef]
  18. C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-State Circuits 40, 1847-1854 (2005).
    [CrossRef]
  19. D. T. Neilson, S. M. Prince, D. A. Baillie, and F. A. P. Tooley, “Optical design of a 1024-channel free-space sorting demonstrator,” Appl. Opt. 36, 9243-9252 (1997).
    [CrossRef]
  20. C. P. Barrett, P. Blair, G. S. Buller, D. T. Neilson, B. Robertson, E. C. Smith, M. R. Taghizadeh, and A. C. Walker, “Components for the implementation of free-space optical crossbars,” Appl. Opt. 35, 6934-6944 (1996).
    [CrossRef]
  21. R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32, 2266-2268 (2007).
    [CrossRef]
  22. N. Takeuchi, H. Baba, K. Sakurai, and T. Ueno, “Diode-laser random-modulation cw lidar,” Appl. Opt. 25, 63-67 (1986).
    [CrossRef]
  23. N. Takeuchi, N. Sugimoto, H. Baba, and K. Sakurai, “Random modulation cw lidar,” Appl. Opt. 22, 1382-1386 (1983).
    [CrossRef]
  24. P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16, 13685-13698 (2008).
    [CrossRef]
  25. A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: A moderate resolution model for LOWTRAN 7,” Technical Note GL-TR-89-0122, available from Geophysics Laboratory/OPE, Air Force Systems Command, Hanscom AFB, Mass., 1989.
  26. A. M. Wallace, R. C. W. Sung, G. S. Buller, R. D. Harkins, R. E. Warburton, and R. A. Lamb, “Detecting and characterising returns in a pulsed ladar system,” IEE Proc. Vision Image Signal Process. 153, 160-172 (2006).
    [CrossRef]
  27. S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Multilayered 3D LiDAR image construction using spatial models in a Bayesian framework,” IEEE Trans. Pattern Anal. Mach. Intell. 30, 1028-1040 (2008).
    [CrossRef]
  28. P. J. Green, “Reversible jump Markov chain Monte Carlo computation and Bayesian model determination,” Biometrika 82, 711-732 (1995).
    [CrossRef]
  29. W. P. Cole, M. A. Marciniak, and M. B. Haeri, “Atmospheric-turbulence-effects correction factors for the laser range equation,” Opt. Eng. 47, 126001 (2008).
    [CrossRef]
  30. M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 852-862 (2007).
    [CrossRef]
  31. M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
    [CrossRef]

2009

C. Mallet and F. Bretar, “Full-waveform topographic lidar: state-of-the-art,” ISPRS J. Photogramm. Remote Sens. 64, 1-16 (2009).
[CrossRef]

P. Gatt, S. Johnson, and T. Nichols, “Geiger-mode avalanche photodiode ladar receiver performance characteristics and detection statistics,” Appl. Opt. 48, 3262-3276 (2009).
[CrossRef]

2008

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Multilayered 3D LiDAR image construction using spatial models in a Bayesian framework,” IEEE Trans. Pattern Anal. Mach. Intell. 30, 1028-1040 (2008).
[CrossRef]

W. P. Cole, M. A. Marciniak, and M. B. Haeri, “Atmospheric-turbulence-effects correction factors for the laser range equation,” Opt. Eng. 47, 126001 (2008).
[CrossRef]

P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16, 13685-13698 (2008).
[CrossRef]

2007

R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32, 2266-2268 (2007).
[CrossRef]

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 852-862 (2007).
[CrossRef]

G. S. Buller, R. E. Warburton, S. Pellegrini, J. S. Ng, J. P. R. David, L. J. J. Tan, A. B. Krysa, and S. Cova, “Single-photon avalanche diode detectors for quantum key distribution,” IET Optoelectron. 1, 249-254 (2007).
[CrossRef]

2006

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[CrossRef]

A. M. Wallace, R. C. W. Sung, G. S. Buller, R. D. Harkins, R. E. Warburton, and R. A. Lamb, “Detecting and characterising returns in a pulsed ladar system,” IEE Proc. Vision Image Signal Process. 153, 160-172 (2006).
[CrossRef]

2005

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-State Circuits 40, 1847-1854 (2005).
[CrossRef]

R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15, 23-36(2005).

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112(2005).
[CrossRef]

2003

2002

2001

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10-19 (2001).
[CrossRef]

2000

F. Chen, G. M. Brown, and M. M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
[CrossRef]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712-716 (2000).
[CrossRef]

1999

1998

1997

1996

1995

P. J. Green, “Reversible jump Markov chain Monte Carlo computation and Bayesian model determination,” Biometrika 82, 711-732 (1995).
[CrossRef]

1986

1983

Albota, M. A.

Albright, K. L.

Amann, M. C.

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10-19 (2001).
[CrossRef]

Aull, B. F.

Baba, H.

Baillie, D. A.

Barr, D. N.

Barrett, C. P.

Berk, A.

A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: A moderate resolution model for LOWTRAN 7,” Technical Note GL-TR-89-0122, available from Geophysics Laboratory/OPE, Air Force Systems Command, Hanscom AFB, Mass., 1989.

Bernstein, L. S.

A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: A moderate resolution model for LOWTRAN 7,” Technical Note GL-TR-89-0122, available from Geophysics Laboratory/OPE, Air Force Systems Command, Hanscom AFB, Mass., 1989.

Besse, P. A.

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-State Circuits 40, 1847-1854 (2005).
[CrossRef]

Bird, A. W.

Blair, P.

Bosch, T.

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10-19 (2001).
[CrossRef]

Bradley, J.

Bretar, F.

C. Mallet and F. Bretar, “Full-waveform topographic lidar: state-of-the-art,” ISPRS J. Photogramm. Remote Sens. 64, 1-16 (2009).
[CrossRef]

Brown, G. M.

F. Chen, G. M. Brown, and M. M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
[CrossRef]

Buller, G.

Buller, G. S.

P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16, 13685-13698 (2008).
[CrossRef]

G. S. Buller, R. E. Warburton, S. Pellegrini, J. S. Ng, J. P. R. David, L. J. J. Tan, A. B. Krysa, and S. Cova, “Single-photon avalanche diode detectors for quantum key distribution,” IET Optoelectron. 1, 249-254 (2007).
[CrossRef]

R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32, 2266-2268 (2007).
[CrossRef]

A. M. Wallace, R. C. W. Sung, G. S. Buller, R. D. Harkins, R. E. Warburton, and R. A. Lamb, “Detecting and characterising returns in a pulsed ladar system,” IEE Proc. Vision Image Signal Process. 153, 160-172 (2006).
[CrossRef]

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112(2005).
[CrossRef]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712-716 (2000).
[CrossRef]

J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, and A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. 37, 7298-7304 (1998).
[CrossRef]

J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, and A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22, 543-545(1997).
[CrossRef]

C. P. Barrett, P. Blair, G. S. Buller, D. T. Neilson, B. Robertson, E. C. Smith, M. R. Taghizadeh, and A. C. Walker, “Components for the implementation of free-space optical crossbars,” Appl. Opt. 35, 6934-6944 (1996).
[CrossRef]

Carlson, R. R.

Casperson, D. E.

Charbon, E.

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-State Circuits 40, 1847-1854 (2005).
[CrossRef]

Chen, F.

F. Chen, G. M. Brown, and M. M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
[CrossRef]

Cole, W. P.

W. P. Cole, M. A. Marciniak, and M. B. Haeri, “Atmospheric-turbulence-effects correction factors for the laser range equation,” Opt. Eng. 47, 126001 (2008).
[CrossRef]

Cova, S.

G. S. Buller, R. E. Warburton, S. Pellegrini, J. S. Ng, J. P. R. David, L. J. J. Tan, A. B. Krysa, and S. Cova, “Single-photon avalanche diode detectors for quantum key distribution,” IET Optoelectron. 1, 249-254 (2007).
[CrossRef]

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 852-862 (2007).
[CrossRef]

J. Massa, G. Buller, A. Walker, G. Smith, S. Cova, M. Umasuthan, and A. Wallace, “Optical design and evaluation of a three-dimensional imaging and ranging system based on time-correlated single-photon counting,” Appl. Opt. 41, 1063-1070 (2002).
[CrossRef]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712-716 (2000).
[CrossRef]

J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, and A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. 37, 7298-7304 (1998).
[CrossRef]

David, J. P. R.

G. S. Buller, R. E. Warburton, S. Pellegrini, J. S. Ng, J. P. R. David, L. J. J. Tan, A. B. Krysa, and S. Cova, “Single-photon avalanche diode detectors for quantum key distribution,” IET Optoelectron. 1, 249-254 (2007).
[CrossRef]

Davis, W. R.

R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15, 23-36(2005).

Degnan, J. J.

J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34, 503-549 (2002).
[CrossRef]

Fancey, S. J.

Fouche, D. G.

Gatt, P.

P. Gatt, S. Johnson, and T. Nichols, “Geiger-mode avalanche photodiode ladar receiver performance characteristics and detection statistics,” Appl. Opt. 48, 3262-3276 (2009).
[CrossRef]

Ghioni, M.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 852-862 (2007).
[CrossRef]

Gibson, G. J.

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Multilayered 3D LiDAR image construction using spatial models in a Bayesian framework,” IEEE Trans. Pattern Anal. Mach. Intell. 30, 1028-1040 (2008).
[CrossRef]

Green, P. J.

P. J. Green, “Reversible jump Markov chain Monte Carlo computation and Bayesian model determination,” Biometrika 82, 711-732 (1995).
[CrossRef]

Gulinatti, A.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 852-862 (2007).
[CrossRef]

Gupta, J. A.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[CrossRef]

Hadfield, R. H.

R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32, 2266-2268 (2007).
[CrossRef]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[CrossRef]

Haeri, M. B.

W. P. Cole, M. A. Marciniak, and M. B. Haeri, “Atmospheric-turbulence-effects correction factors for the laser range equation,” Opt. Eng. 47, 126001 (2008).
[CrossRef]

Harkins, R. D.

A. M. Wallace, R. C. W. Sung, G. S. Buller, R. D. Harkins, R. E. Warburton, and R. A. Lamb, “Detecting and characterising returns in a pulsed ladar system,” IEE Proc. Vision Image Signal Process. 153, 160-172 (2006).
[CrossRef]

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112(2005).
[CrossRef]

Heinrichs, R. M.

Hernandez-Marin, S.

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Multilayered 3D LiDAR image construction using spatial models in a Bayesian framework,” IEEE Trans. Pattern Anal. Mach. Intell. 30, 1028-1040 (2008).
[CrossRef]

R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32, 2266-2268 (2007).
[CrossRef]

Hindman, M.

Hiskett, P. A.

P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16, 13685-13698 (2008).
[CrossRef]

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112(2005).
[CrossRef]

Ho, C.

Johnson, S.

P. Gatt, S. Johnson, and T. Nichols, “Geiger-mode avalanche photodiode ladar receiver performance characteristics and detection statistics,” Appl. Opt. 48, 3262-3276 (2009).
[CrossRef]

Kocher, D. G.

Krysa, A. B.

G. S. Buller, R. E. Warburton, S. Pellegrini, J. S. Ng, J. P. R. David, L. J. J. Tan, A. B. Krysa, and S. Cova, “Single-photon avalanche diode detectors for quantum key distribution,” IET Optoelectron. 1, 249-254 (2007).
[CrossRef]

Lamb, R. A.

A. M. Wallace, R. C. W. Sung, G. S. Buller, R. D. Harkins, R. E. Warburton, and R. A. Lamb, “Detecting and characterising returns in a pulsed ladar system,” IEE Proc. Vision Image Signal Process. 153, 160-172 (2006).
[CrossRef]

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112(2005).
[CrossRef]

Lescure, M.

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10-19 (2001).
[CrossRef]

MacKinnon, G. R.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112(2005).
[CrossRef]

Mallet, C.

C. Mallet and F. Bretar, “Full-waveform topographic lidar: state-of-the-art,” ISPRS J. Photogramm. Remote Sens. 64, 1-16 (2009).
[CrossRef]

Marciniak, M. A.

W. P. Cole, M. A. Marciniak, and M. B. Haeri, “Atmospheric-turbulence-effects correction factors for the laser range equation,” Opt. Eng. 47, 126001 (2008).
[CrossRef]

Marino, R. M.

R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15, 23-36(2005).

Massa, J.

Massa, J. S.

McCarthy, A.

Mirin, R. P.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[CrossRef]

Mizerka, L. J.

Mooney, J.

Myllyla, R.

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10-19 (2001).
[CrossRef]

Nam, S. W.

R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32, 2266-2268 (2007).
[CrossRef]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[CrossRef]

Neilson, D. T.

Ng, J. S.

G. S. Buller, R. E. Warburton, S. Pellegrini, J. S. Ng, J. P. R. David, L. J. J. Tan, A. B. Krysa, and S. Cova, “Single-photon avalanche diode detectors for quantum key distribution,” IET Optoelectron. 1, 249-254 (2007).
[CrossRef]

Nichols, T.

P. Gatt, S. Johnson, and T. Nichols, “Geiger-mode avalanche photodiode ladar receiver performance characteristics and detection statistics,” Appl. Opt. 48, 3262-3276 (2009).
[CrossRef]

Niclass, C.

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-State Circuits 40, 1847-1854 (2005).
[CrossRef]

O'Brien, M. E.

Parry, C. S.

Pellegrini, S.

G. S. Buller, R. E. Warburton, S. Pellegrini, J. S. Ng, J. P. R. David, L. J. J. Tan, A. B. Krysa, and S. Cova, “Single-photon avalanche diode detectors for quantum key distribution,” IET Optoelectron. 1, 249-254 (2007).
[CrossRef]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712-716 (2000).
[CrossRef]

Player, B. E.

Priedhorsky, W. C.

Prince, S. M.

Rarity, J. G.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112(2005).
[CrossRef]

Rech, I.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 852-862 (2007).
[CrossRef]

Ridley, K. D.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112(2005).
[CrossRef]

Rioux, M.

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10-19 (2001).
[CrossRef]

Robertson, B.

Robertson, D. C.

A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: A moderate resolution model for LOWTRAN 7,” Technical Note GL-TR-89-0122, available from Geophysics Laboratory/OPE, Air Force Systems Command, Hanscom AFB, Mass., 1989.

Rochas, A.

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-State Circuits 40, 1847-1854 (2005).
[CrossRef]

Sakurai, K.

Scarlett, W. R.

Schilling, B. W.

Schwall, R. E.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[CrossRef]

Smith, E. C.

Smith, G.

Smith, G. R.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112(2005).
[CrossRef]

Smith, J. M.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712-716 (2000).
[CrossRef]

Smith, R. C.

Song, M. M.

F. Chen, G. M. Brown, and M. M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
[CrossRef]

Stevens, M. J.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[CrossRef]

Sugimoto, N.

Sung, R.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112(2005).
[CrossRef]

Sung, R. C. W.

A. M. Wallace, R. C. W. Sung, G. S. Buller, R. D. Harkins, R. E. Warburton, and R. A. Lamb, “Detecting and characterising returns in a pulsed ladar system,” IEE Proc. Vision Image Signal Process. 153, 160-172 (2006).
[CrossRef]

Taghizadeh, M. R.

Takeuchi, N.

Tan, L. J. J.

G. S. Buller, R. E. Warburton, S. Pellegrini, J. S. Ng, J. P. R. David, L. J. J. Tan, A. B. Krysa, and S. Cova, “Single-photon avalanche diode detectors for quantum key distribution,” IET Optoelectron. 1, 249-254 (2007).
[CrossRef]

Templeton, G. C.

Theiler, J.

Tooley, F. A. P.

Trussell, C. W.

Ueno, T.

Umasuthan, M.

Walker, A.

Walker, A. C.

Wallace, A.

Wallace, A. M.

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Multilayered 3D LiDAR image construction using spatial models in a Bayesian framework,” IEEE Trans. Pattern Anal. Mach. Intell. 30, 1028-1040 (2008).
[CrossRef]

R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32, 2266-2268 (2007).
[CrossRef]

A. M. Wallace, R. C. W. Sung, G. S. Buller, R. D. Harkins, R. E. Warburton, and R. A. Lamb, “Detecting and characterising returns in a pulsed ladar system,” IEE Proc. Vision Image Signal Process. 153, 160-172 (2006).
[CrossRef]

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112(2005).
[CrossRef]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712-716 (2000).
[CrossRef]

J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, and A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. 37, 7298-7304 (1998).
[CrossRef]

J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, and A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22, 543-545(1997).
[CrossRef]

Warburton, R. E.

R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32, 2266-2268 (2007).
[CrossRef]

G. S. Buller, R. E. Warburton, S. Pellegrini, J. S. Ng, J. P. R. David, L. J. J. Tan, A. B. Krysa, and S. Cova, “Single-photon avalanche diode detectors for quantum key distribution,” IET Optoelectron. 1, 249-254 (2007).
[CrossRef]

A. M. Wallace, R. C. W. Sung, G. S. Buller, R. D. Harkins, R. E. Warburton, and R. A. Lamb, “Detecting and characterising returns in a pulsed ladar system,” IEE Proc. Vision Image Signal Process. 153, 160-172 (2006).
[CrossRef]

Willard, B. C.

Wilson, S. K.

Zappa, F.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 852-862 (2007).
[CrossRef]

Zayhowski, J. J.

Appl. Opt.

M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O'Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671-7678 (2002).
[CrossRef]

C. Ho, K. L. Albright, A. W. Bird, J. Bradley, D. E. Casperson, M. Hindman, W. C. Priedhorsky, W. R. Scarlett, R. C. Smith, J. Theiler, and S. K. Wilson, “Demonstration of literal three-dimensional imaging,” Appl. Opt. 38, 1833-1840(1999).
[CrossRef]

W. C. Priedhorsky, R. C. Smith, and C. Ho, “Laser ranging and mapping with a photon-counting detector,” Appl. Opt. 35, 441-452 (1996).
[CrossRef]

B. W. Schilling, D. N. Barr, G. C. Templeton, L. J. Mizerka, and C. W. Trussell, “Multiple-return laser radar for three-dimensional imaging through obscurations,” Appl. Opt. 41, 2791-2799 (2002).
[CrossRef]

P. Gatt, S. Johnson, and T. Nichols, “Geiger-mode avalanche photodiode ladar receiver performance characteristics and detection statistics,” Appl. Opt. 48, 3262-3276 (2009).
[CrossRef]

D. G. Fouche, “Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors,” Appl. Opt. 42, 5388-5398 (2003).
[CrossRef]

J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, and A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. 37, 7298-7304 (1998).
[CrossRef]

J. Massa, G. Buller, A. Walker, G. Smith, S. Cova, M. Umasuthan, and A. Wallace, “Optical design and evaluation of a three-dimensional imaging and ranging system based on time-correlated single-photon counting,” Appl. Opt. 41, 1063-1070 (2002).
[CrossRef]

N. Takeuchi, H. Baba, K. Sakurai, and T. Ueno, “Diode-laser random-modulation cw lidar,” Appl. Opt. 25, 63-67 (1986).
[CrossRef]

N. Takeuchi, N. Sugimoto, H. Baba, and K. Sakurai, “Random modulation cw lidar,” Appl. Opt. 22, 1382-1386 (1983).
[CrossRef]

D. T. Neilson, S. M. Prince, D. A. Baillie, and F. A. P. Tooley, “Optical design of a 1024-channel free-space sorting demonstrator,” Appl. Opt. 36, 9243-9252 (1997).
[CrossRef]

C. P. Barrett, P. Blair, G. S. Buller, D. T. Neilson, B. Robertson, E. C. Smith, M. R. Taghizadeh, and A. C. Walker, “Components for the implementation of free-space optical crossbars,” Appl. Opt. 35, 6934-6944 (1996).
[CrossRef]

Appl. Phys. Lett.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[CrossRef]

Biometrika

P. J. Green, “Reversible jump Markov chain Monte Carlo computation and Bayesian model determination,” Biometrika 82, 711-732 (1995).
[CrossRef]

IEE Proc. Vision Image Signal Process.

A. M. Wallace, R. C. W. Sung, G. S. Buller, R. D. Harkins, R. E. Warburton, and R. A. Lamb, “Detecting and characterising returns in a pulsed ladar system,” IEE Proc. Vision Image Signal Process. 153, 160-172 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 852-862 (2007).
[CrossRef]

IEEE J. Solid-State Circuits

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-State Circuits 40, 1847-1854 (2005).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell.

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Multilayered 3D LiDAR image construction using spatial models in a Bayesian framework,” IEEE Trans. Pattern Anal. Mach. Intell. 30, 1028-1040 (2008).
[CrossRef]

IET Optoelectron.

G. S. Buller, R. E. Warburton, S. Pellegrini, J. S. Ng, J. P. R. David, L. J. J. Tan, A. B. Krysa, and S. Cova, “Single-photon avalanche diode detectors for quantum key distribution,” IET Optoelectron. 1, 249-254 (2007).
[CrossRef]

ISPRS J. Photogramm. Remote Sens.

C. Mallet and F. Bretar, “Full-waveform topographic lidar: state-of-the-art,” ISPRS J. Photogramm. Remote Sens. 64, 1-16 (2009).
[CrossRef]

J. Geodyn.

J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34, 503-549 (2002).
[CrossRef]

Lincoln Lab. J.

R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15, 23-36(2005).

Meas. Sci. Technol.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712-716 (2000).
[CrossRef]

Opt. Eng.

F. Chen, G. M. Brown, and M. M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
[CrossRef]

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10-19 (2001).
[CrossRef]

W. P. Cole, M. A. Marciniak, and M. B. Haeri, “Atmospheric-turbulence-effects correction factors for the laser range equation,” Opt. Eng. 47, 126001 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112(2005).
[CrossRef]

Other

A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: A moderate resolution model for LOWTRAN 7,” Technical Note GL-TR-89-0122, available from Geophysics Laboratory/OPE, Air Force Systems Command, Hanscom AFB, Mass., 1989.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram indicating the principal components of the scanning system. The scene typically is at a range of hundreds of meters to several km. Electrical paths are denoted by solid lines and optical paths by dashed lines. Si-SPAD is a silicon single-photon avalanche diode.

Fig. 2
Fig. 2

Schematic of the optical layout. The pulsed output of the laser diode is incident on a pair of steering mirrors (TM1, TM2), passes through a half-wave plate (HWP), a polarizing beam splitter (PBS), two galvanometer scanning mirrors (SM1, SM2), relay optics and exits the transceiver head through the camera lens objective. A small percentage of the incoming light is reflected into a monitoring channel where an edge filter (EF) is used to block the laser transmission. The return path goes through the same scanning and relay optics as the laser beam, passes through the beam splitter, onto a pair of steering mirrors (RM1, RM2) and is spectrally filtered by a bandpass filter (BPF) before being coupled into an 5 μm core diameter single-mode fiber (SMF) by a fiber collimation package. The fiber is connected to the single photon avalanche diode (SPAD) detector module.

Fig. 3
Fig. 3

Transceiver head assembly: (a) Three-dimensional image produced from the CAD model of the system showing the enclosure ( 275 × 275 × 170 mm ) and the slotted-baseplate optomechanics. The two galvanometer servo-control circuit boards are housed on the underside of the slotted baseplate. (b) Photograph of the assembled transceiver head.

Fig. 4
Fig. 4

Example histograms taken on a retroreflective reference material. Both measurements were taken with a 1 s acquisition time and feature comparable target return peaks around 165 ns . The high repetition rate of the system results in multiple photon pulses being in transit at any given point and causes distant target returns to be assigned to short flight times. The lower plot demonstrates the hardware gating functionality: reducing the duty cycle to 80% removed significant photon returns caused by internal optical reflections of the system.

Fig. 5
Fig. 5

200 × 64 pixel image of a Peugeot 307 car taken at a distance of 330 m in dusk lighting conditions. (a) Photograph of the car in situ on the target range. The dashed box indicates the approximate boundaries of the depth-profile measurement. (b) Depth/intensity image of the car generated from the processed depth information. The colors are defined by the intensity returns from each pixel.

Fig. 6
Fig. 6

32 × 128 pixel image of a life-sized mannequin taken at a distance of 325 m in daylight conditions. (a) Photograph of the 1.8 m tall mannequin in the scan position. (b) and (c) Three-dimensional plot of the processed depth information—the curvature of the 600 mm diameter concrete pillar behind the mannequin is clearly evident in (b).

Fig. 7
Fig. 7

Prediction of SNR versus range for first generation sensor for three different target surfaces at an acquisition time of 1 ms . The model is based on experimental measurements of photon returns. The prediction is for a 40 MHz pulsed laser with average system output power level of 1 mW at 842 nm wavelength. The model assumes overcast daylight conditions. The red line indicates the minimum SNR required for depth measurement using elementary cross-correlation analysis. The model uses MODTRAN estimates for atmospheric transmission in an urban environment.

Fig. 8
Fig. 8

Prediction of maximum detectable range for high- and low-signature targets versus acquisition time, showing predictions for the first generation system and the likely performance of an improved system using a wavelength of 842 nm , a laser repetition frequency of 40 MHz , and an average optical power of 1 mW . Assumptions are based on a reduction of internal system loss by 7 dB , doubling the lens aperture diameter, and adaption of the transmitted spot size. The simulated laser output power, atmospheric conditions, and data analysis method are the same as in Fig. 7.

Tables (2)

Tables Icon

Table 1 Summary of the Scanning Sensor System Parameters

Tables Icon

Table 2 Information on Two Representative Depth Profile Measurements

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

SNR = n p n p + n b ,
n b = t Acq C BG f Rep t Bin ,
n P = t Acq P Out λ hc e α Mod × 2 r 2 r 2 T Lens T Trans T Mat DRC ,
P O u t

Metrics