Abstract

We propose multicavity reflective Gires–Tournois etalons (MCR-GTE) and generalized multicavity transmissive Gires–Tournois etalons (GMCT-GTE) composed of cascaded Sagnac loop mirrors and ring resonators, respectively. Michelson–Gires–Tournois interferometers (MGTI) based on two sets of MCR-GTEs are theoretically studied. As the focal point, we demonstrate the GMCT-GTE, which is a reciprocal and transmissive element as a tunable dispersion compensator (TDC) for the proposed interleaver. The reciprocal and transmissive TDC is superior to reflective ones in terms of saving the number of TDCs. Only one set of TDCs is sufficient for the two output ports of the MGTI proposed. Discussions on fabrication tolerances are given as well, focusing on two main factors that degrade the performance of the interleaver and its TDC in practice, i.e., the length mismatch and loss.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Carlsen and C. F. Buhrer, “Flat passband birefringent wavelength-division multiplexers,” Electron. Lett. 23, 106-107 (1987).
    [CrossRef]
  2. J. Zhang, L. Liu, and Y. Zhou, “A tunable interleaver filter based on analog birefringent units,” Opt. Commun. 227, 283-294 (2003).
    [CrossRef]
  3. H. Chen, P. Gu, Y. Zhang, M. Ai, W. Lv, and B. Jin, “Analysis on the match of the reflectivity of the multi-cavity thin film interleaver,” Opt. Commun. 236, 335-341 (2004).
    [CrossRef]
  4. P. Gu, H. Chen, Y. Zhang, H. Li, and X. Liu, “Wavelength-division multiplexed thin-film filters used in tilted incident angles of light,” Appl. Opt. 43, 2066-2070 (2004).
    [CrossRef] [PubMed]
  5. D.-W. Huang, T.-H, Chiu, and Y. Lai, “Arrayed waveguide grating DWDM interleaver,” in Proceedings of Optical Fiber Communication Conference and Exhibit 2001 (IEEE, 2001), paper WDD80.
  6. J. J. Pan and Y. Shi, “Dense WDM multiplexer and demultiplexer with 0.4 nm channel spacing,” Electron. Lett. 34, 74-75(1998).
    [CrossRef]
  7. F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 388-390 (1995).
    [CrossRef]
  8. L. Dong, P. Hua, T. A. Birks, L. Reekie, and P. St. J. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg gratng assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656-1658(1996).
    [CrossRef]
  9. M. Oguma, T. Kitoh, Y. Inoue, T. Mizuno, T. Shibata, M. Kohtoku, and Y. Hibino, “Compact and low-loss interleave filter employing lattice-form structure and silica-based waveguide,” J. Lightwave Technol. 22, 895-902 (2004).
    [CrossRef]
  10. J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photon. Technol. Lett. 20, 2165-2167 (2008).
    [CrossRef]
  11. M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, “200 GHz FSR periodic multi/demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator,” IEEE Photon. Technol. Lett. 12, 1174-1176 (2000).
    [CrossRef]
  12. K. Oda, N. Takato, H. Toba, and K. Nosu, “A wide-band guided-wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 6, 1016-1023 (1988).
    [CrossRef]
  13. Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19, 1072-1074 (2007).
    [CrossRef]
  14. X. Ye, M. Zhang, and P. Ye, “Flat-top interleavers with chromatic dispersion compensator based on phase dispersive free space Mach-Zehnder interferometer,” Opt. Commun. 257, 255-260 (2006).
    [CrossRef]
  15. C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237, 285-293 (2004).
    [CrossRef]
  16. L. Wei and J. W. Y. Lit, “Design optimization of flattop interleaver and its dispersion compensation,” Opt. Express 15, 6439-6457 (2007).
    [CrossRef] [PubMed]
  17. X. Shu, K. Sugden, and I. Bennion, “All-fiber Michelson-Gires-Tournois interferometer as multi-passband filter,” in Proceedings of the Lightwave Technologies in Instrumentation and Measurement Conference 2004 (IEEE, 2004), pp. 144-147.
  18. Q, Wang, Y, Zhang, and Y, C. Soh, “An efficient all-fiber interleaving filter using fiber Gires-Tournois etalons on a Michelson interferometer,” in Proceedings of Optical Fiber Communication Conference and Exhibit 2006 (IEEE, 2006), paper OW170.
  19. D. Yang, C. Lin, W. Chen, and G. Barbarossa, “Fiber dispersion and dispersion slope compensation in a 40-channel 10 Gb/s 3200 km transmission experiment using cascaded single-cavity Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 16, 299-301 (2004).
    [CrossRef]
  20. X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
    [CrossRef]
  21. J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators, “IEEE J. Quantum Electron. 40, 726-730(2004).
    [CrossRef]
  22. C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11, 1623-1625 (1999).
    [CrossRef]
  23. O, Schwelb, “Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters-a tutorial overview,” J. Lightwave Technol. 22, 1380-1394 (2004).
    [CrossRef]
  24. M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391-416 (1990).
    [CrossRef]
  25. Z. Wang and J. C. Yung, “Thermal properties and passband improvement of high index contrast micro-ring resonator by phase error correction,” in European Conference on Optical Communications (IEEE, 2005), paper We4.P.44.

2008 (1)

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photon. Technol. Lett. 20, 2165-2167 (2008).
[CrossRef]

2007 (2)

Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19, 1072-1074 (2007).
[CrossRef]

L. Wei and J. W. Y. Lit, “Design optimization of flattop interleaver and its dispersion compensation,” Opt. Express 15, 6439-6457 (2007).
[CrossRef] [PubMed]

2006 (1)

X. Ye, M. Zhang, and P. Ye, “Flat-top interleavers with chromatic dispersion compensator based on phase dispersive free space Mach-Zehnder interferometer,” Opt. Commun. 257, 255-260 (2006).
[CrossRef]

2004 (7)

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237, 285-293 (2004).
[CrossRef]

D. Yang, C. Lin, W. Chen, and G. Barbarossa, “Fiber dispersion and dispersion slope compensation in a 40-channel 10 Gb/s 3200 km transmission experiment using cascaded single-cavity Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 16, 299-301 (2004).
[CrossRef]

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators, “IEEE J. Quantum Electron. 40, 726-730(2004).
[CrossRef]

H. Chen, P. Gu, Y. Zhang, M. Ai, W. Lv, and B. Jin, “Analysis on the match of the reflectivity of the multi-cavity thin film interleaver,” Opt. Commun. 236, 335-341 (2004).
[CrossRef]

P. Gu, H. Chen, Y. Zhang, H. Li, and X. Liu, “Wavelength-division multiplexed thin-film filters used in tilted incident angles of light,” Appl. Opt. 43, 2066-2070 (2004).
[CrossRef] [PubMed]

M. Oguma, T. Kitoh, Y. Inoue, T. Mizuno, T. Shibata, M. Kohtoku, and Y. Hibino, “Compact and low-loss interleave filter employing lattice-form structure and silica-based waveguide,” J. Lightwave Technol. 22, 895-902 (2004).
[CrossRef]

O, Schwelb, “Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters-a tutorial overview,” J. Lightwave Technol. 22, 1380-1394 (2004).
[CrossRef]

2003 (2)

J. Zhang, L. Liu, and Y. Zhou, “A tunable interleaver filter based on analog birefringent units,” Opt. Commun. 227, 283-294 (2003).
[CrossRef]

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
[CrossRef]

2000 (1)

M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, “200 GHz FSR periodic multi/demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator,” IEEE Photon. Technol. Lett. 12, 1174-1176 (2000).
[CrossRef]

1999 (1)

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11, 1623-1625 (1999).
[CrossRef]

1998 (1)

J. J. Pan and Y. Shi, “Dense WDM multiplexer and demultiplexer with 0.4 nm channel spacing,” Electron. Lett. 34, 74-75(1998).
[CrossRef]

1996 (1)

L. Dong, P. Hua, T. A. Birks, L. Reekie, and P. St. J. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg gratng assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656-1658(1996).
[CrossRef]

1995 (1)

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 388-390 (1995).
[CrossRef]

1990 (1)

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391-416 (1990).
[CrossRef]

1988 (1)

K. Oda, N. Takato, H. Toba, and K. Nosu, “A wide-band guided-wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 6, 1016-1023 (1988).
[CrossRef]

1987 (1)

W. J. Carlsen and C. F. Buhrer, “Flat passband birefringent wavelength-division multiplexers,” Electron. Lett. 23, 106-107 (1987).
[CrossRef]

Ai, M.

H. Chen, P. Gu, Y. Zhang, M. Ai, W. Lv, and B. Jin, “Analysis on the match of the reflectivity of the multi-cavity thin film interleaver,” Opt. Commun. 236, 335-341 (2004).
[CrossRef]

Albert, J.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 388-390 (1995).
[CrossRef]

Barbarossa, G.

D. Yang, C. Lin, W. Chen, and G. Barbarossa, “Fiber dispersion and dispersion slope compensation in a 40-channel 10 Gb/s 3200 km transmission experiment using cascaded single-cavity Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 16, 299-301 (2004).
[CrossRef]

Bennion, I.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
[CrossRef]

X. Shu, K. Sugden, and I. Bennion, “All-fiber Michelson-Gires-Tournois interferometer as multi-passband filter,” in Proceedings of the Lightwave Technologies in Instrumentation and Measurement Conference 2004 (IEEE, 2004), pp. 144-147.

Bilodeau, F.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 388-390 (1995).
[CrossRef]

Birks, T. A.

L. Dong, P. Hua, T. A. Birks, L. Reekie, and P. St. J. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg gratng assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656-1658(1996).
[CrossRef]

Boyd, R. W.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators, “IEEE J. Quantum Electron. 40, 726-730(2004).
[CrossRef]

Bruce, A. J.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11, 1623-1625 (1999).
[CrossRef]

Buhrer, C. F.

W. J. Carlsen and C. F. Buhrer, “Flat passband birefringent wavelength-division multiplexers,” Electron. Lett. 23, 106-107 (1987).
[CrossRef]

Byron, K.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
[CrossRef]

Cappuzzo, M. A.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11, 1623-1625 (1999).
[CrossRef]

Carlsen, W. J.

W. J. Carlsen and C. F. Buhrer, “Flat passband birefringent wavelength-division multiplexers,” Electron. Lett. 23, 106-107 (1987).
[CrossRef]

Chang, S.-J.

Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19, 1072-1074 (2007).
[CrossRef]

Chen, H.

P. Gu, H. Chen, Y. Zhang, H. Li, and X. Liu, “Wavelength-division multiplexed thin-film filters used in tilted incident angles of light,” Appl. Opt. 43, 2066-2070 (2004).
[CrossRef] [PubMed]

H. Chen, P. Gu, Y. Zhang, M. Ai, W. Lv, and B. Jin, “Analysis on the match of the reflectivity of the multi-cavity thin film interleaver,” Opt. Commun. 236, 335-341 (2004).
[CrossRef]

Chen, W.

D. Yang, C. Lin, W. Chen, and G. Barbarossa, “Fiber dispersion and dispersion slope compensation in a 40-channel 10 Gb/s 3200 km transmission experiment using cascaded single-cavity Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 16, 299-301 (2004).
[CrossRef]

Chen, Y. J.

Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19, 1072-1074 (2007).
[CrossRef]

Cheng, W. H.

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237, 285-293 (2004).
[CrossRef]

Chiu, T.-H,

D.-W. Huang, T.-H, Chiu, and Y. Lai, “Arrayed waveguide grating DWDM interleaver,” in Proceedings of Optical Fiber Communication Conference and Exhibit 2001 (IEEE, 2001), paper WDD80.

Dong, L.

L. Dong, P. Hua, T. A. Birks, L. Reekie, and P. St. J. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg gratng assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656-1658(1996).
[CrossRef]

Fang, Q.

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photon. Technol. Lett. 20, 2165-2167 (2008).
[CrossRef]

Felmeri, I.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
[CrossRef]

Gomez, L. T.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11, 1623-1625 (1999).
[CrossRef]

Gu, P.

H. Chen, P. Gu, Y. Zhang, M. Ai, W. Lv, and B. Jin, “Analysis on the match of the reflectivity of the multi-cavity thin film interleaver,” Opt. Commun. 236, 335-341 (2004).
[CrossRef]

P. Gu, H. Chen, Y. Zhang, H. Li, and X. Liu, “Wavelength-division multiplexed thin-film filters used in tilted incident angles of light,” Appl. Opt. 43, 2066-2070 (2004).
[CrossRef] [PubMed]

Heebner, J. E.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators, “IEEE J. Quantum Electron. 40, 726-730(2004).
[CrossRef]

Hibino, Y.

Hill, K. O.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 388-390 (1995).
[CrossRef]

Hsieh, C. H.

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237, 285-293 (2004).
[CrossRef]

Hua, P.

L. Dong, P. Hua, T. A. Birks, L. Reekie, and P. St. J. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg gratng assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656-1658(1996).
[CrossRef]

Huang, D.-W.

D.-W. Huang, T.-H, Chiu, and Y. Lai, “Arrayed waveguide grating DWDM interleaver,” in Proceedings of Optical Fiber Communication Conference and Exhibit 2001 (IEEE, 2001), paper WDD80.

Huang, S. Y.

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237, 285-293 (2004).
[CrossRef]

Huang, Z.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
[CrossRef]

Inoue, Y.

Jackson, D. J.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators, “IEEE J. Quantum Electron. 40, 726-730(2004).
[CrossRef]

Jin, B.

H. Chen, P. Gu, Y. Zhang, M. Ai, W. Lv, and B. Jin, “Analysis on the match of the reflectivity of the multi-cavity thin film interleaver,” Opt. Commun. 236, 335-341 (2004).
[CrossRef]

Johnson, D. C.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 388-390 (1995).
[CrossRef]

Kadota, Y.

M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, “200 GHz FSR periodic multi/demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator,” IEEE Photon. Technol. Lett. 12, 1174-1176 (2000).
[CrossRef]

Kawachi, M.

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391-416 (1990).
[CrossRef]

Khrushchev, I.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
[CrossRef]

Kitoh, T.

Kohtoku, M.

M. Oguma, T. Kitoh, Y. Inoue, T. Mizuno, T. Shibata, M. Kohtoku, and Y. Hibino, “Compact and low-loss interleave filter employing lattice-form structure and silica-based waveguide,” J. Lightwave Technol. 22, 895-902 (2004).
[CrossRef]

M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, “200 GHz FSR periodic multi/demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator,” IEEE Photon. Technol. Lett. 12, 1174-1176 (2000).
[CrossRef]

Kwong, D. L.

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photon. Technol. Lett. 20, 2165-2167 (2008).
[CrossRef]

Lai, Y.

D.-W. Huang, T.-H, Chiu, and Y. Lai, “Arrayed waveguide grating DWDM interleaver,” in Proceedings of Optical Fiber Communication Conference and Exhibit 2001 (IEEE, 2001), paper WDD80.

Lee, C. W.

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237, 285-293 (2004).
[CrossRef]

Lenz, G.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11, 1623-1625 (1999).
[CrossRef]

Li, H.

Lin, C.

D. Yang, C. Lin, W. Chen, and G. Barbarossa, “Fiber dispersion and dispersion slope compensation in a 40-channel 10 Gb/s 3200 km transmission experiment using cascaded single-cavity Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 16, 299-301 (2004).
[CrossRef]

Liow, T. Y.

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photon. Technol. Lett. 20, 2165-2167 (2008).
[CrossRef]

Lit, J. W. Y.

Liu, L.

J. Zhang, L. Liu, and Y. Zhou, “A tunable interleaver filter based on analog birefringent units,” Opt. Commun. 227, 283-294 (2003).
[CrossRef]

Liu, X.

Lloyd, G.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
[CrossRef]

Lo, G. Q.

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photon. Technol. Lett. 20, 2165-2167 (2008).
[CrossRef]

Lv, W.

H. Chen, P. Gu, Y. Zhang, M. Ai, W. Lv, and B. Jin, “Analysis on the match of the reflectivity of the multi-cavity thin film interleaver,” Opt. Commun. 236, 335-341 (2004).
[CrossRef]

Madsen, C. K.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11, 1623-1625 (1999).
[CrossRef]

Malo, B.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 388-390 (1995).
[CrossRef]

Mitchell, J.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
[CrossRef]

Mizuno, T.

Ni, C.-Y.

Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19, 1072-1074 (2007).
[CrossRef]

Nosu, K.

K. Oda, N. Takato, H. Toba, and K. Nosu, “A wide-band guided-wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 6, 1016-1023 (1988).
[CrossRef]

Oda, K.

K. Oda, N. Takato, H. Toba, and K. Nosu, “A wide-band guided-wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 6, 1016-1023 (1988).
[CrossRef]

Oguma, M.

Oku, S.

M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, “200 GHz FSR periodic multi/demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator,” IEEE Photon. Technol. Lett. 12, 1174-1176 (2000).
[CrossRef]

Pan, J. J.

J. J. Pan and Y. Shi, “Dense WDM multiplexer and demultiplexer with 0.4 nm channel spacing,” Electron. Lett. 34, 74-75(1998).
[CrossRef]

Reekie, L.

L. Dong, P. Hua, T. A. Birks, L. Reekie, and P. St. J. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg gratng assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656-1658(1996).
[CrossRef]

Rhead, P.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
[CrossRef]

Russell, P. St. J.

L. Dong, P. Hua, T. A. Birks, L. Reekie, and P. St. J. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg gratng assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656-1658(1996).
[CrossRef]

Schweinsberg, A.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators, “IEEE J. Quantum Electron. 40, 726-730(2004).
[CrossRef]

Schwelb, O,

Scotti, R. E.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11, 1623-1625 (1999).
[CrossRef]

Shi, Y.

J. J. Pan and Y. Shi, “Dense WDM multiplexer and demultiplexer with 0.4 nm channel spacing,” Electron. Lett. 34, 74-75(1998).
[CrossRef]

Shibata, T.

Shibata, Y.

M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, “200 GHz FSR periodic multi/demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator,” IEEE Photon. Technol. Lett. 12, 1174-1176 (2000).
[CrossRef]

Shu, X.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
[CrossRef]

X. Shu, K. Sugden, and I. Bennion, “All-fiber Michelson-Gires-Tournois interferometer as multi-passband filter,” in Proceedings of the Lightwave Technologies in Instrumentation and Measurement Conference 2004 (IEEE, 2004), pp. 144-147.

Soh, Y, C.

Q, Wang, Y, Zhang, and Y, C. Soh, “An efficient all-fiber interleaving filter using fiber Gires-Tournois etalons on a Michelson interferometer,” in Proceedings of Optical Fiber Communication Conference and Exhibit 2006 (IEEE, 2006), paper OW170.

Song, J. F.

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photon. Technol. Lett. 20, 2165-2167 (2008).
[CrossRef]

Sugden, K.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
[CrossRef]

X. Shu, K. Sugden, and I. Bennion, “All-fiber Michelson-Gires-Tournois interferometer as multi-passband filter,” in Proceedings of the Lightwave Technologies in Instrumentation and Measurement Conference 2004 (IEEE, 2004), pp. 144-147.

Takato, N.

K. Oda, N. Takato, H. Toba, and K. Nosu, “A wide-band guided-wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 6, 1016-1023 (1988).
[CrossRef]

Tao, S. H.

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photon. Technol. Lett. 20, 2165-2167 (2008).
[CrossRef]

Theriault, S.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 388-390 (1995).
[CrossRef]

Toba, H.

K. Oda, N. Takato, H. Toba, and K. Nosu, “A wide-band guided-wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 6, 1016-1023 (1988).
[CrossRef]

Wang, Q,

Q, Wang, Y, Zhang, and Y, C. Soh, “An efficient all-fiber interleaving filter using fiber Gires-Tournois etalons on a Michelson interferometer,” in Proceedings of Optical Fiber Communication Conference and Exhibit 2006 (IEEE, 2006), paper OW170.

Wang, R.

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237, 285-293 (2004).
[CrossRef]

Wang, Z.

Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19, 1072-1074 (2007).
[CrossRef]

Z. Wang and J. C. Yung, “Thermal properties and passband improvement of high index contrast micro-ring resonator by phase error correction,” in European Conference on Optical Communications (IEEE, 2005), paper We4.P.44.

Wei, L.

Wong, V.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators, “IEEE J. Quantum Electron. 40, 726-730(2004).
[CrossRef]

Yang, D.

D. Yang, C. Lin, W. Chen, and G. Barbarossa, “Fiber dispersion and dispersion slope compensation in a 40-channel 10 Gb/s 3200 km transmission experiment using cascaded single-cavity Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 16, 299-301 (2004).
[CrossRef]

Ye, P.

X. Ye, M. Zhang, and P. Ye, “Flat-top interleavers with chromatic dispersion compensator based on phase dispersive free space Mach-Zehnder interferometer,” Opt. Commun. 257, 255-260 (2006).
[CrossRef]

Ye, X.

X. Ye, M. Zhang, and P. Ye, “Flat-top interleavers with chromatic dispersion compensator based on phase dispersive free space Mach-Zehnder interferometer,” Opt. Commun. 257, 255-260 (2006).
[CrossRef]

Yeh, P.

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237, 285-293 (2004).
[CrossRef]

Yoshikuni, Y.

M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, “200 GHz FSR periodic multi/demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator,” IEEE Photon. Technol. Lett. 12, 1174-1176 (2000).
[CrossRef]

Yu, M. B.

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photon. Technol. Lett. 20, 2165-2167 (2008).
[CrossRef]

Yung, J. C.

Z. Wang and J. C. Yung, “Thermal properties and passband improvement of high index contrast micro-ring resonator by phase error correction,” in European Conference on Optical Communications (IEEE, 2005), paper We4.P.44.

Zhang, J.

J. Zhang, L. Liu, and Y. Zhou, “A tunable interleaver filter based on analog birefringent units,” Opt. Commun. 227, 283-294 (2003).
[CrossRef]

Zhang, M.

X. Ye, M. Zhang, and P. Ye, “Flat-top interleavers with chromatic dispersion compensator based on phase dispersive free space Mach-Zehnder interferometer,” Opt. Commun. 257, 255-260 (2006).
[CrossRef]

Zhang, Y,

Q, Wang, Y, Zhang, and Y, C. Soh, “An efficient all-fiber interleaving filter using fiber Gires-Tournois etalons on a Michelson interferometer,” in Proceedings of Optical Fiber Communication Conference and Exhibit 2006 (IEEE, 2006), paper OW170.

Zhang, Y.

H. Chen, P. Gu, Y. Zhang, M. Ai, W. Lv, and B. Jin, “Analysis on the match of the reflectivity of the multi-cavity thin film interleaver,” Opt. Commun. 236, 335-341 (2004).
[CrossRef]

P. Gu, H. Chen, Y. Zhang, H. Li, and X. Liu, “Wavelength-division multiplexed thin-film filters used in tilted incident angles of light,” Appl. Opt. 43, 2066-2070 (2004).
[CrossRef] [PubMed]

Zhou, Y.

J. Zhang, L. Liu, and Y. Zhou, “A tunable interleaver filter based on analog birefringent units,” Opt. Commun. 227, 283-294 (2003).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (2)

W. J. Carlsen and C. F. Buhrer, “Flat passband birefringent wavelength-division multiplexers,” Electron. Lett. 23, 106-107 (1987).
[CrossRef]

J. J. Pan and Y. Shi, “Dense WDM multiplexer and demultiplexer with 0.4 nm channel spacing,” Electron. Lett. 34, 74-75(1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators, “IEEE J. Quantum Electron. 40, 726-730(2004).
[CrossRef]

IEEE Photon. Technol. Lett. (8)

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11, 1623-1625 (1999).
[CrossRef]

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 388-390 (1995).
[CrossRef]

L. Dong, P. Hua, T. A. Birks, L. Reekie, and P. St. J. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg gratng assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656-1658(1996).
[CrossRef]

Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19, 1072-1074 (2007).
[CrossRef]

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photon. Technol. Lett. 20, 2165-2167 (2008).
[CrossRef]

M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, “200 GHz FSR periodic multi/demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator,” IEEE Photon. Technol. Lett. 12, 1174-1176 (2000).
[CrossRef]

D. Yang, C. Lin, W. Chen, and G. Barbarossa, “Fiber dispersion and dispersion slope compensation in a 40-channel 10 Gb/s 3200 km transmission experiment using cascaded single-cavity Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 16, 299-301 (2004).
[CrossRef]

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Commun. (4)

J. Zhang, L. Liu, and Y. Zhou, “A tunable interleaver filter based on analog birefringent units,” Opt. Commun. 227, 283-294 (2003).
[CrossRef]

H. Chen, P. Gu, Y. Zhang, M. Ai, W. Lv, and B. Jin, “Analysis on the match of the reflectivity of the multi-cavity thin film interleaver,” Opt. Commun. 236, 335-341 (2004).
[CrossRef]

X. Ye, M. Zhang, and P. Ye, “Flat-top interleavers with chromatic dispersion compensator based on phase dispersive free space Mach-Zehnder interferometer,” Opt. Commun. 257, 255-260 (2006).
[CrossRef]

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237, 285-293 (2004).
[CrossRef]

Opt. Express (1)

Opt. Quantum Electron. (1)

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391-416 (1990).
[CrossRef]

Other (4)

Z. Wang and J. C. Yung, “Thermal properties and passband improvement of high index contrast micro-ring resonator by phase error correction,” in European Conference on Optical Communications (IEEE, 2005), paper We4.P.44.

X. Shu, K. Sugden, and I. Bennion, “All-fiber Michelson-Gires-Tournois interferometer as multi-passband filter,” in Proceedings of the Lightwave Technologies in Instrumentation and Measurement Conference 2004 (IEEE, 2004), pp. 144-147.

Q, Wang, Y, Zhang, and Y, C. Soh, “An efficient all-fiber interleaving filter using fiber Gires-Tournois etalons on a Michelson interferometer,” in Proceedings of Optical Fiber Communication Conference and Exhibit 2006 (IEEE, 2006), paper OW170.

D.-W. Huang, T.-H, Chiu, and Y. Lai, “Arrayed waveguide grating DWDM interleaver,” in Proceedings of Optical Fiber Communication Conference and Exhibit 2001 (IEEE, 2001), paper WDD80.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

(a) Schematic diagram of the proposed interleaver, i.e., mn-MGTI. (b) Details of dispersion compensator in the dashed line frame.

Fig. 2
Fig. 2

Schematic diagram of MCR-GTEn composed of cascaded SLMs.

Fig. 3
Fig. 3

Dispersion responses for 10-, 11-, 21-MGTI ( L = 6 mm , channel spacing = 0.4 nm or 50 GHz , isolation = 51 dB ).

Fig. 4
Fig. 4

Schematic diagram of the proposed chromatic compensator GMCT-GTEu.

Fig. 5
Fig. 5

Dispersion of GMCT GTE 2 with different parameters.

Fig. 6
Fig. 6

Dispersion of 21-MGTI compensated by GMCT-GTEu with different number of cavities ( u = 1 4 ) when dispersion ripple is fixed at ± 1 ps / nm : (a) dispersion of compensators and 21-MGTI before compensation, (b) disperson of 21-MGTI after compensation, and (c) details of the quasi-flat dispersion region in (b).

Fig. 7
Fig. 7

Dispersion bandwidth ratio versus dispersion ripple for 21-MGTI compensated by GMCT-GTEu ( u = 1 4 ; RR is the abbreviation for ring resonator).

Fig. 8
Fig. 8

(a) Dispersion ripple and (b) optimized parameters r c i versus r c 1 . (RR is the abbreviation for ring resonator.)

Fig. 9
Fig. 9

Periodic spectrum of I t for 10-MGTI with different δ ( n e = 1.5 ) : (a) detailed passband and (b) two periods.

Fig. 10
Fig. 10

Periodic spectrum of I t for 10-MGTI with different ζ 1 a : (a) detailed passband and (b) two periods.

Fig. 11
Fig. 11

Periodic spectrum of I t for 10-MGTI with different ρ b when ρ a = 0.9 and ζ 1 a = 1 : (a) detailed passband and (b) two periods.

Fig. 12
Fig. 12

Periodic spectrum of I t for 10-MGTI with different ρ b / ρ a when ρ a = 0.9 and ζ 1 a = 0.75 : (a) detailed passband and (b) two periods.

Fig. 13
Fig. 13

Periodic spectrum of GMCT GTE 4 with different ζ c .

Fig. 14
Fig. 14

Curves for the two output ports (i.e., I t and I r ) of 10-MGTI using only one compensator under unideal conditions: (a) periodic spectrum, (b) dispersion for I t , and (c) dispersion for I r .

Fig. 15
Fig. 15

Curves for the two output ports (i.e., I t and I r ) of 10-MGTI using only one compensator under ideal conditions: (a) periodic spectrum and (b) corresponding dispersion.

Tables (2)

Tables Icon

Table 1 Dispersion Bandwidth Ratios for 10-MGTI and 21-MGTI Compensated by GMCT-GTEu a

Tables Icon

Table 2 Spectral Indices of 10-MGTI in Figs. 14, 15

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

M i = e j β ξ i ( K i j 1 K i j 1 K i K i ) ,
r n 0 = j e j β l 2 n r n + e j 2 δ n e j 2 ϕ n 1 1 + r n e j 2 δ n e j 2 ϕ n 1 = j e j β l 2 n e j Φ n ,
Φ n = 2 ϕ n = 2 arctan [ a n tan ( δ n ϕ n 1 ) ] ,
GD n = c n ( τ n + GD n 1 ) ( n 1 ) ,
c n = a n 1 + ( a n 2 1 ) sin 2 ( δ n ϕ n 1 ) ,
CD n = τ n h n [ g n ( GD n τ n c n ) 2 + c n ( CD n 1 τ n h n ) ] ( n 1 ) ,
g n = a n ( a n 2 1 ) sin 2 ( δ n ϕ n 1 ) [ 1 + ( a n 2 1 ) sin 2 ( δ n ϕ n 1 ) ] 2 ,
{ I r = [ 1 cos ( 2 ϕ m 2 θ n + δ ) ] / 2 I t = [ 1 + cos ( 2 ϕ m 2 θ n + δ ) ] / 2 ,
t u = e j β ξ cu r cu e j 2 δ cu e j 2 ϕ c ( u 1 ) 1 r cu e j 2 δ cu e j 2 ϕ c ( u 1 ) = e j β ξ cu e j Φ cu ,
Φ cu = 2 ϕ cu = 2 arctan [ f u cot ( δ cu ϕ c ( u 1 ) ) ] ,
GD cu = c c u ( τ c u + GD c ( u 1 ) ) ( u 1 ) ,
c c u = f u 1 + ( f u 2 1 ) cos 2 ( δ c ϕ c ( u 1 ) ) ,
CD cu = τ c u h c u [ g c u ( GD c u τ u c c u ) 2 + c c u ( CD c ( u 1 ) τ c u h c u ) ] ( u 1 ) ,
g c u = f u ( f u 2 1 ) sin 2 ( δ c u ϕ c ( u 1 ) ) [ 1 + ( f u 2 1 ) cos 2 ( δ c u ϕ c ( u 1 ) ) ] 2 ,
r n 0 = j e j β l 2 n γ n r n + ζ n e j 2 δ n r ( n 1 ) 0 ˜ 1 + ζ n r n e j 2 δ n r ( n 1 ) 0 ˜ = j e j β l 2 n γ n r n 0 ˜ ,
t u = e j β ξ cu σ c u r cu ζ cu e j 2 δ cu t u 1 ˜ 1 ζ cu r cu e j 2 δ cu t u 1 ˜ = e j β ξ cu σ cu t u ˜ ,
{ I t = | 0.5 ρ a [ r 10 a ˜ + ( ρ b / ρ a ) e j k Δ L ] | 2 I r = | 0.5 ρ a [ r 10 a ˜ ( ρ b / ρ a ) e j k Δ L ) | 2 ,
r 10 a ˜ = r 1 a + ζ 1 a exp ( j k L 1 a ) 1 + ζ 1 a r 1 a exp ( j k L 1 a ) ,

Metrics