Abstract

Silver-clad stainless steel pipe is used as the supporting tube for the fabrication of infrared hollow fiber. The hollow fiber has high mechanical strength and is highly durable for use in the medical sterilization process. Film of a cyclic olefin polymer layer or silver iodide (AgI) was coated internally to reduce the transmission loss. A liquid-filling method is proposed for coating the AgI layer. Multiple coating processes proved to be effective to increase the AgI film thickness. A treatment of sodium thiosulfate water solution is also proposed to reduce the film thickness. The film thickness can be accurately controlled by combining the coating and decoating techniques. A loss of less than 0.2dB was obtained for CO2 laser light for a hollow pipe with a length of 280mm and an inside diameter of 0.75mm.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878-3883 (1992).
    [CrossRef]
  2. T. Abel, J. Hirsch, and J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034-1036 (1994).
    [CrossRef] [PubMed]
  3. I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967-972 (1995).
    [CrossRef] [PubMed]
  4. Y. Wang, A. Hongo, Y. Kato, T. Shimomura, D. Miura, and M. Miyagi, “Thickness and uniformity of fluorocarbon polymer film dynamically coated inside silver hollow glass waveguides,” Appl. Opt. 36, 2886-2892 (1997).
    [CrossRef] [PubMed]
  5. Y. Matsuura, A. Tsuchiuchi, H. Noguchi, and M. Miyagi, “Hollow fiber optics with improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers,” Appl. Opt. 46, 1279-1282 (2007).
    [CrossRef] [PubMed]
  6. Y. W. Shi, Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, S. Sato, M. Taniwaki, and H. Uyama, “Cyclic olefin polymer-coated silver hollow glass waveguides for the infrared,” Appl. Opt. 37, 7758-7762 (1998).
    [CrossRef]
  7. K. Iwai, M. Miyagi, Y. W. Shi, X. S. Zhu, and Y. Matsuura, “Infrared hollow fiber with a vitreous film as the dielectric inner coating layer,” Opt. Lett. 32, 3420-3422(2007).
    [CrossRef] [PubMed]
  8. C. D. Rabii, D. J. Gibson, and J. A. Harrington, “Processing and characterization of silver films used to fabricate hollow glass waveguides,” Appl. Opt. 38, 4486-4493 (1999).
    [CrossRef]
  9. A. Hongo, H. Takamiya, and T. Koike, “Hollow fiber using silver-clad stainless steel pipe with inner dielectric layer for CO2 laser light transmission,” Chin. Opt. Lett. 5S, 70-72(2007).
  10. Y. W. Shi, K. Ito, Y. Matsuura, and M. Miyagi, “Multiwavelength laser light transmission of hollow optical fiber from the visible to the mid-infrared,” Opt. Lett. 30, 2867-2869(2005).
    [CrossRef] [PubMed]
  11. R. George and J. A. Harrington, “Infrared transmissive, hollow plastic waveguides with inner Ag-AgI coatings,” Appl. Opt. 44, 6449-6455 (2005).
    [CrossRef] [PubMed]
  12. M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116-126 (1984).
    [CrossRef]
  13. R. George and J. A. Harrington, “Cu/CuI-coated hollow glass waveguides for delivery of infrared radiation,” Opt. Eng. 45, 055004 (2006).
    [CrossRef]
  14. Y. W. Shi, K. Ito, L. Ma, T. Yoshida, Y. Matsuura, and M. Miyagi, “Fabrication of a polymer-coated silver hollow optical fiber with high performance,” Appl. Opt. 45, 6736-3670(2006).
    [CrossRef] [PubMed]
  15. Y. Matsuura, T. Abel, and J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842-6847 (1995).
    [CrossRef] [PubMed]

2007 (3)

2006 (2)

2005 (2)

1999 (1)

1998 (1)

1997 (1)

1995 (2)

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967-972 (1995).
[CrossRef] [PubMed]

Y. Matsuura, T. Abel, and J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842-6847 (1995).
[CrossRef] [PubMed]

1994 (1)

1992 (1)

M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878-3883 (1992).
[CrossRef]

1984 (1)

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116-126 (1984).
[CrossRef]

Abe, Y.

Abel, T.

Alaluf, M.

M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878-3883 (1992).
[CrossRef]

Croitoru, N.

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967-972 (1995).
[CrossRef] [PubMed]

M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878-3883 (1992).
[CrossRef]

Dahan, R.

M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878-3883 (1992).
[CrossRef]

Dror, J.

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967-972 (1995).
[CrossRef] [PubMed]

M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878-3883 (1992).
[CrossRef]

Ertl, T.

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967-972 (1995).
[CrossRef] [PubMed]

Gannot, I.

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967-972 (1995).
[CrossRef] [PubMed]

George, R.

R. George and J. A. Harrington, “Cu/CuI-coated hollow glass waveguides for delivery of infrared radiation,” Opt. Eng. 45, 055004 (2006).
[CrossRef]

R. George and J. A. Harrington, “Infrared transmissive, hollow plastic waveguides with inner Ag-AgI coatings,” Appl. Opt. 44, 6449-6455 (2005).
[CrossRef] [PubMed]

Gibson, D. J.

Harrington, J. A.

Hirsch, J.

Hongo, A.

A. Hongo, H. Takamiya, and T. Koike, “Hollow fiber using silver-clad stainless steel pipe with inner dielectric layer for CO2 laser light transmission,” Chin. Opt. Lett. 5S, 70-72(2007).

Y. Wang, A. Hongo, Y. Kato, T. Shimomura, D. Miura, and M. Miyagi, “Thickness and uniformity of fluorocarbon polymer film dynamically coated inside silver hollow glass waveguides,” Appl. Opt. 36, 2886-2892 (1997).
[CrossRef] [PubMed]

Inberg, A.

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967-972 (1995).
[CrossRef] [PubMed]

Ito, K.

Iwai, K.

Kato, Y.

Kawakami, S.

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116-126 (1984).
[CrossRef]

Koike, T.

A. Hongo, H. Takamiya, and T. Koike, “Hollow fiber using silver-clad stainless steel pipe with inner dielectric layer for CO2 laser light transmission,” Chin. Opt. Lett. 5S, 70-72(2007).

Ma, L.

Matsuura, Y.

Miura, D.

Miyagi, M.

Müller, G. J.

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967-972 (1995).
[CrossRef] [PubMed]

Noguchi, H.

Rabii, C. D.

Sato, S.

Schründer, S.

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967-972 (1995).
[CrossRef] [PubMed]

Shi, Y. W.

Shimomura, T.

Takamiya, H.

A. Hongo, H. Takamiya, and T. Koike, “Hollow fiber using silver-clad stainless steel pipe with inner dielectric layer for CO2 laser light transmission,” Chin. Opt. Lett. 5S, 70-72(2007).

Taniwaki, M.

Tschepe, J.

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967-972 (1995).
[CrossRef] [PubMed]

Tsuchiuchi, A.

Uyama, H.

Wang, Y.

Yoshida, T.

Zhu, X. S.

Appl. Opt. (7)

Chin. Opt. Lett. (1)

A. Hongo, H. Takamiya, and T. Koike, “Hollow fiber using silver-clad stainless steel pipe with inner dielectric layer for CO2 laser light transmission,” Chin. Opt. Lett. 5S, 70-72(2007).

IEEE Trans. Biomed. Eng. (1)

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967-972 (1995).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878-3883 (1992).
[CrossRef]

J. Lightwave Technol. (1)

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116-126 (1984).
[CrossRef]

Opt. Eng. (1)

R. George and J. A. Harrington, “Cu/CuI-coated hollow glass waveguides for delivery of infrared radiation,” Opt. Eng. 45, 055004 (2006).
[CrossRef]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Structure of various metal pipes.

Fig. 2
Fig. 2

Loss spectra of metal pipes from the visible to the infrared regions.

Fig. 3
Fig. 3

Theoretical losses of the HE 11 mode in hollow fiber as a function of dielectric film thickness at a wavelength of 10.6 μm .

Fig. 4
Fig. 4

Loss spectra of COP-coated metal pipes.

Fig. 5
Fig. 5

Schematic experimental setup for the liquid-fill iodination process.

Fig. 6
Fig. 6

AgI film thicknesses versus liquid-filling time for solutions with various concentrations.

Fig. 7
Fig. 7

AgI film thicknesses versus repeat times for the liquid-filling process.

Fig. 8
Fig. 8

Loss spectra of AgI/Ag/SUS pipes using multiple iodination processes. The concentration of the solution was 0.1%. The process had a 120 s fill time; the process was repeated two, three, and four times.

Fig. 9
Fig. 9

Loss spectra of AgI/Ag/SUS pipe treated with a sodium thiosulfate decoating process.

Fig. 10
Fig. 10

Loss spectra for AgI/Ag/SUS pipes with various AgI film thicknesses.

Tables (3)

Tables Icon

Table 1 Size and Loss of a CO 2 Laser for Metal Pipes

Tables Icon

Table 2 Loss of COP-Coated Metal Pipes for a CO 2 Laser

Tables Icon

Table 3 Loss of AgI/Ag/SUS Pipes for a CO 2 Laser

Metrics