Abstract

We present a hybrid absolute distance measurement method that is based on a combination of frequency sweeping, variable synthetic, and two-wavelength, fixed synthetic wavelength interferometry. Both experiments were realized by two external cavity diode lasers. The measurement uncertainty was experimentally and theoretically demonstrated to be smaller than 12μm at a measurement distance of 20m.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. T. Estler, K. L. Edmundson, G. N. Peggs, and D. H. Parker, “Large-scale metrology--an update,” CIRP Ann. Manufact. Technol. 51, 587-609 (2002).
  2. G. L. Bourdet and A. G. Orszag, “Absolute distance measurements by CO2 laser multiwavelength interferometry,” Appl. Opt. 18, 225-227 (1979).
    [CrossRef]
  3. H. Kikuta, K. Iwata, and R. Nagata, “Distance measurement by the wavelength shift of laser diode light,” Appl. Opt. 25, 2976-2980 (1986).
    [CrossRef]
  4. R. Dändliker, R. Thalmann, and D. Prongué, “Two-wavelength laser interferometry using superheterodyne detection,” Opt. Lett. 13, 339-341 (1988).
    [CrossRef]
  5. J. Thiel, T. Pfeifer, and M. Hartmann, “Interferometric measurement of absolute distances of up to 40 m,” Measurement 16, 1-6 (1995).
    [CrossRef]
  6. K. D. Salewski, K. H. Bechstein, A. Wolfram, and W. Fuchs, “Absolute distance measurements applying a variable synthetic wavelength,” Tech. Mess. 63, 5-13 (1996).
  7. K. H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength,” J. Opt. 29, 179-182 (1998).
    [CrossRef]
  8. G. P. Barwood, P. Gill, and W. R. C. Rowley, “High-accuracy length metrology using multiple-stage swept-frequency interferometry with laser diodes,” Meas. Sci. Technol. 9, 1036-1041 (1998).
    [CrossRef]
  9. D. Xiaoli and S. Katuo, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9, 1031-1035 (1998).
    [CrossRef]
  10. J. A. Stone, A. Stejskal, and L. Howard, “Absolute interferometry with a 670 nm external cavity diode laser,” Appl. Opt. 38, 5981-5994 (1999).
    [CrossRef]
  11. Th. Kinder and K. D. Salewski, “Absolute distance interferometer with grating-stabilized tunable diode laser at 633 nm,” J. Opt. A Pure Appl. Opt. 4, S364-S368 (2002).
    [CrossRef]
  12. V. Burgarth, C. Zhang, and A. Abou-Zeid, “Diode laser interferometer for absolute distance measurement,” Tech. Mess. 70, 53-58 (2003).
    [CrossRef]
  13. H. J. Yang, J. Deibel, S. Nyberg, and K. Riles, “High-precision absolute distance and vibration measurement with frequency scanned interferometry,” Appl. Opt. 44, 3937-3944(2005).
    [CrossRef]
  14. D. W. Sesko, J. D. Tobiason, M. Feldman, and C. Emtman, “A dynamically calibrated multi-wavelength absolute interferometer,” in Proceedings of the 5th Topical Meeting on Optoelectronic Distance/Displacement Measurements and Applications--ODIMAP V (IEEE, 2006).
  15. S. LeFloch, Y. Salvadé, R. Mitouassiwou, and P. Favre, “Radio frequency controlled synthetic wavelength sweep for absolute distance measurement by optical interferometry,” Appl. Opt. 47, 3027-3031 (2008).
    [CrossRef]
  16. G. Bönsch and E. Potulski, “Measurement of the refractive index of air and comparison with modified Edlén's formulae,” Metrologia 35, 133-139 (1998).
    [CrossRef]
  17. C. Polhemus, “Two-wavelength interferometry,” Appl. Opt. 12, 2071-2074 (1973).
    [CrossRef]
  18. B. Bodermann, V. Burgarth, and A. Abou-Zeid, “Modulation-free stabilised diode laser for interferometry using doppler-reduced Rb transitions,” in Proceedings of the 2nd European Society for Precision Engineering and Nanotechnology Topical Conference, Turin, Vol. 1 (European Society for Precision Engineering and Nanotechnology, 2001), pp. 294-297.
  19. P. L. M. Heydemann, “Determination and correction of quadrature fringe measurement errors in interferometers,” Appl. Opt. 20, 3382-3384 (1981).
    [CrossRef]
  20. G. Sparrer and A. Abou-Zeid, “Uncertainty analysis of the PTB measuring equipment for the investigation of laser interferometers,” in Nanoscale Calibration Standards and Methods: Dimensional and Related Measurements in the Micro- and Nanometer Range, G. Wilkening and L. Koenders, eds. (Wiley-VCH, 2005), Chap. 26, pp. 345-357.

2008 (1)

2005 (1)

2003 (1)

V. Burgarth, C. Zhang, and A. Abou-Zeid, “Diode laser interferometer for absolute distance measurement,” Tech. Mess. 70, 53-58 (2003).
[CrossRef]

2002 (2)

Th. Kinder and K. D. Salewski, “Absolute distance interferometer with grating-stabilized tunable diode laser at 633 nm,” J. Opt. A Pure Appl. Opt. 4, S364-S368 (2002).
[CrossRef]

W. T. Estler, K. L. Edmundson, G. N. Peggs, and D. H. Parker, “Large-scale metrology--an update,” CIRP Ann. Manufact. Technol. 51, 587-609 (2002).

1999 (1)

1998 (4)

G. Bönsch and E. Potulski, “Measurement of the refractive index of air and comparison with modified Edlén's formulae,” Metrologia 35, 133-139 (1998).
[CrossRef]

K. H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength,” J. Opt. 29, 179-182 (1998).
[CrossRef]

G. P. Barwood, P. Gill, and W. R. C. Rowley, “High-accuracy length metrology using multiple-stage swept-frequency interferometry with laser diodes,” Meas. Sci. Technol. 9, 1036-1041 (1998).
[CrossRef]

D. Xiaoli and S. Katuo, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9, 1031-1035 (1998).
[CrossRef]

1996 (1)

K. D. Salewski, K. H. Bechstein, A. Wolfram, and W. Fuchs, “Absolute distance measurements applying a variable synthetic wavelength,” Tech. Mess. 63, 5-13 (1996).

1995 (1)

J. Thiel, T. Pfeifer, and M. Hartmann, “Interferometric measurement of absolute distances of up to 40 m,” Measurement 16, 1-6 (1995).
[CrossRef]

1988 (1)

1986 (1)

1981 (1)

1979 (1)

1973 (1)

Abou-Zeid, A.

V. Burgarth, C. Zhang, and A. Abou-Zeid, “Diode laser interferometer for absolute distance measurement,” Tech. Mess. 70, 53-58 (2003).
[CrossRef]

B. Bodermann, V. Burgarth, and A. Abou-Zeid, “Modulation-free stabilised diode laser for interferometry using doppler-reduced Rb transitions,” in Proceedings of the 2nd European Society for Precision Engineering and Nanotechnology Topical Conference, Turin, Vol. 1 (European Society for Precision Engineering and Nanotechnology, 2001), pp. 294-297.

G. Sparrer and A. Abou-Zeid, “Uncertainty analysis of the PTB measuring equipment for the investigation of laser interferometers,” in Nanoscale Calibration Standards and Methods: Dimensional and Related Measurements in the Micro- and Nanometer Range, G. Wilkening and L. Koenders, eds. (Wiley-VCH, 2005), Chap. 26, pp. 345-357.

Barwood, G. P.

G. P. Barwood, P. Gill, and W. R. C. Rowley, “High-accuracy length metrology using multiple-stage swept-frequency interferometry with laser diodes,” Meas. Sci. Technol. 9, 1036-1041 (1998).
[CrossRef]

Bechstein, K. H.

K. H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength,” J. Opt. 29, 179-182 (1998).
[CrossRef]

K. D. Salewski, K. H. Bechstein, A. Wolfram, and W. Fuchs, “Absolute distance measurements applying a variable synthetic wavelength,” Tech. Mess. 63, 5-13 (1996).

Bodermann, B.

B. Bodermann, V. Burgarth, and A. Abou-Zeid, “Modulation-free stabilised diode laser for interferometry using doppler-reduced Rb transitions,” in Proceedings of the 2nd European Society for Precision Engineering and Nanotechnology Topical Conference, Turin, Vol. 1 (European Society for Precision Engineering and Nanotechnology, 2001), pp. 294-297.

Bönsch, G.

G. Bönsch and E. Potulski, “Measurement of the refractive index of air and comparison with modified Edlén's formulae,” Metrologia 35, 133-139 (1998).
[CrossRef]

Bourdet, G. L.

Burgarth, V.

V. Burgarth, C. Zhang, and A. Abou-Zeid, “Diode laser interferometer for absolute distance measurement,” Tech. Mess. 70, 53-58 (2003).
[CrossRef]

B. Bodermann, V. Burgarth, and A. Abou-Zeid, “Modulation-free stabilised diode laser for interferometry using doppler-reduced Rb transitions,” in Proceedings of the 2nd European Society for Precision Engineering and Nanotechnology Topical Conference, Turin, Vol. 1 (European Society for Precision Engineering and Nanotechnology, 2001), pp. 294-297.

Dändliker, R.

Deibel, J.

Edmundson, K. L.

W. T. Estler, K. L. Edmundson, G. N. Peggs, and D. H. Parker, “Large-scale metrology--an update,” CIRP Ann. Manufact. Technol. 51, 587-609 (2002).

Emtman, C.

D. W. Sesko, J. D. Tobiason, M. Feldman, and C. Emtman, “A dynamically calibrated multi-wavelength absolute interferometer,” in Proceedings of the 5th Topical Meeting on Optoelectronic Distance/Displacement Measurements and Applications--ODIMAP V (IEEE, 2006).

Estler, W. T.

W. T. Estler, K. L. Edmundson, G. N. Peggs, and D. H. Parker, “Large-scale metrology--an update,” CIRP Ann. Manufact. Technol. 51, 587-609 (2002).

Favre, P.

Feldman, M.

D. W. Sesko, J. D. Tobiason, M. Feldman, and C. Emtman, “A dynamically calibrated multi-wavelength absolute interferometer,” in Proceedings of the 5th Topical Meeting on Optoelectronic Distance/Displacement Measurements and Applications--ODIMAP V (IEEE, 2006).

Fuchs, W.

K. H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength,” J. Opt. 29, 179-182 (1998).
[CrossRef]

K. D. Salewski, K. H. Bechstein, A. Wolfram, and W. Fuchs, “Absolute distance measurements applying a variable synthetic wavelength,” Tech. Mess. 63, 5-13 (1996).

Gill, P.

G. P. Barwood, P. Gill, and W. R. C. Rowley, “High-accuracy length metrology using multiple-stage swept-frequency interferometry with laser diodes,” Meas. Sci. Technol. 9, 1036-1041 (1998).
[CrossRef]

Hartmann, M.

J. Thiel, T. Pfeifer, and M. Hartmann, “Interferometric measurement of absolute distances of up to 40 m,” Measurement 16, 1-6 (1995).
[CrossRef]

Heydemann, P. L. M.

Howard, L.

Iwata, K.

Katuo, S.

D. Xiaoli and S. Katuo, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9, 1031-1035 (1998).
[CrossRef]

Kikuta, H.

Kinder, Th.

Th. Kinder and K. D. Salewski, “Absolute distance interferometer with grating-stabilized tunable diode laser at 633 nm,” J. Opt. A Pure Appl. Opt. 4, S364-S368 (2002).
[CrossRef]

LeFloch, S.

Mitouassiwou, R.

Nagata, R.

Nyberg, S.

Orszag, A. G.

Parker, D. H.

W. T. Estler, K. L. Edmundson, G. N. Peggs, and D. H. Parker, “Large-scale metrology--an update,” CIRP Ann. Manufact. Technol. 51, 587-609 (2002).

Peggs, G. N.

W. T. Estler, K. L. Edmundson, G. N. Peggs, and D. H. Parker, “Large-scale metrology--an update,” CIRP Ann. Manufact. Technol. 51, 587-609 (2002).

Pfeifer, T.

J. Thiel, T. Pfeifer, and M. Hartmann, “Interferometric measurement of absolute distances of up to 40 m,” Measurement 16, 1-6 (1995).
[CrossRef]

Polhemus, C.

Potulski, E.

G. Bönsch and E. Potulski, “Measurement of the refractive index of air and comparison with modified Edlén's formulae,” Metrologia 35, 133-139 (1998).
[CrossRef]

Prongué, D.

Riles, K.

Rowley, W. R. C.

G. P. Barwood, P. Gill, and W. R. C. Rowley, “High-accuracy length metrology using multiple-stage swept-frequency interferometry with laser diodes,” Meas. Sci. Technol. 9, 1036-1041 (1998).
[CrossRef]

Salewski, K. D.

Th. Kinder and K. D. Salewski, “Absolute distance interferometer with grating-stabilized tunable diode laser at 633 nm,” J. Opt. A Pure Appl. Opt. 4, S364-S368 (2002).
[CrossRef]

K. D. Salewski, K. H. Bechstein, A. Wolfram, and W. Fuchs, “Absolute distance measurements applying a variable synthetic wavelength,” Tech. Mess. 63, 5-13 (1996).

Salvadé, Y.

Sesko, D. W.

D. W. Sesko, J. D. Tobiason, M. Feldman, and C. Emtman, “A dynamically calibrated multi-wavelength absolute interferometer,” in Proceedings of the 5th Topical Meeting on Optoelectronic Distance/Displacement Measurements and Applications--ODIMAP V (IEEE, 2006).

Sparrer, G.

G. Sparrer and A. Abou-Zeid, “Uncertainty analysis of the PTB measuring equipment for the investigation of laser interferometers,” in Nanoscale Calibration Standards and Methods: Dimensional and Related Measurements in the Micro- and Nanometer Range, G. Wilkening and L. Koenders, eds. (Wiley-VCH, 2005), Chap. 26, pp. 345-357.

Stejskal, A.

Stone, J. A.

Thalmann, R.

Thiel, J.

J. Thiel, T. Pfeifer, and M. Hartmann, “Interferometric measurement of absolute distances of up to 40 m,” Measurement 16, 1-6 (1995).
[CrossRef]

Tobiason, J. D.

D. W. Sesko, J. D. Tobiason, M. Feldman, and C. Emtman, “A dynamically calibrated multi-wavelength absolute interferometer,” in Proceedings of the 5th Topical Meeting on Optoelectronic Distance/Displacement Measurements and Applications--ODIMAP V (IEEE, 2006).

Wolfram, A.

K. D. Salewski, K. H. Bechstein, A. Wolfram, and W. Fuchs, “Absolute distance measurements applying a variable synthetic wavelength,” Tech. Mess. 63, 5-13 (1996).

Xiaoli, D.

D. Xiaoli and S. Katuo, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9, 1031-1035 (1998).
[CrossRef]

Yang, H. J.

Zhang, C.

V. Burgarth, C. Zhang, and A. Abou-Zeid, “Diode laser interferometer for absolute distance measurement,” Tech. Mess. 70, 53-58 (2003).
[CrossRef]

Appl. Opt. (7)

CIRP Ann. Manufact. Technol. (1)

W. T. Estler, K. L. Edmundson, G. N. Peggs, and D. H. Parker, “Large-scale metrology--an update,” CIRP Ann. Manufact. Technol. 51, 587-609 (2002).

J. Opt. (1)

K. H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength,” J. Opt. 29, 179-182 (1998).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

Th. Kinder and K. D. Salewski, “Absolute distance interferometer with grating-stabilized tunable diode laser at 633 nm,” J. Opt. A Pure Appl. Opt. 4, S364-S368 (2002).
[CrossRef]

Meas. Sci. Technol. (2)

G. P. Barwood, P. Gill, and W. R. C. Rowley, “High-accuracy length metrology using multiple-stage swept-frequency interferometry with laser diodes,” Meas. Sci. Technol. 9, 1036-1041 (1998).
[CrossRef]

D. Xiaoli and S. Katuo, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9, 1031-1035 (1998).
[CrossRef]

Measurement (1)

J. Thiel, T. Pfeifer, and M. Hartmann, “Interferometric measurement of absolute distances of up to 40 m,” Measurement 16, 1-6 (1995).
[CrossRef]

Metrologia (1)

G. Bönsch and E. Potulski, “Measurement of the refractive index of air and comparison with modified Edlén's formulae,” Metrologia 35, 133-139 (1998).
[CrossRef]

Opt. Lett. (1)

Tech. Mess. (2)

K. D. Salewski, K. H. Bechstein, A. Wolfram, and W. Fuchs, “Absolute distance measurements applying a variable synthetic wavelength,” Tech. Mess. 63, 5-13 (1996).

V. Burgarth, C. Zhang, and A. Abou-Zeid, “Diode laser interferometer for absolute distance measurement,” Tech. Mess. 70, 53-58 (2003).
[CrossRef]

Other (3)

D. W. Sesko, J. D. Tobiason, M. Feldman, and C. Emtman, “A dynamically calibrated multi-wavelength absolute interferometer,” in Proceedings of the 5th Topical Meeting on Optoelectronic Distance/Displacement Measurements and Applications--ODIMAP V (IEEE, 2006).

G. Sparrer and A. Abou-Zeid, “Uncertainty analysis of the PTB measuring equipment for the investigation of laser interferometers,” in Nanoscale Calibration Standards and Methods: Dimensional and Related Measurements in the Micro- and Nanometer Range, G. Wilkening and L. Koenders, eds. (Wiley-VCH, 2005), Chap. 26, pp. 345-357.

B. Bodermann, V. Burgarth, and A. Abou-Zeid, “Modulation-free stabilised diode laser for interferometry using doppler-reduced Rb transitions,” in Proceedings of the 2nd European Society for Precision Engineering and Nanotechnology Topical Conference, Turin, Vol. 1 (European Society for Precision Engineering and Nanotechnology, 2001), pp. 294-297.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Exemplary data analysis performed on a simulated data set. The algorithm applied to the raw data depicted in (a) produces a result with the noise level determined by the fixed synthetic wavelength method [compare (d)]. Scatter larger than Λ / 4 leads to deviations of integer multiples of Λ / 2 . The intermediate results of the mapping algorithm deducing the correct order N from the coarse measurement are depicted in (b) and (c).

Fig. 2
Fig. 2

Setup of the hybrid absolute distance interferometer. For clarity, details of the laser frequency stabilization have been omitted.

Fig. 3
Fig. 3

Fractional synthetic phases measured in an experiment of 20 m range. Ten thousand raw data points Φ synth i per measurement position were taken with a total acquisition time of 10 s per position. The mean values Φ ¯ synth used for the analysis are indicated, too. The scatter of results increased significantly with the measured length.

Fig. 4
Fig. 4

Comparison of the variable synthetic wavelength measurement to a counting He–Ne laser interferometer. Eighty data points were taken within 10 s for each position. The gray squares were generated from this raw data by calculating a moving median over sub-data sets of 48 data points, corresponding to 6 s averaging time. The black squares mark the position of the median of the complete raw data set. A length offset of 1186 mm of the optical path of the modulated interferometer is not accessible. The range of half of the synthetic wavelength Λ, in which the measurement delivers the correct integer order N, is indicated by dotted lines.

Fig. 5
Fig. 5

Difference between the hybrid ADI and a counting He–Ne laser interferometer. The different symbols denote individual experiments analyzed according to Eq. (7). The dotted lines indicate a linear estimate of the error bar of the experiments based on a graphic analysis. The dashed line renders the theoretical measurement uncertainty [compare Eq. (12)].

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

L = N Λ 2 + f Λ 2 .
Δ Φ ADI = 4 π n c L ADI Δ ν ,
Δ Φ ADI ( Δ ν ) = n ADI n ref L ADI L ref Δ Φ ref ( Δ ν ) ,
Δ Φ ADI ( corr ) = Δ Φ ADI λ 2 n 1 λ 1 ¯ n 2 Δ Φ drift .
Φ synth = Φ 2 Φ 1 = mod [ ( 2 π n 2 λ 2 / 2 2 π n 1 λ 1 / 2 ) L , 2 π ] = mod [ 2 π Λ / 2 n L , 2 π ] ,
Λ = λ 1 λ 2 λ 2 λ 1 ,
L ( L ADI , Φ synth ) = floor ( L ADI Λ / 2 Φ synth 2 π + 1 2 ) Λ 2 + Φ synth 2 π n Λ 2 .
L synth = Φ synth 2 π Λ 2 ,
u emp = ± ( 0.5 μm + 0.6 μm m × L ) ,
u ( L synth ) 2 = ( L synth n u ( n ) ) 2 + ( L synth Λ u ( Λ ) ) 2 + ( L synth Φ synth u ( Φ synth ) ) 2 .
u ( L synth ) 2 = ( L synth u ( n ) n ) 2 + 2 ( L synth Λ λ u ( λ ) λ ) 2 + ( 1 4 π Λ u ( Φ synth ) ) 2 .
U ( L ) = ( 0.53 μm ) 2 + ( 0.51 μm / m ) 2 L 2 ,

Metrics