Abstract

Conventional dispersion compensation requires erbium-doped fiber amplifiers with high pump power to compensate for excess losses introduced by the dispersion-compensating fiber. We report and demonstrate an optimized single-pump amplifier configuration with a pump power penalty of less than 5% when integrated with a fiber Bragg grating dispersion compensator. The system is capable of compensating 100km of G.652 single-mode fiber.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Nakano and S. Sasaki, “Dispersion-compensator incorporated optical amplifier,” IEEE Photon. Technol. Lett. 7, 626-628 (1995).
    [CrossRef]
  2. “Technology,” http://www.proximion.com/products/dcm/AppNote/DCMTech.php, and “Applications,” http://www.proximion.com/products/dcm/AppNote/DCMSyst.php.
  3. K. Motoshima, L. M. Leba, D. N. Chen, M. M. Downs, T. Li, and E. Desurvire, “Dynamic compensation of transient gain saturation in erbium-doped fiber amplifiers by pump feedback control,” IEEE Photon. Technol. Lett. 5, 1423-1426 (1993).
    [CrossRef]
  4. A. K. Srivastava, Y. Sun, J. L. Zyskind, and J. W. Sulhoff, “EDFA Transient response to channel loss in WDM transmission system,” IEEE Photon. Technol. Lett. 9, 386-388 (1997).
    [CrossRef]
  5. Kuniaki Motoshima, Naoki Suzuki, Katsuhiro Shimizu, Kumio Kasahara, Tadayoshi Kitayama, and Tadahiko Yasui, “A channel-number insensitive erbium-doped fiber amplifier with automatic gain and power regulation function,” J. Lightwave Technol. 19, 1759-1767 (2001).
    [CrossRef]

2001

1997

A. K. Srivastava, Y. Sun, J. L. Zyskind, and J. W. Sulhoff, “EDFA Transient response to channel loss in WDM transmission system,” IEEE Photon. Technol. Lett. 9, 386-388 (1997).
[CrossRef]

1995

H. Nakano and S. Sasaki, “Dispersion-compensator incorporated optical amplifier,” IEEE Photon. Technol. Lett. 7, 626-628 (1995).
[CrossRef]

1993

K. Motoshima, L. M. Leba, D. N. Chen, M. M. Downs, T. Li, and E. Desurvire, “Dynamic compensation of transient gain saturation in erbium-doped fiber amplifiers by pump feedback control,” IEEE Photon. Technol. Lett. 5, 1423-1426 (1993).
[CrossRef]

Chen, D. N.

K. Motoshima, L. M. Leba, D. N. Chen, M. M. Downs, T. Li, and E. Desurvire, “Dynamic compensation of transient gain saturation in erbium-doped fiber amplifiers by pump feedback control,” IEEE Photon. Technol. Lett. 5, 1423-1426 (1993).
[CrossRef]

Desurvire, E.

K. Motoshima, L. M. Leba, D. N. Chen, M. M. Downs, T. Li, and E. Desurvire, “Dynamic compensation of transient gain saturation in erbium-doped fiber amplifiers by pump feedback control,” IEEE Photon. Technol. Lett. 5, 1423-1426 (1993).
[CrossRef]

Downs, M. M.

K. Motoshima, L. M. Leba, D. N. Chen, M. M. Downs, T. Li, and E. Desurvire, “Dynamic compensation of transient gain saturation in erbium-doped fiber amplifiers by pump feedback control,” IEEE Photon. Technol. Lett. 5, 1423-1426 (1993).
[CrossRef]

Kasahara, Kumio

Kitayama, Tadayoshi

Leba, L. M.

K. Motoshima, L. M. Leba, D. N. Chen, M. M. Downs, T. Li, and E. Desurvire, “Dynamic compensation of transient gain saturation in erbium-doped fiber amplifiers by pump feedback control,” IEEE Photon. Technol. Lett. 5, 1423-1426 (1993).
[CrossRef]

Li, T.

K. Motoshima, L. M. Leba, D. N. Chen, M. M. Downs, T. Li, and E. Desurvire, “Dynamic compensation of transient gain saturation in erbium-doped fiber amplifiers by pump feedback control,” IEEE Photon. Technol. Lett. 5, 1423-1426 (1993).
[CrossRef]

Motoshima, K.

K. Motoshima, L. M. Leba, D. N. Chen, M. M. Downs, T. Li, and E. Desurvire, “Dynamic compensation of transient gain saturation in erbium-doped fiber amplifiers by pump feedback control,” IEEE Photon. Technol. Lett. 5, 1423-1426 (1993).
[CrossRef]

Motoshima, Kuniaki

Nakano, H.

H. Nakano and S. Sasaki, “Dispersion-compensator incorporated optical amplifier,” IEEE Photon. Technol. Lett. 7, 626-628 (1995).
[CrossRef]

Sasaki, S.

H. Nakano and S. Sasaki, “Dispersion-compensator incorporated optical amplifier,” IEEE Photon. Technol. Lett. 7, 626-628 (1995).
[CrossRef]

Shimizu, Katsuhiro

Srivastava, A. K.

A. K. Srivastava, Y. Sun, J. L. Zyskind, and J. W. Sulhoff, “EDFA Transient response to channel loss in WDM transmission system,” IEEE Photon. Technol. Lett. 9, 386-388 (1997).
[CrossRef]

Sulhoff, J. W.

A. K. Srivastava, Y. Sun, J. L. Zyskind, and J. W. Sulhoff, “EDFA Transient response to channel loss in WDM transmission system,” IEEE Photon. Technol. Lett. 9, 386-388 (1997).
[CrossRef]

Sun, Y.

A. K. Srivastava, Y. Sun, J. L. Zyskind, and J. W. Sulhoff, “EDFA Transient response to channel loss in WDM transmission system,” IEEE Photon. Technol. Lett. 9, 386-388 (1997).
[CrossRef]

Suzuki, Naoki

Yasui, Tadahiko

Zyskind, J. L.

A. K. Srivastava, Y. Sun, J. L. Zyskind, and J. W. Sulhoff, “EDFA Transient response to channel loss in WDM transmission system,” IEEE Photon. Technol. Lett. 9, 386-388 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Nakano and S. Sasaki, “Dispersion-compensator incorporated optical amplifier,” IEEE Photon. Technol. Lett. 7, 626-628 (1995).
[CrossRef]

K. Motoshima, L. M. Leba, D. N. Chen, M. M. Downs, T. Li, and E. Desurvire, “Dynamic compensation of transient gain saturation in erbium-doped fiber amplifiers by pump feedback control,” IEEE Photon. Technol. Lett. 5, 1423-1426 (1993).
[CrossRef]

A. K. Srivastava, Y. Sun, J. L. Zyskind, and J. W. Sulhoff, “EDFA Transient response to channel loss in WDM transmission system,” IEEE Photon. Technol. Lett. 9, 386-388 (1997).
[CrossRef]

J. Lightwave Technol.

Other

“Technology,” http://www.proximion.com/products/dcm/AppNote/DCMTech.php, and “Applications,” http://www.proximion.com/products/dcm/AppNote/DCMSyst.php.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical schematic of the DC-EDFA. The main difference from a standard telecom EDFA design is indicated in the dotted box.

Fig. 2
Fig. 2

Gain and noise figure of reference C-band EDFA. The curves Gain 3 , 6 , 12 , and 18 represent the gain curves at input powers of 3 , 6 , 12 and 18 dBm , respectively. The curves NF 3 , 6 , 12 and 18 represent the noise figure measurements at input powers of 3 , 6 , 12 , and 18 dBm , respectively.

Fig. 3
Fig. 3

Gain flatness and noise figure of the DC-EDFA. The curves Gain 3 , 6 , 12 , and 18 represent the gain curves at input powers of 3 , 6 , 12 , and 18 dBm , respectively. The curves NF 3 , 6 , 12 and 18 represent the noise figure measurements at input powers of 3 , 6 , 12 , and 18 dBm , respectively.

Fig. 4
Fig. 4

System verification setup at 10 Gbits / s with electro absorption modulated laser, 100 km G.652 fiber and bit error rate test set.

Fig. 5
Fig. 5

Bit error rate measurements of EDFA. Circles, back-to back measurements; squares, measurement with 100 km SMF and standard EDFA as preamplifier; triangles, measurement with 100 km SMF and DC-EDFA as preamplifier; stars, measurement with 100 km SMF and DC-EDFA as booster amplifier.

Tables (2)

Tables Icon

Table 1 Loss Budget for Different EDFA Designs (dB)

Tables Icon

Table 2 Pump Penalty for DC-EDFA with Respect to Reference EDFA for 20 dB Gain

Metrics