Abstract

A systematic study of the angle-resolved photonic stop band of three-dimensionally (3D) ordered polymeric photonic crystals fabricated using a colloidal self-assembling method is presented. The first-order photonic stop band shows a single peak in reflection and shifts toward shorter wavelengths for larger angles of incidence. Beyond an angle of incidence of 45°, a new peak arises in the reflection spectrum due to the coupling of the incident light into other directions of the fcc Brillouin zone. The predominant contribution is identified as being due to reflection from the (200) plane.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062(1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489(1987).
    [CrossRef] [PubMed]
  3. H. Miguez, F. Meseguer, C. Lopez, A. Mifsud, J. S. Moya, and L. Vazquez, “Evidence of FCC crystallization of SiO2 nanospheres,” Langmuir 13, 6009-6011 (1997).
    [CrossRef]
  4. I. I. Tarhan and G. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315-318 (1996).
    [CrossRef] [PubMed]
  5. H. M. van Driel and W. L. Vos, “Multiple Bragg wave coupling in photonic band-gap crystals,” Phys. Rev. B 62, 9872-9875(2000).
    [CrossRef]
  6. S. G. Romanov, T. Maka, C. M. Sotomayor-Torres, M. Muller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals,” Phys. Rev. E 63, 056603-5 (2001).
    [CrossRef]
  7. R. V. Nair and R. Vijaya, “Structural and optical characterization of photonic crystals synthesized using the inward growing self assembling method,” Appl. Phys. A 90, 559-563(2008).
    [CrossRef]
  8. R. V. Nair and R. Vijaya, “Optical properties of functionalized polymeric photonic crystals,” Proc. SPIE 6796, 67961Q(2007).
    [CrossRef]
  9. S. G. Romanov, M. Bardosova, D. E. Whitehead, I. M. Povey, M. Pemble, and C. M. Sotomayor-Torres, “Erasing diffraction orders: Opal versus Langmuir-Blodgett colloidal crystals,” Appl. Phys. Lett. 90, 133101 (2007).
    [CrossRef]
  10. E. Pavarini, L. C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 045102 (2005).
    [CrossRef]
  11. C. Kittel, Introduction to Solid State Physics (Wiley, 1976).
  12. A. V. Baryshev, A. B. Khanikaev, R. Fujikawa, H. Uchida, and M. Inoue, “Polarized light coupling to thin silica-air opal films grown by vertical deposition,” Phys. Rev. B 76, 014305(2007).
    [CrossRef]
  13. S. Schutzmann, I. Venditti, P. Prosposito, M. Casalboni, and M. V. Russo, “High-energy angle resolved reflection spectroscopy on three dimensional photonic crystals of self-organized polymeric nanospheres,” Opt. Express 16, 897-907(2008).
    [CrossRef] [PubMed]
  14. J. F. Galisteo-Lopez, E. Palacios-Lidon, E. Castillo-Martínez, and C. Lopez, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B 68, 115109 (2003).
    [CrossRef]

2008 (2)

R. V. Nair and R. Vijaya, “Structural and optical characterization of photonic crystals synthesized using the inward growing self assembling method,” Appl. Phys. A 90, 559-563(2008).
[CrossRef]

S. Schutzmann, I. Venditti, P. Prosposito, M. Casalboni, and M. V. Russo, “High-energy angle resolved reflection spectroscopy on three dimensional photonic crystals of self-organized polymeric nanospheres,” Opt. Express 16, 897-907(2008).
[CrossRef] [PubMed]

2007 (3)

A. V. Baryshev, A. B. Khanikaev, R. Fujikawa, H. Uchida, and M. Inoue, “Polarized light coupling to thin silica-air opal films grown by vertical deposition,” Phys. Rev. B 76, 014305(2007).
[CrossRef]

R. V. Nair and R. Vijaya, “Optical properties of functionalized polymeric photonic crystals,” Proc. SPIE 6796, 67961Q(2007).
[CrossRef]

S. G. Romanov, M. Bardosova, D. E. Whitehead, I. M. Povey, M. Pemble, and C. M. Sotomayor-Torres, “Erasing diffraction orders: Opal versus Langmuir-Blodgett colloidal crystals,” Appl. Phys. Lett. 90, 133101 (2007).
[CrossRef]

2005 (1)

E. Pavarini, L. C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 045102 (2005).
[CrossRef]

2003 (1)

J. F. Galisteo-Lopez, E. Palacios-Lidon, E. Castillo-Martínez, and C. Lopez, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B 68, 115109 (2003).
[CrossRef]

2001 (1)

S. G. Romanov, T. Maka, C. M. Sotomayor-Torres, M. Muller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals,” Phys. Rev. E 63, 056603-5 (2001).
[CrossRef]

2000 (1)

H. M. van Driel and W. L. Vos, “Multiple Bragg wave coupling in photonic band-gap crystals,” Phys. Rev. B 62, 9872-9875(2000).
[CrossRef]

1997 (1)

H. Miguez, F. Meseguer, C. Lopez, A. Mifsud, J. S. Moya, and L. Vazquez, “Evidence of FCC crystallization of SiO2 nanospheres,” Langmuir 13, 6009-6011 (1997).
[CrossRef]

1996 (1)

I. I. Tarhan and G. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315-318 (1996).
[CrossRef] [PubMed]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062(1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489(1987).
[CrossRef] [PubMed]

Andreani, L. C.

E. Pavarini, L. C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 045102 (2005).
[CrossRef]

Bardosova, M.

S. G. Romanov, M. Bardosova, D. E. Whitehead, I. M. Povey, M. Pemble, and C. M. Sotomayor-Torres, “Erasing diffraction orders: Opal versus Langmuir-Blodgett colloidal crystals,” Appl. Phys. Lett. 90, 133101 (2007).
[CrossRef]

Baryshev, A. V.

A. V. Baryshev, A. B. Khanikaev, R. Fujikawa, H. Uchida, and M. Inoue, “Polarized light coupling to thin silica-air opal films grown by vertical deposition,” Phys. Rev. B 76, 014305(2007).
[CrossRef]

Casalboni, M.

Cassagne, D.

S. G. Romanov, T. Maka, C. M. Sotomayor-Torres, M. Muller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals,” Phys. Rev. E 63, 056603-5 (2001).
[CrossRef]

Castillo-Martínez, E.

J. F. Galisteo-Lopez, E. Palacios-Lidon, E. Castillo-Martínez, and C. Lopez, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B 68, 115109 (2003).
[CrossRef]

Comoretto, D.

E. Pavarini, L. C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 045102 (2005).
[CrossRef]

Fujikawa, R.

A. V. Baryshev, A. B. Khanikaev, R. Fujikawa, H. Uchida, and M. Inoue, “Polarized light coupling to thin silica-air opal films grown by vertical deposition,” Phys. Rev. B 76, 014305(2007).
[CrossRef]

Galisteo-Lopez, J. F.

J. F. Galisteo-Lopez, E. Palacios-Lidon, E. Castillo-Martínez, and C. Lopez, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B 68, 115109 (2003).
[CrossRef]

Galli, M.

E. Pavarini, L. C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 045102 (2005).
[CrossRef]

Inoue, M.

A. V. Baryshev, A. B. Khanikaev, R. Fujikawa, H. Uchida, and M. Inoue, “Polarized light coupling to thin silica-air opal films grown by vertical deposition,” Phys. Rev. B 76, 014305(2007).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489(1987).
[CrossRef] [PubMed]

Jouanin, C.

S. G. Romanov, T. Maka, C. M. Sotomayor-Torres, M. Muller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals,” Phys. Rev. E 63, 056603-5 (2001).
[CrossRef]

Khanikaev, A. B.

A. V. Baryshev, A. B. Khanikaev, R. Fujikawa, H. Uchida, and M. Inoue, “Polarized light coupling to thin silica-air opal films grown by vertical deposition,” Phys. Rev. B 76, 014305(2007).
[CrossRef]

Kittel, C.

C. Kittel, Introduction to Solid State Physics (Wiley, 1976).

Lopez, C.

J. F. Galisteo-Lopez, E. Palacios-Lidon, E. Castillo-Martínez, and C. Lopez, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B 68, 115109 (2003).
[CrossRef]

H. Miguez, F. Meseguer, C. Lopez, A. Mifsud, J. S. Moya, and L. Vazquez, “Evidence of FCC crystallization of SiO2 nanospheres,” Langmuir 13, 6009-6011 (1997).
[CrossRef]

Maka, T.

S. G. Romanov, T. Maka, C. M. Sotomayor-Torres, M. Muller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals,” Phys. Rev. E 63, 056603-5 (2001).
[CrossRef]

Manzanares-Martinez, J.

S. G. Romanov, T. Maka, C. M. Sotomayor-Torres, M. Muller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals,” Phys. Rev. E 63, 056603-5 (2001).
[CrossRef]

Marabelli, F.

E. Pavarini, L. C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 045102 (2005).
[CrossRef]

Meseguer, F.

H. Miguez, F. Meseguer, C. Lopez, A. Mifsud, J. S. Moya, and L. Vazquez, “Evidence of FCC crystallization of SiO2 nanospheres,” Langmuir 13, 6009-6011 (1997).
[CrossRef]

Mifsud, A.

H. Miguez, F. Meseguer, C. Lopez, A. Mifsud, J. S. Moya, and L. Vazquez, “Evidence of FCC crystallization of SiO2 nanospheres,” Langmuir 13, 6009-6011 (1997).
[CrossRef]

Miguez, H.

H. Miguez, F. Meseguer, C. Lopez, A. Mifsud, J. S. Moya, and L. Vazquez, “Evidence of FCC crystallization of SiO2 nanospheres,” Langmuir 13, 6009-6011 (1997).
[CrossRef]

Moya, J. S.

H. Miguez, F. Meseguer, C. Lopez, A. Mifsud, J. S. Moya, and L. Vazquez, “Evidence of FCC crystallization of SiO2 nanospheres,” Langmuir 13, 6009-6011 (1997).
[CrossRef]

Muller, M.

S. G. Romanov, T. Maka, C. M. Sotomayor-Torres, M. Muller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals,” Phys. Rev. E 63, 056603-5 (2001).
[CrossRef]

Nair, R. V.

R. V. Nair and R. Vijaya, “Structural and optical characterization of photonic crystals synthesized using the inward growing self assembling method,” Appl. Phys. A 90, 559-563(2008).
[CrossRef]

R. V. Nair and R. Vijaya, “Optical properties of functionalized polymeric photonic crystals,” Proc. SPIE 6796, 67961Q(2007).
[CrossRef]

Palacios-Lidon, E.

J. F. Galisteo-Lopez, E. Palacios-Lidon, E. Castillo-Martínez, and C. Lopez, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B 68, 115109 (2003).
[CrossRef]

Pavarini, E.

E. Pavarini, L. C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 045102 (2005).
[CrossRef]

Pemble, M.

S. G. Romanov, M. Bardosova, D. E. Whitehead, I. M. Povey, M. Pemble, and C. M. Sotomayor-Torres, “Erasing diffraction orders: Opal versus Langmuir-Blodgett colloidal crystals,” Appl. Phys. Lett. 90, 133101 (2007).
[CrossRef]

Povey, I. M.

S. G. Romanov, M. Bardosova, D. E. Whitehead, I. M. Povey, M. Pemble, and C. M. Sotomayor-Torres, “Erasing diffraction orders: Opal versus Langmuir-Blodgett colloidal crystals,” Appl. Phys. Lett. 90, 133101 (2007).
[CrossRef]

Prosposito, P.

Romanov, S. G.

S. G. Romanov, M. Bardosova, D. E. Whitehead, I. M. Povey, M. Pemble, and C. M. Sotomayor-Torres, “Erasing diffraction orders: Opal versus Langmuir-Blodgett colloidal crystals,” Appl. Phys. Lett. 90, 133101 (2007).
[CrossRef]

S. G. Romanov, T. Maka, C. M. Sotomayor-Torres, M. Muller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals,” Phys. Rev. E 63, 056603-5 (2001).
[CrossRef]

Russo, M. V.

Schutzmann, S.

Soci, C.

E. Pavarini, L. C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 045102 (2005).
[CrossRef]

Sotomayor-Torres, C. M.

S. G. Romanov, M. Bardosova, D. E. Whitehead, I. M. Povey, M. Pemble, and C. M. Sotomayor-Torres, “Erasing diffraction orders: Opal versus Langmuir-Blodgett colloidal crystals,” Appl. Phys. Lett. 90, 133101 (2007).
[CrossRef]

S. G. Romanov, T. Maka, C. M. Sotomayor-Torres, M. Muller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals,” Phys. Rev. E 63, 056603-5 (2001).
[CrossRef]

Tarhan, I. I.

I. I. Tarhan and G. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315-318 (1996).
[CrossRef] [PubMed]

Uchida, H.

A. V. Baryshev, A. B. Khanikaev, R. Fujikawa, H. Uchida, and M. Inoue, “Polarized light coupling to thin silica-air opal films grown by vertical deposition,” Phys. Rev. B 76, 014305(2007).
[CrossRef]

van Driel, H. M.

H. M. van Driel and W. L. Vos, “Multiple Bragg wave coupling in photonic band-gap crystals,” Phys. Rev. B 62, 9872-9875(2000).
[CrossRef]

Vazquez, L.

H. Miguez, F. Meseguer, C. Lopez, A. Mifsud, J. S. Moya, and L. Vazquez, “Evidence of FCC crystallization of SiO2 nanospheres,” Langmuir 13, 6009-6011 (1997).
[CrossRef]

Venditti, I.

Vijaya, R.

R. V. Nair and R. Vijaya, “Structural and optical characterization of photonic crystals synthesized using the inward growing self assembling method,” Appl. Phys. A 90, 559-563(2008).
[CrossRef]

R. V. Nair and R. Vijaya, “Optical properties of functionalized polymeric photonic crystals,” Proc. SPIE 6796, 67961Q(2007).
[CrossRef]

Vos, W. L.

H. M. van Driel and W. L. Vos, “Multiple Bragg wave coupling in photonic band-gap crystals,” Phys. Rev. B 62, 9872-9875(2000).
[CrossRef]

Watson, G.

I. I. Tarhan and G. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315-318 (1996).
[CrossRef] [PubMed]

Whitehead, D. E.

S. G. Romanov, M. Bardosova, D. E. Whitehead, I. M. Povey, M. Pemble, and C. M. Sotomayor-Torres, “Erasing diffraction orders: Opal versus Langmuir-Blodgett colloidal crystals,” Appl. Phys. Lett. 90, 133101 (2007).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062(1987).
[CrossRef] [PubMed]

Zentel, R.

S. G. Romanov, T. Maka, C. M. Sotomayor-Torres, M. Muller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals,” Phys. Rev. E 63, 056603-5 (2001).
[CrossRef]

Appl. Phys. A (1)

R. V. Nair and R. Vijaya, “Structural and optical characterization of photonic crystals synthesized using the inward growing self assembling method,” Appl. Phys. A 90, 559-563(2008).
[CrossRef]

Appl. Phys. Lett. (1)

S. G. Romanov, M. Bardosova, D. E. Whitehead, I. M. Povey, M. Pemble, and C. M. Sotomayor-Torres, “Erasing diffraction orders: Opal versus Langmuir-Blodgett colloidal crystals,” Appl. Phys. Lett. 90, 133101 (2007).
[CrossRef]

Langmuir (1)

H. Miguez, F. Meseguer, C. Lopez, A. Mifsud, J. S. Moya, and L. Vazquez, “Evidence of FCC crystallization of SiO2 nanospheres,” Langmuir 13, 6009-6011 (1997).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (4)

J. F. Galisteo-Lopez, E. Palacios-Lidon, E. Castillo-Martínez, and C. Lopez, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B 68, 115109 (2003).
[CrossRef]

E. Pavarini, L. C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 045102 (2005).
[CrossRef]

A. V. Baryshev, A. B. Khanikaev, R. Fujikawa, H. Uchida, and M. Inoue, “Polarized light coupling to thin silica-air opal films grown by vertical deposition,” Phys. Rev. B 76, 014305(2007).
[CrossRef]

H. M. van Driel and W. L. Vos, “Multiple Bragg wave coupling in photonic band-gap crystals,” Phys. Rev. B 62, 9872-9875(2000).
[CrossRef]

Phys. Rev. E (1)

S. G. Romanov, T. Maka, C. M. Sotomayor-Torres, M. Muller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals,” Phys. Rev. E 63, 056603-5 (2001).
[CrossRef]

Phys. Rev. Lett. (3)

I. I. Tarhan and G. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315-318 (1996).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062(1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489(1987).
[CrossRef] [PubMed]

Proc. SPIE (1)

R. V. Nair and R. Vijaya, “Optical properties of functionalized polymeric photonic crystals,” Proc. SPIE 6796, 67961Q(2007).
[CrossRef]

Other (1)

C. Kittel, Introduction to Solid State Physics (Wiley, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Reflection (symbols) and transmission (line) spectra for a bare PS photonic crystal with a colloidal sphere diameter of 280 nm show the photonic stop band at 611 nm . (b) Reflection (symbols) and transmission (line) spectra for a photonic crystal fabricated using PS-RhB spheres having a diameter of 302 nm show the photonic stop band at 609 nm .

Fig. 2
Fig. 2

(a) Photonic stop band at angles of incidence of 8 ° (solid line), 15 ° (dashed line), 30 ° (dotted line), and 45 ° (dash dotted line). The stop band shifts toward shorter wavelengths with an increase in angle of incidence. (b) Photonic stop band at angles of incidence greater than 45 ° for a bare PS photonic crystal. The angle corresponding to each spectrum is shown as an inset. (c) Photonic stop band position, in reduced units of a / λ , as a function of angle of incidence for the bare PS photonic crystal (circles) and PS-RhB photonic crystal (stars). The closed symbols in both cases show the evolution of the photonic stop band due to the ( 111 ) plane, and the open symbol shows the new peak appearing due to Bragg diffraction from the ( 200 ) plane. The two encircled regions indicate the incident angles where the stop band splits into two separate peaks.

Tables (1)

Tables Icon

Table 1 Dependence of the Observed Photonic Stop Band Position for the ( 111 ) Plane ( λ E 111 ) at Different Angles of Incidence (θ) in Bare PS Photonic Crystal a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ h k l = λ 0 cos ( α sin 1 ( 1 n eff sin θ ) ) ,
λ 0 = 2 × n eff × d h k l ,

Metrics