Abstract

The gain and noise characteristics of a fiber Brillouin amplifier are studied experimentally and analyzed using a dispersion shifted fiber. Based on these measurements, the optimal conditions of gain and on–off ratio are identified for slow light generation.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Chraplyvy and R. W. Tkach, “Narrowband tunable optical filter for channel selection in densely packed WDM systems,” Electron. Lett. 22, 1084-1085 (1986).
    [CrossRef]
  2. R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of a WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111-113 (1989).
    [CrossRef]
  3. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  4. K. Y. Song, M. G. Herraez, and L. Thevenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82-88 (2005).
    [CrossRef] [PubMed]
  5. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748-1750 (2007).
    [CrossRef] [PubMed]
  6. D. Cotter, “Observation of stimulated Brillouin scattering in low-loss silica fibre at 1.3 μm,” Electron. Lett. 18, 495-496(1982).
    [CrossRef]
  7. M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26, 35-44 (1994).
    [CrossRef]
  8. Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378-2384 (2005).
    [CrossRef]
  9. M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, “ Distortion management in slow-light pulse delay,” Opt. Express 13, 9995-10002 (2005).
    [CrossRef] [PubMed]
  10. E. Shumakher, N. Orbach, A. Nevet, D. Dahan, and G. Eisenstein, “On the balance between delay, bandwidth and signal distortion in slow light systems based on stimulated Brillouin scattering in optical fibers,” Opt. Express 14, 5877-5884 (2006).
    [CrossRef] [PubMed]
  11. P. Bayvel, I. P. Giles, and P. M. Radmore, “Transient and steady state characteristics of a Brillouin amplifier based on an all-fibre single-mode ring resonator,”Opt. Quantum Electron. 21, S113-S128 (1989).
    [CrossRef]
  12. A. S. Siddiqui and S. Andronikidis, “Transfer characteristics of Brillouin fibre amplifiers for use in self-homodyne coherent optical transmission systems,” Electron. Lett. 25, 264-266 (1989).
    [CrossRef]
  13. L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44, 1133-1138 (2008).
    [CrossRef]
  14. M. Dammig, G. Zinner, F. Mitschke, and H. Welling, “Stimulated Brillouin scattering in fibers with and without external feedback,” Phys. Rev. A 48, 3301-3309 (1993).
    [CrossRef] [PubMed]

2008 (1)

L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44, 1133-1138 (2008).
[CrossRef]

2007 (1)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (4)

1994 (1)

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26, 35-44 (1994).
[CrossRef]

1993 (1)

M. Dammig, G. Zinner, F. Mitschke, and H. Welling, “Stimulated Brillouin scattering in fibers with and without external feedback,” Phys. Rev. A 48, 3301-3309 (1993).
[CrossRef] [PubMed]

1989 (3)

P. Bayvel, I. P. Giles, and P. M. Radmore, “Transient and steady state characteristics of a Brillouin amplifier based on an all-fibre single-mode ring resonator,”Opt. Quantum Electron. 21, S113-S128 (1989).
[CrossRef]

A. S. Siddiqui and S. Andronikidis, “Transfer characteristics of Brillouin fibre amplifiers for use in self-homodyne coherent optical transmission systems,” Electron. Lett. 25, 264-266 (1989).
[CrossRef]

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of a WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111-113 (1989).
[CrossRef]

1986 (1)

A. R. Chraplyvy and R. W. Tkach, “Narrowband tunable optical filter for channel selection in densely packed WDM systems,” Electron. Lett. 22, 1084-1085 (1986).
[CrossRef]

1982 (1)

D. Cotter, “Observation of stimulated Brillouin scattering in low-loss silica fibre at 1.3 μm,” Electron. Lett. 18, 495-496(1982).
[CrossRef]

Andronikidis, S.

A. S. Siddiqui and S. Andronikidis, “Transfer characteristics of Brillouin fibre amplifiers for use in self-homodyne coherent optical transmission systems,” Electron. Lett. 25, 264-266 (1989).
[CrossRef]

Bayvel, P.

P. Bayvel, I. P. Giles, and P. M. Radmore, “Transient and steady state characteristics of a Brillouin amplifier based on an all-fibre single-mode ring resonator,”Opt. Quantum Electron. 21, S113-S128 (1989).
[CrossRef]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Boyd, R. W.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378-2384 (2005).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Chraplyvy, A. R.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of a WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111-113 (1989).
[CrossRef]

A. R. Chraplyvy and R. W. Tkach, “Narrowband tunable optical filter for channel selection in densely packed WDM systems,” Electron. Lett. 22, 1084-1085 (1986).
[CrossRef]

Cotter, D.

D. Cotter, “Observation of stimulated Brillouin scattering in low-loss silica fibre at 1.3 μm,” Electron. Lett. 18, 495-496(1982).
[CrossRef]

Dahan, D.

Dammig, M.

M. Dammig, G. Zinner, F. Mitschke, and H. Welling, “Stimulated Brillouin scattering in fibers with and without external feedback,” Phys. Rev. A 48, 3301-3309 (1993).
[CrossRef] [PubMed]

Dawes, A. M. C.

Derosier, R. M.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of a WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111-113 (1989).
[CrossRef]

Eisenstein, G.

Ferreira, M. F.

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26, 35-44 (1994).
[CrossRef]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378-2384 (2005).
[CrossRef]

Gauthier, D. J.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, “ Distortion management in slow-light pulse delay,” Opt. Express 13, 9995-10002 (2005).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378-2384 (2005).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Giles, I. P.

P. Bayvel, I. P. Giles, and P. M. Radmore, “Transient and steady state characteristics of a Brillouin amplifier based on an all-fibre single-mode ring resonator,”Opt. Quantum Electron. 21, S113-S128 (1989).
[CrossRef]

Herraez, M. G.

Luo, S.

L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44, 1133-1138 (2008).
[CrossRef]

Mitschke, F.

M. Dammig, G. Zinner, F. Mitschke, and H. Welling, “Stimulated Brillouin scattering in fibers with and without external feedback,” Phys. Rev. A 48, 3301-3309 (1993).
[CrossRef] [PubMed]

Neifeld, M. A.

Nevet, A.

Okawachi, Y.

Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378-2384 (2005).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Orbach, N.

Pinto, J. L.

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26, 35-44 (1994).
[CrossRef]

Radmore, P. M.

P. Bayvel, I. P. Giles, and P. M. Radmore, “Transient and steady state characteristics of a Brillouin amplifier based on an all-fibre single-mode ring resonator,”Opt. Quantum Electron. 21, S113-S128 (1989).
[CrossRef]

Rocha, J. F.

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26, 35-44 (1994).
[CrossRef]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378-2384 (2005).
[CrossRef]

Shumakher, E.

Siddiqui, A. S.

A. S. Siddiqui and S. Andronikidis, “Transfer characteristics of Brillouin fibre amplifiers for use in self-homodyne coherent optical transmission systems,” Electron. Lett. 25, 264-266 (1989).
[CrossRef]

Song, K. Y.

Stenner, M. D.

Thevenaz, L.

Tkach, R. W.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of a WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111-113 (1989).
[CrossRef]

A. R. Chraplyvy and R. W. Tkach, “Narrowband tunable optical filter for channel selection in densely packed WDM systems,” Electron. Lett. 22, 1084-1085 (1986).
[CrossRef]

Welling, H.

M. Dammig, G. Zinner, F. Mitschke, and H. Welling, “Stimulated Brillouin scattering in fibers with and without external feedback,” Phys. Rev. A 48, 3301-3309 (1993).
[CrossRef] [PubMed]

Willner, A. E.

Xia, Y.

L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44, 1133-1138 (2008).
[CrossRef]

Xing, L.

L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44, 1133-1138 (2008).
[CrossRef]

Zhan, L.

L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44, 1133-1138 (2008).
[CrossRef]

Zhu, Z.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, “ Distortion management in slow-light pulse delay,” Opt. Express 13, 9995-10002 (2005).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378-2384 (2005).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Zinner, G.

M. Dammig, G. Zinner, F. Mitschke, and H. Welling, “Stimulated Brillouin scattering in fibers with and without external feedback,” Phys. Rev. A 48, 3301-3309 (1993).
[CrossRef] [PubMed]

Electron. Lett. (3)

A. R. Chraplyvy and R. W. Tkach, “Narrowband tunable optical filter for channel selection in densely packed WDM systems,” Electron. Lett. 22, 1084-1085 (1986).
[CrossRef]

D. Cotter, “Observation of stimulated Brillouin scattering in low-loss silica fibre at 1.3 μm,” Electron. Lett. 18, 495-496(1982).
[CrossRef]

A. S. Siddiqui and S. Andronikidis, “Transfer characteristics of Brillouin fibre amplifiers for use in self-homodyne coherent optical transmission systems,” Electron. Lett. 25, 264-266 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44, 1133-1138 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of a WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111-113 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Quantum Electron. (2)

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26, 35-44 (1994).
[CrossRef]

P. Bayvel, I. P. Giles, and P. M. Radmore, “Transient and steady state characteristics of a Brillouin amplifier based on an all-fibre single-mode ring resonator,”Opt. Quantum Electron. 21, S113-S128 (1989).
[CrossRef]

Phys. Rev. A (1)

M. Dammig, G. Zinner, F. Mitschke, and H. Welling, “Stimulated Brillouin scattering in fibers with and without external feedback,” Phys. Rev. A 48, 3301-3309 (1993).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Science (1)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of a FBA.

Fig. 2
Fig. 2

(a) Output Stokes power and (b) transmitted pump power for DSF of lengths 0.5, 2.5, and 5 km for different values of input pump power.

Fig. 3
Fig. 3

Gain with variation in input pump power for DSF of lengths (a)  2.5 km and (b)  5 km .

Fig. 4
Fig. 4

On–off ratio with variation in input pump power for DSF of lengths (a)  2.5 km and (b)  5 km .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G = P s ( out ) P s ( in ) ,
o n off ratio = P s ( out ) P asp ,
Δ T d = G / Γ B ,

Metrics