Abstract

Nonlinear effects are invoked with the inclusion of a dispersion shifted fiber in the cavity of an actively mode-locked erbium-doped fiber ring laser. The spectrally broadened output is analyzed both in the time and the spectral domains for different lengths of this specialty fiber. A maximum spectral width of 52nm is achieved at a pump power of 180mW under optimized conditions in this configuration.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Lee and K. Kikuchi, “Experimental performance comparison for various continuous-wave supercontinuum schemes: ring cavity and single pass structures,” Opt. Express 13, 4848-4853 (2005).
    [CrossRef] [PubMed]
  2. V. Deepa and R. Vijaya, “Spectral characteristics of CW broadband from a fiber laser with a low dispersion fiber in the cavity,” J. Appl. Phys. 104, 053104-1-053104-5 (2008).
  3. D. J. Kuizenga and A. E. Siegman, “FM and AM mode-locking of homogeneous laser. Part I. Theory,” IEEE J. Quantum Electron. 6, 694-708 (1970).
    [CrossRef]
  4. S. Pan and C. Lou, “Multiwavelength pulse generation using an actively mode-locked erbium-doped fiber ring laser based on distributed dispersion cavity,” IEEE Photon. Technol. Lett. 18, 604-606 (2006).
    [CrossRef]
  5. D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, “Actively mode-locked tunable dual wavelength erbium doped fiber laser,” IEEE Photon. Technol. Lett. 14, 143-145(2002).
    [CrossRef]
  6. M. Tang, X. Tian, P. Shum, S. Fu, H. Dong, and Y. Gong, “Four-wave mixing assisted self stable 4×10 GHz actively mode-locked erbium fiber ring laser,” Opt. Express 14, 1726-1730 (2006).
    [CrossRef] [PubMed]
  7. Y. D. Gong, M. Tang, P. Shum, C. Lu, J. Wu, and K. Xu, “Dual wavelength 10 GHz actively mode-locked erbium fiber laser incorporating highly nonlinear fibers,” IEEE Photon. Technol. Lett. 17, 2547-2549 (2005).
    [CrossRef]
  8. A. Bellemare, “Continuous wave silica based erbium doped fiber lasers,” Prog. Quantum Electron. 27, 211-266(2003).
    [CrossRef]
  9. V. Deepa, S. Tendulkar, and R. Vijaya, “Performance evaluation of Gunn oscillators for active mode-locking of erbium doped fiber ring lasers,” Microwave Opt. Technol. Lett. 50, 2684-2688 (2008).
    [CrossRef]

2008

V. Deepa and R. Vijaya, “Spectral characteristics of CW broadband from a fiber laser with a low dispersion fiber in the cavity,” J. Appl. Phys. 104, 053104-1-053104-5 (2008).

V. Deepa, S. Tendulkar, and R. Vijaya, “Performance evaluation of Gunn oscillators for active mode-locking of erbium doped fiber ring lasers,” Microwave Opt. Technol. Lett. 50, 2684-2688 (2008).
[CrossRef]

2006

S. Pan and C. Lou, “Multiwavelength pulse generation using an actively mode-locked erbium-doped fiber ring laser based on distributed dispersion cavity,” IEEE Photon. Technol. Lett. 18, 604-606 (2006).
[CrossRef]

M. Tang, X. Tian, P. Shum, S. Fu, H. Dong, and Y. Gong, “Four-wave mixing assisted self stable 4×10 GHz actively mode-locked erbium fiber ring laser,” Opt. Express 14, 1726-1730 (2006).
[CrossRef] [PubMed]

2005

J. H. Lee and K. Kikuchi, “Experimental performance comparison for various continuous-wave supercontinuum schemes: ring cavity and single pass structures,” Opt. Express 13, 4848-4853 (2005).
[CrossRef] [PubMed]

Y. D. Gong, M. Tang, P. Shum, C. Lu, J. Wu, and K. Xu, “Dual wavelength 10 GHz actively mode-locked erbium fiber laser incorporating highly nonlinear fibers,” IEEE Photon. Technol. Lett. 17, 2547-2549 (2005).
[CrossRef]

2003

A. Bellemare, “Continuous wave silica based erbium doped fiber lasers,” Prog. Quantum Electron. 27, 211-266(2003).
[CrossRef]

2002

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, “Actively mode-locked tunable dual wavelength erbium doped fiber laser,” IEEE Photon. Technol. Lett. 14, 143-145(2002).
[CrossRef]

1970

D. J. Kuizenga and A. E. Siegman, “FM and AM mode-locking of homogeneous laser. Part I. Theory,” IEEE J. Quantum Electron. 6, 694-708 (1970).
[CrossRef]

Bellemare, A.

A. Bellemare, “Continuous wave silica based erbium doped fiber lasers,” Prog. Quantum Electron. 27, 211-266(2003).
[CrossRef]

Bennion, I.

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, “Actively mode-locked tunable dual wavelength erbium doped fiber laser,” IEEE Photon. Technol. Lett. 14, 143-145(2002).
[CrossRef]

Chen, L. R.

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, “Actively mode-locked tunable dual wavelength erbium doped fiber laser,” IEEE Photon. Technol. Lett. 14, 143-145(2002).
[CrossRef]

Deepa, V.

V. Deepa, S. Tendulkar, and R. Vijaya, “Performance evaluation of Gunn oscillators for active mode-locking of erbium doped fiber ring lasers,” Microwave Opt. Technol. Lett. 50, 2684-2688 (2008).
[CrossRef]

V. Deepa and R. Vijaya, “Spectral characteristics of CW broadband from a fiber laser with a low dispersion fiber in the cavity,” J. Appl. Phys. 104, 053104-1-053104-5 (2008).

Dong, H.

Fu, S.

Giannone, D.

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, “Actively mode-locked tunable dual wavelength erbium doped fiber laser,” IEEE Photon. Technol. Lett. 14, 143-145(2002).
[CrossRef]

Gong, Y.

Gong, Y. D.

Y. D. Gong, M. Tang, P. Shum, C. Lu, J. Wu, and K. Xu, “Dual wavelength 10 GHz actively mode-locked erbium fiber laser incorporating highly nonlinear fibers,” IEEE Photon. Technol. Lett. 17, 2547-2549 (2005).
[CrossRef]

Kikuchi, K.

Kuizenga, D. J.

D. J. Kuizenga and A. E. Siegman, “FM and AM mode-locking of homogeneous laser. Part I. Theory,” IEEE J. Quantum Electron. 6, 694-708 (1970).
[CrossRef]

Lee, J. H.

Lou, C.

S. Pan and C. Lou, “Multiwavelength pulse generation using an actively mode-locked erbium-doped fiber ring laser based on distributed dispersion cavity,” IEEE Photon. Technol. Lett. 18, 604-606 (2006).
[CrossRef]

Lu, C.

Y. D. Gong, M. Tang, P. Shum, C. Lu, J. Wu, and K. Xu, “Dual wavelength 10 GHz actively mode-locked erbium fiber laser incorporating highly nonlinear fibers,” IEEE Photon. Technol. Lett. 17, 2547-2549 (2005).
[CrossRef]

Pan, S.

S. Pan and C. Lou, “Multiwavelength pulse generation using an actively mode-locked erbium-doped fiber ring laser based on distributed dispersion cavity,” IEEE Photon. Technol. Lett. 18, 604-606 (2006).
[CrossRef]

Pudo, D.

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, “Actively mode-locked tunable dual wavelength erbium doped fiber laser,” IEEE Photon. Technol. Lett. 14, 143-145(2002).
[CrossRef]

Shum, P.

M. Tang, X. Tian, P. Shum, S. Fu, H. Dong, and Y. Gong, “Four-wave mixing assisted self stable 4×10 GHz actively mode-locked erbium fiber ring laser,” Opt. Express 14, 1726-1730 (2006).
[CrossRef] [PubMed]

Y. D. Gong, M. Tang, P. Shum, C. Lu, J. Wu, and K. Xu, “Dual wavelength 10 GHz actively mode-locked erbium fiber laser incorporating highly nonlinear fibers,” IEEE Photon. Technol. Lett. 17, 2547-2549 (2005).
[CrossRef]

Siegman, A. E.

D. J. Kuizenga and A. E. Siegman, “FM and AM mode-locking of homogeneous laser. Part I. Theory,” IEEE J. Quantum Electron. 6, 694-708 (1970).
[CrossRef]

Tang, M.

M. Tang, X. Tian, P. Shum, S. Fu, H. Dong, and Y. Gong, “Four-wave mixing assisted self stable 4×10 GHz actively mode-locked erbium fiber ring laser,” Opt. Express 14, 1726-1730 (2006).
[CrossRef] [PubMed]

Y. D. Gong, M. Tang, P. Shum, C. Lu, J. Wu, and K. Xu, “Dual wavelength 10 GHz actively mode-locked erbium fiber laser incorporating highly nonlinear fibers,” IEEE Photon. Technol. Lett. 17, 2547-2549 (2005).
[CrossRef]

Tendulkar, S.

V. Deepa, S. Tendulkar, and R. Vijaya, “Performance evaluation of Gunn oscillators for active mode-locking of erbium doped fiber ring lasers,” Microwave Opt. Technol. Lett. 50, 2684-2688 (2008).
[CrossRef]

Tian, X.

Vijaya, R.

V. Deepa and R. Vijaya, “Spectral characteristics of CW broadband from a fiber laser with a low dispersion fiber in the cavity,” J. Appl. Phys. 104, 053104-1-053104-5 (2008).

V. Deepa, S. Tendulkar, and R. Vijaya, “Performance evaluation of Gunn oscillators for active mode-locking of erbium doped fiber ring lasers,” Microwave Opt. Technol. Lett. 50, 2684-2688 (2008).
[CrossRef]

Wu, J.

Y. D. Gong, M. Tang, P. Shum, C. Lu, J. Wu, and K. Xu, “Dual wavelength 10 GHz actively mode-locked erbium fiber laser incorporating highly nonlinear fibers,” IEEE Photon. Technol. Lett. 17, 2547-2549 (2005).
[CrossRef]

Xu, K.

Y. D. Gong, M. Tang, P. Shum, C. Lu, J. Wu, and K. Xu, “Dual wavelength 10 GHz actively mode-locked erbium fiber laser incorporating highly nonlinear fibers,” IEEE Photon. Technol. Lett. 17, 2547-2549 (2005).
[CrossRef]

Zhang, L.

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, “Actively mode-locked tunable dual wavelength erbium doped fiber laser,” IEEE Photon. Technol. Lett. 14, 143-145(2002).
[CrossRef]

IEEE J. Quantum Electron.

D. J. Kuizenga and A. E. Siegman, “FM and AM mode-locking of homogeneous laser. Part I. Theory,” IEEE J. Quantum Electron. 6, 694-708 (1970).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Pan and C. Lou, “Multiwavelength pulse generation using an actively mode-locked erbium-doped fiber ring laser based on distributed dispersion cavity,” IEEE Photon. Technol. Lett. 18, 604-606 (2006).
[CrossRef]

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, “Actively mode-locked tunable dual wavelength erbium doped fiber laser,” IEEE Photon. Technol. Lett. 14, 143-145(2002).
[CrossRef]

Y. D. Gong, M. Tang, P. Shum, C. Lu, J. Wu, and K. Xu, “Dual wavelength 10 GHz actively mode-locked erbium fiber laser incorporating highly nonlinear fibers,” IEEE Photon. Technol. Lett. 17, 2547-2549 (2005).
[CrossRef]

J. Appl. Phys.

V. Deepa and R. Vijaya, “Spectral characteristics of CW broadband from a fiber laser with a low dispersion fiber in the cavity,” J. Appl. Phys. 104, 053104-1-053104-5 (2008).

Microwave Opt. Technol. Lett.

V. Deepa, S. Tendulkar, and R. Vijaya, “Performance evaluation of Gunn oscillators for active mode-locking of erbium doped fiber ring lasers,” Microwave Opt. Technol. Lett. 50, 2684-2688 (2008).
[CrossRef]

Opt. Express

Prog. Quantum Electron.

A. Bellemare, “Continuous wave silica based erbium doped fiber lasers,” Prog. Quantum Electron. 27, 211-266(2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental setup to observe spectral broadening in a mode-locked laser.

Fig. 2
Fig. 2

Output pulse characteristics of a filterless mode-locked fiber ring laser corresponding to pump powers of (1)  70 mW , (2)  125 mW , and (3)  180 mW . (a) Time domain characteristics and (b) corresponding spectral characteristics.

Fig. 3
Fig. 3

Output pulse characteristics of a filterless mode-locked fiber ring laser with 2.5 km of SMF included in the cavity, corresponding to pump powers of (1)  70 mW and (2)  180 mW . (a) Time domain characteristics and (b) corresponding spectral characteristics.

Fig. 4
Fig. 4

(a) Time domain characteristics of a filterless mode-locked fiber ring laser. DSF   Length = 0.5 km . Pump powers are (1)  70 mW and (2)  180 mW . (b) Corresponding spectral characteristics.

Fig. 5
Fig. 5

(a) Time domain characteristics of a filterless mode-locked fiber ring laser; DSF l ength = 2.5 km ; pump powers are (1)  70 mW and (2)  180 mW . (b) Corresponding spectral characteristics; the output of the laser in the CW configuration is shown as I in (b).

Metrics