Abstract

We numerically evaluate the wavelength converters based on cascaded sum and difference frequency generation in quasi-phase-matched lithium niobate waveguides with and without loss. A technique is also proposed to flatten the response by increased detuning of the pump wavelength. We present the criteria for the design of waveguide length and the assignment of pump power to achieve the desired efficiency, ripple and bandwidth, assuming a large pump wavelength difference of 75nm.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170-1172 (1993).
    [CrossRef]
  2. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5 μm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23, 1004-1006 (1998).
    [CrossRef]
  3. K. Gallo and G. Assanto, “Analysis of lithium niobate all-optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16, 741-753 (1999).
    [CrossRef]
  4. I. Brener, M. H. Chou, D. Peale, and M. M. Fejer, “Cascaded χ(2) wavelength converter in LiNbO3 waveguides with counter-propagating beams,” Electron. Lett. 35, 1155-1157(1999).
    [CrossRef]
  5. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm-Band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653-655 (1999).
    [CrossRef]
  6. X. Liu, H. Zhang, and Y. Guo, “Theoretical analyses and optimizations for wavelength conversion by quasi-phase-matching difference frequency generation,” J. Lightwave Technol. 19, 1785-92 (2001).
    [CrossRef]
  7. W. Liu, J. Sun, and J. Kurz, “Bandwidth and tunability enhancement of wavelength conversion by quasi-phase-matching difference frequency generation,” Opt. Commun. 216, 239-46 (2003).
    [CrossRef]
  8. A. Tehranchi, and R. Kashyap, “Design of novel unapodized and apodized step-chirped quasi-phase matched gratings for broadband frequency converters based on second harmonic generation,” J. Lightwave Technol. 26, 343-49 (2008).
    [CrossRef]
  9. A. Tehranchi and R. Kashyap, “Engineered gratings for flat broadening of second-harmonic phase-matching bandwidth in MgO-doped lithium niobate waveguides,” Opt. Express 16, 18970-18975 (2008).
    [CrossRef]
  10. A. Tehranchi and R. Kashyap, “Novel designs for efficient broadband frequency doublers using singly pump-resonant waveguide and engineered chirped gratings,” IEEE J. Quantum Electron. 45, 187-94 (2009).
    [CrossRef]
  11. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955-966(1996).
    [CrossRef]
  12. B. Chen, and C.-Q. Xu, “Analysis of novel cascaded χ(2) (SFG + DFG) wavelength conversions in quasi-phase-matched waveguides,” IEEE J. Quantum Electron. 40, 256-261 (2004).
    [CrossRef]
  13. Y. Wang, B. Chen and C.-Q. Xu, “Polarisation-insensitive QPM wavelength converter with out-of-band pump,” Electron. Lett. 40, 189-191 (2004).
    [CrossRef]
  14. Y. L. Lee, B. Yu, C. Jung, Y. Noh, J. Lee, and D. Ko, “All-optical wavelength conversion and tuning by the cascaded sum- and difference frequency generation (cSFG/DFG) in a temperature gradient controlled Ti:PPLN channel waveguide,” Opt. Express 13, 2988-2993 (2005).
    [CrossRef] [PubMed]
  15. S. Yu and W. Gu, “Wavelength conversions in quasi-phase matched LiNbO3 waveguide based on double-pass cascaded χ(2) SFG + DFG interactions,” IEEE J. Quantum Electron. 40, 1548-1554 (2004).
    [CrossRef]
  16. S. Yu and W. Gu, “A tunable wavelength conversion and wavelength add/drop scheme based on cascaded second-order nonlinearity with double-pass configuration,” IEEE J. Quantum Electron. 41, 455 (2005).
    [CrossRef]
  17. S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Performance evaluation of tunable channel-selective wavelength shift by cascaded sum- and difference-frequency generation in periodically poled lithium niobate waveguides,” J. Lightwave Technol. 25, 710-718 (2007).
    [CrossRef]

2009 (1)

A. Tehranchi and R. Kashyap, “Novel designs for efficient broadband frequency doublers using singly pump-resonant waveguide and engineered chirped gratings,” IEEE J. Quantum Electron. 45, 187-94 (2009).
[CrossRef]

2008 (2)

2007 (1)

2005 (2)

S. Yu and W. Gu, “A tunable wavelength conversion and wavelength add/drop scheme based on cascaded second-order nonlinearity with double-pass configuration,” IEEE J. Quantum Electron. 41, 455 (2005).
[CrossRef]

Y. L. Lee, B. Yu, C. Jung, Y. Noh, J. Lee, and D. Ko, “All-optical wavelength conversion and tuning by the cascaded sum- and difference frequency generation (cSFG/DFG) in a temperature gradient controlled Ti:PPLN channel waveguide,” Opt. Express 13, 2988-2993 (2005).
[CrossRef] [PubMed]

2004 (3)

B. Chen, and C.-Q. Xu, “Analysis of novel cascaded χ(2) (SFG + DFG) wavelength conversions in quasi-phase-matched waveguides,” IEEE J. Quantum Electron. 40, 256-261 (2004).
[CrossRef]

Y. Wang, B. Chen and C.-Q. Xu, “Polarisation-insensitive QPM wavelength converter with out-of-band pump,” Electron. Lett. 40, 189-191 (2004).
[CrossRef]

S. Yu and W. Gu, “Wavelength conversions in quasi-phase matched LiNbO3 waveguide based on double-pass cascaded χ(2) SFG + DFG interactions,” IEEE J. Quantum Electron. 40, 1548-1554 (2004).
[CrossRef]

2003 (1)

W. Liu, J. Sun, and J. Kurz, “Bandwidth and tunability enhancement of wavelength conversion by quasi-phase-matching difference frequency generation,” Opt. Commun. 216, 239-46 (2003).
[CrossRef]

2001 (1)

1999 (3)

K. Gallo and G. Assanto, “Analysis of lithium niobate all-optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16, 741-753 (1999).
[CrossRef]

I. Brener, M. H. Chou, D. Peale, and M. M. Fejer, “Cascaded χ(2) wavelength converter in LiNbO3 waveguides with counter-propagating beams,” Electron. Lett. 35, 1155-1157(1999).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm-Band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653-655 (1999).
[CrossRef]

1998 (1)

1996 (1)

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955-966(1996).
[CrossRef]

1993 (1)

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170-1172 (1993).
[CrossRef]

Arbore, M. A.

Assanto, G.

Brener, I.

I. Brener, M. H. Chou, D. Peale, and M. M. Fejer, “Cascaded χ(2) wavelength converter in LiNbO3 waveguides with counter-propagating beams,” Electron. Lett. 35, 1155-1157(1999).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm-Band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653-655 (1999).
[CrossRef]

Chaban, E. E.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm-Band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653-655 (1999).
[CrossRef]

Chen, B.

Y. Wang, B. Chen and C.-Q. Xu, “Polarisation-insensitive QPM wavelength converter with out-of-band pump,” Electron. Lett. 40, 189-191 (2004).
[CrossRef]

B. Chen, and C.-Q. Xu, “Analysis of novel cascaded χ(2) (SFG + DFG) wavelength conversions in quasi-phase-matched waveguides,” IEEE J. Quantum Electron. 40, 256-261 (2004).
[CrossRef]

Chou, M. H.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm-Band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653-655 (1999).
[CrossRef]

I. Brener, M. H. Chou, D. Peale, and M. M. Fejer, “Cascaded χ(2) wavelength converter in LiNbO3 waveguides with counter-propagating beams,” Electron. Lett. 35, 1155-1157(1999).
[CrossRef]

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5 μm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23, 1004-1006 (1998).
[CrossRef]

Christman, S. B.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm-Band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653-655 (1999).
[CrossRef]

Fejer, M. M.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm-Band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653-655 (1999).
[CrossRef]

I. Brener, M. H. Chou, D. Peale, and M. M. Fejer, “Cascaded χ(2) wavelength converter in LiNbO3 waveguides with counter-propagating beams,” Electron. Lett. 35, 1155-1157(1999).
[CrossRef]

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5 μm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23, 1004-1006 (1998).
[CrossRef]

Gallo, K.

Gao, S.

Gu, W.

S. Yu and W. Gu, “A tunable wavelength conversion and wavelength add/drop scheme based on cascaded second-order nonlinearity with double-pass configuration,” IEEE J. Quantum Electron. 41, 455 (2005).
[CrossRef]

S. Yu and W. Gu, “Wavelength conversions in quasi-phase matched LiNbO3 waveguide based on double-pass cascaded χ(2) SFG + DFG interactions,” IEEE J. Quantum Electron. 40, 1548-1554 (2004).
[CrossRef]

Guo, Y.

Hauden, J.

Jin, G.

Jung, C.

Kashyap, R.

Kawahara, M.

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170-1172 (1993).
[CrossRef]

Ko, D.

Kurz, J.

W. Liu, J. Sun, and J. Kurz, “Bandwidth and tunability enhancement of wavelength conversion by quasi-phase-matching difference frequency generation,” Opt. Commun. 216, 239-46 (2003).
[CrossRef]

Lee, J.

Lee, Y. L.

Liu, W.

W. Liu, J. Sun, and J. Kurz, “Bandwidth and tunability enhancement of wavelength conversion by quasi-phase-matching difference frequency generation,” Opt. Commun. 216, 239-46 (2003).
[CrossRef]

Liu, X.

Noh, Y.

Okayama, H.

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170-1172 (1993).
[CrossRef]

Peale, D.

I. Brener, M. H. Chou, D. Peale, and M. M. Fejer, “Cascaded χ(2) wavelength converter in LiNbO3 waveguides with counter-propagating beams,” Electron. Lett. 35, 1155-1157(1999).
[CrossRef]

Shinozaki, K.

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170-1172 (1993).
[CrossRef]

Sun, J.

W. Liu, J. Sun, and J. Kurz, “Bandwidth and tunability enhancement of wavelength conversion by quasi-phase-matching difference frequency generation,” Opt. Commun. 216, 239-46 (2003).
[CrossRef]

Tehranchi, A.

Tian, Y.

Wang, Y.

Y. Wang, B. Chen and C.-Q. Xu, “Polarisation-insensitive QPM wavelength converter with out-of-band pump,” Electron. Lett. 40, 189-191 (2004).
[CrossRef]

Watanabe, K.

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170-1172 (1993).
[CrossRef]

Xiao, X.

Xu, C. Q.

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170-1172 (1993).
[CrossRef]

Xu, C.-Q.

B. Chen, and C.-Q. Xu, “Analysis of novel cascaded χ(2) (SFG + DFG) wavelength conversions in quasi-phase-matched waveguides,” IEEE J. Quantum Electron. 40, 256-261 (2004).
[CrossRef]

Y. Wang, B. Chen and C.-Q. Xu, “Polarisation-insensitive QPM wavelength converter with out-of-band pump,” Electron. Lett. 40, 189-191 (2004).
[CrossRef]

Yang, C.

Yoo, S. J. B.

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955-966(1996).
[CrossRef]

You, Z.

Yu, B.

Yu, S.

S. Yu and W. Gu, “A tunable wavelength conversion and wavelength add/drop scheme based on cascaded second-order nonlinearity with double-pass configuration,” IEEE J. Quantum Electron. 41, 455 (2005).
[CrossRef]

S. Yu and W. Gu, “Wavelength conversions in quasi-phase matched LiNbO3 waveguide based on double-pass cascaded χ(2) SFG + DFG interactions,” IEEE J. Quantum Electron. 40, 1548-1554 (2004).
[CrossRef]

Zhang, H.

Appl. Phys. Lett. (1)

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170-1172 (1993).
[CrossRef]

Electron. Lett. (2)

I. Brener, M. H. Chou, D. Peale, and M. M. Fejer, “Cascaded χ(2) wavelength converter in LiNbO3 waveguides with counter-propagating beams,” Electron. Lett. 35, 1155-1157(1999).
[CrossRef]

Y. Wang, B. Chen and C.-Q. Xu, “Polarisation-insensitive QPM wavelength converter with out-of-band pump,” Electron. Lett. 40, 189-191 (2004).
[CrossRef]

IEEE J. Quantum Electron. (4)

B. Chen, and C.-Q. Xu, “Analysis of novel cascaded χ(2) (SFG + DFG) wavelength conversions in quasi-phase-matched waveguides,” IEEE J. Quantum Electron. 40, 256-261 (2004).
[CrossRef]

A. Tehranchi and R. Kashyap, “Novel designs for efficient broadband frequency doublers using singly pump-resonant waveguide and engineered chirped gratings,” IEEE J. Quantum Electron. 45, 187-94 (2009).
[CrossRef]

S. Yu and W. Gu, “Wavelength conversions in quasi-phase matched LiNbO3 waveguide based on double-pass cascaded χ(2) SFG + DFG interactions,” IEEE J. Quantum Electron. 40, 1548-1554 (2004).
[CrossRef]

S. Yu and W. Gu, “A tunable wavelength conversion and wavelength add/drop scheme based on cascaded second-order nonlinearity with double-pass configuration,” IEEE J. Quantum Electron. 41, 455 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm-Band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653-655 (1999).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

W. Liu, J. Sun, and J. Kurz, “Bandwidth and tunability enhancement of wavelength conversion by quasi-phase-matching difference frequency generation,” Opt. Commun. 216, 239-46 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic description of QPM cascaded SFG + DFG wavelength conversion in a PPLN waveguide.

Fig. 2
Fig. 2

Efficiency of the SFG + DFG device versus signal wavelength with a waveguide length of 3 cm and 50 mW total pump power for Δ λ p = 0 and Δ λ p = 75 nm with and without loss.

Fig. 3
Fig. 3

Efficiency contour map of the SFG + DFG device versus waveguide length and total pump power for α SF = 0 and α SF = 0.7 dB / cm . Peak-to-peak ripple and bandwidth contour maps are the same with and without the low loss ( α SF = 0.7 dB / cm ) . The pumps are set at 1512.500 and 1587.500 nm .

Fig. 4
Fig. 4

Efficiency of the SFG + DFG device versus signal wavelength for 3 cm lossless and low-loss waveguides when the pumps are set at 1512.500 and 1587.500 + Δ λ p 2 nm and the total pump power is 50 mW .

Fig. 5
Fig. 5

Efficiency contour map of the SFG + DFG versus waveguide length and total pump power for α SF = 0 and α SF = 0.7 dB / cm . Peak-to-peak ripple and bandwidth contour maps are the same with and without low loss ( α SF = 0.7 dB / cm ) . The pumps are set at 1512.500 and 1587.950 nm .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d d x A p 1 ( x ) = j ω p 1 κ SFG A p 2 * ( x ) A SF ( x ) exp ( j Δ k SFG x ) 1 2 α p 1 A p 1 ( x ) ,
d d x A p 2 ( x ) = j ω p 2 κ SFG A p 1 * ( x ) A SF ( x ) exp ( j Δ k SFG x ) 1 2 α p 2 A p 2 ( x ) ,
d d x A SF ( x ) = j ω SF κ SFG A p 1 ( x ) A p 2 ( x ) exp ( j Δ k SFG x ) j ω SF κ DFG A s ( x ) A c ( x ) exp ( j Δ k DFG x ) 1 2 α SF A SF ( x ) ,
d d x A s ( x ) = j ω s κ DFG A SF ( x ) A c * ( x ) exp ( j Δ k DFG x ) 1 2 α s A s ( x ) ,
d d x A c ( x ) = j ω c κ DFG A SF ( x ) A s * ( x ) exp ( j Δ k DFG x ) 1 2 α c A c ( x ) ,

Metrics