Abstract

A new fabrication process of active optical silica glass based on direct sand vitrification is proposed. This method, an alternative to chemical vapor deposition (CVD), allows the fabrication of homogeneous and highly Yb3+-doped rods that are ten times larger in diameter than those produced by CVD. For large-mode-area fibers fabricated by the stack-and-draw method, this is a tremendous technical breakthrough that could offer great flexibility in fiber design. As a proof of concept, we focused here on the fabrication and characterization of active core material surrounded by pure silica. Consequently, we draw a simple multimode step-index fiber. The index ripple in the core that matches our objectives is approximately 2.2×104. For this first demonstration, the core material is codoped with Yb2O3 (3600partsin106(ppm) by weight) and Al2O3, yielding a 180dBm1 absorption at a wavelength of 975nm, whereas the background loss is around 0.8dBm1. The continuous-wave laser obtained with this fiber exhibits 74% slope efficiency.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25, 442-444 (2000).
    [CrossRef]
  2. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14, 2715-2720 (2006).
    [CrossRef] [PubMed]
  3. X. Zhu, A. Schülzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Achievement of linearly polarized single-transverse-mode emission from active multimode fiber via multimode interferences,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2009), paper OTuP4.
  4. S. Février, D. D. Gaponov, P. Roy, M. E. Likhachev, S. L. Semjonov, M. M. Bubnov, E. M. Dianov, M. Y. Yashkov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “High-power photonic-bandgap fiber laser,” Opt. Lett. 33, 989-991(2008).
    [CrossRef] [PubMed]
  5. C. Pedrido, P. Roy, and M. Devautour, “Method for fabricating a preform, an optical fiber, and an amplifier,” patent PCT/EP2007/063519, 310544 (12 July 2007).
  6. L. Lavoute, P. Roy, A. Desfarges-Berthelemot, V. Kermene, and S. Fevrier, “Design of microstructured single-mode fiber combining large mode area and high rare earth ion concentration,” Opt. Express 142994-2999 (2006).
    [CrossRef] [PubMed]

2008

2006

2000

Bubnov, M. M.

Desfarges-Berthelemot, A.

Devautour, M.

C. Pedrido, P. Roy, and M. Devautour, “Method for fabricating a preform, an optical fiber, and an amplifier,” patent PCT/EP2007/063519, 310544 (12 July 2007).

Dianov, E. M.

Ermeneux, S.

Fevrier, S.

Février, S.

Gaponov, D. D.

Goldberg, L.

Guryanov, A. N.

Kermene, V.

Khopin, V. F.

Kliner, D. A. V.

Koplow, J. P.

Lavoute, L.

Li, H.

X. Zhu, A. Schülzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Achievement of linearly polarized single-transverse-mode emission from active multimode fiber via multimode interferences,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2009), paper OTuP4.

Li, L.

X. Zhu, A. Schülzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Achievement of linearly polarized single-transverse-mode emission from active multimode fiber via multimode interferences,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2009), paper OTuP4.

Likhachev, M. E.

Limpert, J.

Moloney, J. V.

X. Zhu, A. Schülzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Achievement of linearly polarized single-transverse-mode emission from active multimode fiber via multimode interferences,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2009), paper OTuP4.

Pedrido, C.

C. Pedrido, P. Roy, and M. Devautour, “Method for fabricating a preform, an optical fiber, and an amplifier,” patent PCT/EP2007/063519, 310544 (12 July 2007).

Peyghambarian, N.

X. Zhu, A. Schülzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Achievement of linearly polarized single-transverse-mode emission from active multimode fiber via multimode interferences,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2009), paper OTuP4.

Röser, F.

Rothhardt, J.

Roy, P.

Salganskii, M. Y.

Salin, F.

Schmidt, O.

Schreiber, T.

Schülzgen, A.

X. Zhu, A. Schülzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Achievement of linearly polarized single-transverse-mode emission from active multimode fiber via multimode interferences,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2009), paper OTuP4.

Semjonov, S. L.

Temyanko, V. L.

X. Zhu, A. Schülzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Achievement of linearly polarized single-transverse-mode emission from active multimode fiber via multimode interferences,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2009), paper OTuP4.

Tünnermann, A.

Yashkov, M. Y.

Yvernault, P.

Zhu, X.

X. Zhu, A. Schülzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Achievement of linearly polarized single-transverse-mode emission from active multimode fiber via multimode interferences,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2009), paper OTuP4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Different steps of the fabrication process: dark gray, Yb 2 O 3 and Al 2 O 3 doped silica sand; light gray, undoped silica sand.

Fig. 2
Fig. 2

RIP of the Yb 3 + -doped double clad fiber. Inset: close-up of the fluctuations of the refractive index of the core.

Fig. 3
Fig. 3

SEM image of the fiber.

Fig. 4
Fig. 4

Experimental setup: solid line, laser signal; dotted line, pump.

Fig. 5
Fig. 5

Signal power versus launched pump power: dots, experiments; line, linear fit; inset, near-field intensity distribution.

Metrics