Abstract

We report supercontinuum generation in nonlinear microstructured optical fibers (MOFs) especially fabricated in a two-step stack and draw process having three rings of airholes. High air-filling fraction (>0.9) is obtained in a simple and straightforward way during the drawing process which is essential to enhance nonlinearity. Two of the fabricated samples are characterized and zero dispersion wavelength is tailored to achieve efficient pumping in the anomalous group velocity dispersion regime. The characteristics of the supercontinuum band as observed experimentally show good agreement with the predicted numerically simulated results, where soliton mediated dispersive waves are distinctly observed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef]
  2. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
    [CrossRef]
  3. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662-1664 (1998).
    [CrossRef]
  4. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093-1102 (1999).
    [CrossRef]
  5. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, “Nearly zero ultra-flattened dispersion in photonic crystal fibers,” Opt. Lett. 25, 790-792 (2000).
    [CrossRef]
  6. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
  7. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395-1397(1999).
    [CrossRef]
  8. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “ Experimental evidence for supercontinuum generation by fission of higher order solitons in photonics crystal fibers,” Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef]
  9. K. Sakamaki, M. Nakao, M. Naganuma, and M. Izutsu, “Soliton induced supercontinuum generation in photonic crystal fiber,” IEEE J. Sel. Top. Quantum Electron. 10, 876-884(2004).
    [CrossRef]
  10. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  11. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
    [CrossRef]
  12. K. Tai, A. Hasegawa, and N. Bekki, “Fission of optical solitons induced by stimulated Raman effect,” Opt. Lett. 13, 392-394 (1988).
    [CrossRef]
  13. J. C. Knight, T. A. Birks, and P. St. J. Russell, “Holey silica fibers,” in Optics of Nanostructured Materials, A. V. Markel and T. George, eds. (Wiley, 2001), pp. 39-71.
  14. K. E. Frampton, D. W. Hewak, K. M. Kiang, T. M. Monro, R. C. Moore, D. J. Richardson, H. Rutt, and J. A. Tucknott, “Fabrication of microstructured optical fibre,” WO 03/078339 A1 [World Intellectual Property Organization (PCT), 25 September 2003].
  15. N. F. Borelli, J. F. Wright,Jr., and R. R. Wusirika, “Method of fabricating photonic structures,” U.S. Patent 6,496,632 (17 December 2002).
  16. C. Jackobsen, G. Vienne, and T. P. Hansen, “Preform method of its production, and use thereof in production of microstructured optical fibres,” WO 03/078338 A2 [World Intellectual Property Organization (PCT), 25 September 2003].
  17. T. Hasegawa, M. Onishi, E. Sasaoka, and M. Nishimura, “Optical fiber and method for making the same,” U.S. Patent 6,766,088 (20 July 2004).
  18. A. F. Benabid and J. C. Knight, “Improvements in and relating to microstructured optical fibres,” WO 2004/001461 A1[World Intellectual Property Organization (PCT), 31 December 2003].
  19. J. Broeng, S. E. Barkou, and A. O. Bjarklev, “Microstructured optical fibres,” WO 99/064903 [World Intellectual Property Organization (PCT), 16 December 1999].
  20. P. St. J. Russell, T. A. Birks, J. C. Knight, and B. J. Mangan, “Photonic crystal fibre and a method for its production,” WO 00/060388 [World Intellectual Property Organization (PCT), 12 October 2000].
  21. A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modeling the fabrication of hollow fibers: capillary drawing,” J. Lightwave Technol. 19, 1924-1931 (2001).
    [CrossRef]
  22. S. C. Xue, M. C. J. Large, G. W. Barton, R. I. Tanner, L. Poladian, and R. Lwin, “Role of material properties and drawing conditions in the fabrication of microstructured optical fibers,” J. Lightwave Technol. 24, 853-860(2006).
    [CrossRef]
  23. W. J. Wadsworth, N. Joly, J. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single mode photonic crystal fibers,” Opt. Express 12, 299-309 (2004).
    [CrossRef]
  24. A. Ferrando, E. Silvestre, P. Andres, J. J. Miret, and M. V. Andres, “Designing the properties of dispersion-flattened photonic crystal fibers,” Opt. Express 9, 687-697(2001).
  25. D. Ghosh, S. Roy, A. Pal, M. Pal, S. Bandyopadhyay, and S. K. Bhadra, “Analysis of fundamental modal effective index in microstructured fibers: a variational approach,” submitted to Appl. Phys. B.
  26. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322-2330 (2002).
    [CrossRef]
  27. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. 6, 181-191 (2000).
  28. K. Saitoh and M. Koshiba, “Numerical modeling of photonic crystal fibers,” J. Lightwave Technol. 23, 3580-3590 (2005).
    [CrossRef]
  29. A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1999).
  30. N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 14, 1094-1096 (2002).
  31. Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31, 3086-3088 (2006).
    [CrossRef]
  32. N. Nishizawa and T. Goto, “Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength,” Opt. Lett. 27, 152-154 (2002).
    [CrossRef]
  33. N. Nishizawa and T. Goto, “Characteristics of pulse trapping by use of ultrashort soliton pulses in optical fibers across the zero-dispersion wavelength,” Opt. Express 10, 1151-1159(2002).

2006

2005

2004

W. J. Wadsworth, N. Joly, J. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single mode photonic crystal fibers,” Opt. Express 12, 299-309 (2004).
[CrossRef]

K. Sakamaki, M. Nakao, M. Naganuma, and M. Izutsu, “Soliton induced supercontinuum generation in photonic crystal fiber,” IEEE J. Sel. Top. Quantum Electron. 10, 876-884(2004).
[CrossRef]

2002

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “ Experimental evidence for supercontinuum generation by fission of higher order solitons in photonics crystal fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 14, 1094-1096 (2002).

T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322-2330 (2002).
[CrossRef]

N. Nishizawa and T. Goto, “Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength,” Opt. Lett. 27, 152-154 (2002).
[CrossRef]

N. Nishizawa and T. Goto, “Characteristics of pulse trapping by use of ultrashort soliton pulses in optical fibers across the zero-dispersion wavelength,” Opt. Express 10, 1151-1159(2002).

2001

2000

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. 6, 181-191 (2000).

A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, “Nearly zero ultra-flattened dispersion in photonic crystal fibers,” Opt. Lett. 25, 790-792 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).

1999

1998

1997

1996

1988

Agrawal, G. P.

Andres, M. V.

Andres, P.

Arriaga, J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).

Atkin, D. M.

Bandyopadhyay, S.

D. Ghosh, S. Roy, A. Pal, M. Pal, S. Bandyopadhyay, and S. K. Bhadra, “Analysis of fundamental modal effective index in microstructured fibers: a variational approach,” submitted to Appl. Phys. B.

Barkou, S. E.

J. Broeng, S. E. Barkou, and A. O. Bjarklev, “Microstructured optical fibres,” WO 99/064903 [World Intellectual Property Organization (PCT), 16 December 1999].

Barton, G. W.

Bekki, N.

Benabid, A. F.

A. F. Benabid and J. C. Knight, “Improvements in and relating to microstructured optical fibres,” WO 2004/001461 A1[World Intellectual Property Organization (PCT), 31 December 2003].

Bennett, P. J.

Bhadra, S. K.

D. Ghosh, S. Roy, A. Pal, M. Pal, S. Bandyopadhyay, and S. K. Bhadra, “Analysis of fundamental modal effective index in microstructured fibers: a variational approach,” submitted to Appl. Phys. B.

Biancalana, F.

Birks, T. A.

W. J. Wadsworth, N. Joly, J. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single mode photonic crystal fibers,” Opt. Express 12, 299-309 (2004).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662-1664 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).
[CrossRef]

J. C. Knight, T. A. Birks, and P. St. J. Russell, “Holey silica fibers,” in Optics of Nanostructured Materials, A. V. Markel and T. George, eds. (Wiley, 2001), pp. 39-71.

P. St. J. Russell, T. A. Birks, J. C. Knight, and B. J. Mangan, “Photonic crystal fibre and a method for its production,” WO 00/060388 [World Intellectual Property Organization (PCT), 12 October 2000].

Bjarklev, A. O.

J. Broeng, S. E. Barkou, and A. O. Bjarklev, “Microstructured optical fibres,” WO 99/064903 [World Intellectual Property Organization (PCT), 16 December 1999].

Borelli, N. F.

N. F. Borelli, J. F. Wright,Jr., and R. R. Wusirika, “Method of fabricating photonic structures,” U.S. Patent 6,496,632 (17 December 2002).

Botten, L. C.

Brechet, F.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. 6, 181-191 (2000).

Broderick, N. G. R.

Broeng, J.

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 14, 1094-1096 (2002).

J. Broeng, S. E. Barkou, and A. O. Bjarklev, “Microstructured optical fibres,” WO 99/064903 [World Intellectual Property Organization (PCT), 16 December 1999].

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Ferrando, A.

Fitt, A. D.

Folken, J. R.

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 14, 1094-1096 (2002).

Frampton, K. E.

K. E. Frampton, D. W. Hewak, K. M. Kiang, T. M. Monro, R. C. Moore, D. J. Richardson, H. Rutt, and J. A. Tucknott, “Fabrication of microstructured optical fibre,” WO 03/078339 A1 [World Intellectual Property Organization (PCT), 25 September 2003].

Furusawa, K.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Ghatak, A. K.

A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1999).

Ghosh, D.

D. Ghosh, S. Roy, A. Pal, M. Pal, S. Bandyopadhyay, and S. K. Bhadra, “Analysis of fundamental modal effective index in microstructured fibers: a variational approach,” submitted to Appl. Phys. B.

Goto, T.

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “ Experimental evidence for supercontinuum generation by fission of higher order solitons in photonics crystal fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Hansen, T. P.

C. Jackobsen, G. Vienne, and T. P. Hansen, “Preform method of its production, and use thereof in production of microstructured optical fibres,” WO 03/078338 A2 [World Intellectual Property Organization (PCT), 25 September 2003].

Hasegawa, A.

Hasegawa, T.

T. Hasegawa, M. Onishi, E. Sasaoka, and M. Nishimura, “Optical fiber and method for making the same,” U.S. Patent 6,766,088 (20 July 2004).

Herrmann, J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “ Experimental evidence for supercontinuum generation by fission of higher order solitons in photonics crystal fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Hewak, D. W.

K. E. Frampton, D. W. Hewak, K. M. Kiang, T. M. Monro, R. C. Moore, D. J. Richardson, H. Rutt, and J. A. Tucknott, “Fabrication of microstructured optical fibre,” WO 03/078339 A1 [World Intellectual Property Organization (PCT), 25 September 2003].

Husakou, A.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “ Experimental evidence for supercontinuum generation by fission of higher order solitons in photonics crystal fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Izutsu, M.

K. Sakamaki, M. Nakao, M. Naganuma, and M. Izutsu, “Soliton induced supercontinuum generation in photonic crystal fiber,” IEEE J. Sel. Top. Quantum Electron. 10, 876-884(2004).
[CrossRef]

Jackobsen, C.

C. Jackobsen, G. Vienne, and T. P. Hansen, “Preform method of its production, and use thereof in production of microstructured optical fibres,” WO 03/078338 A2 [World Intellectual Property Organization (PCT), 25 September 2003].

Joly, N.

Kiang, K. M.

K. E. Frampton, D. W. Hewak, K. M. Kiang, T. M. Monro, R. C. Moore, D. J. Richardson, H. Rutt, and J. A. Tucknott, “Fabrication of microstructured optical fibre,” WO 03/078339 A1 [World Intellectual Property Organization (PCT), 25 September 2003].

Knight, J.

Knight, J. C.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “ Experimental evidence for supercontinuum generation by fission of higher order solitons in photonics crystal fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).
[CrossRef]

J. C. Knight, T. A. Birks, and P. St. J. Russell, “Holey silica fibers,” in Optics of Nanostructured Materials, A. V. Markel and T. George, eds. (Wiley, 2001), pp. 39-71.

A. F. Benabid and J. C. Knight, “Improvements in and relating to microstructured optical fibres,” WO 2004/001461 A1[World Intellectual Property Organization (PCT), 31 December 2003].

P. St. J. Russell, T. A. Birks, J. C. Knight, and B. J. Mangan, “Photonic crystal fibre and a method for its production,” WO 00/060388 [World Intellectual Property Organization (PCT), 12 October 2000].

Korn, G.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “ Experimental evidence for supercontinuum generation by fission of higher order solitons in photonics crystal fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Koshiba, M.

Kuhlmey, B. T.

Large, M. C. J.

Lin, Q.

Lwin, R.

Mangan, B. J.

P. St. J. Russell, T. A. Birks, J. C. Knight, and B. J. Mangan, “Photonic crystal fibre and a method for its production,” WO 00/060388 [World Intellectual Property Organization (PCT), 12 October 2000].

Marcou, J.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. 6, 181-191 (2000).

Martijn de Sterke, C.

Maystre, D.

McPhedran, R. C.

Miret, J. J.

Mogilevtsev, D.

Monro, T. M.

Moore, R. C.

K. E. Frampton, D. W. Hewak, K. M. Kiang, T. M. Monro, R. C. Moore, D. J. Richardson, H. Rutt, and J. A. Tucknott, “Fabrication of microstructured optical fibre,” WO 03/078339 A1 [World Intellectual Property Organization (PCT), 25 September 2003].

Mortensen, N. A.

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 14, 1094-1096 (2002).

Naganuma, M.

K. Sakamaki, M. Nakao, M. Naganuma, and M. Izutsu, “Soliton induced supercontinuum generation in photonic crystal fiber,” IEEE J. Sel. Top. Quantum Electron. 10, 876-884(2004).
[CrossRef]

Nakao, M.

K. Sakamaki, M. Nakao, M. Naganuma, and M. Izutsu, “Soliton induced supercontinuum generation in photonic crystal fiber,” IEEE J. Sel. Top. Quantum Electron. 10, 876-884(2004).
[CrossRef]

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “ Experimental evidence for supercontinuum generation by fission of higher order solitons in photonics crystal fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Nishimura, M.

T. Hasegawa, M. Onishi, E. Sasaoka, and M. Nishimura, “Optical fiber and method for making the same,” U.S. Patent 6,766,088 (20 July 2004).

Nishizawa, N.

Onishi, M.

T. Hasegawa, M. Onishi, E. Sasaoka, and M. Nishimura, “Optical fiber and method for making the same,” U.S. Patent 6,766,088 (20 July 2004).

Ortigosa-Blanch, A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).

Pagnoux, D.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. 6, 181-191 (2000).

Pal, A.

D. Ghosh, S. Roy, A. Pal, M. Pal, S. Bandyopadhyay, and S. K. Bhadra, “Analysis of fundamental modal effective index in microstructured fibers: a variational approach,” submitted to Appl. Phys. B.

Pal, M.

D. Ghosh, S. Roy, A. Pal, M. Pal, S. Bandyopadhyay, and S. K. Bhadra, “Analysis of fundamental modal effective index in microstructured fibers: a variational approach,” submitted to Appl. Phys. B.

Please, C. P.

Poladian, L.

Renversez, G.

Richardson, D. J.

N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395-1397(1999).
[CrossRef]

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093-1102 (1999).
[CrossRef]

K. E. Frampton, D. W. Hewak, K. M. Kiang, T. M. Monro, R. C. Moore, D. J. Richardson, H. Rutt, and J. A. Tucknott, “Fabrication of microstructured optical fibre,” WO 03/078339 A1 [World Intellectual Property Organization (PCT), 25 September 2003].

Roy, P.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. 6, 181-191 (2000).

Roy, S.

D. Ghosh, S. Roy, A. Pal, M. Pal, S. Bandyopadhyay, and S. K. Bhadra, “Analysis of fundamental modal effective index in microstructured fibers: a variational approach,” submitted to Appl. Phys. B.

Russell, P. St. J.

W. J. Wadsworth, N. Joly, J. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single mode photonic crystal fibers,” Opt. Express 12, 299-309 (2004).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “ Experimental evidence for supercontinuum generation by fission of higher order solitons in photonics crystal fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662-1664 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).
[CrossRef]

J. C. Knight, T. A. Birks, and P. St. J. Russell, “Holey silica fibers,” in Optics of Nanostructured Materials, A. V. Markel and T. George, eds. (Wiley, 2001), pp. 39-71.

P. St. J. Russell, T. A. Birks, J. C. Knight, and B. J. Mangan, “Photonic crystal fibre and a method for its production,” WO 00/060388 [World Intellectual Property Organization (PCT), 12 October 2000].

Rutt, H.

K. E. Frampton, D. W. Hewak, K. M. Kiang, T. M. Monro, R. C. Moore, D. J. Richardson, H. Rutt, and J. A. Tucknott, “Fabrication of microstructured optical fibre,” WO 03/078339 A1 [World Intellectual Property Organization (PCT), 25 September 2003].

Saitoh, K.

Sakamaki, K.

K. Sakamaki, M. Nakao, M. Naganuma, and M. Izutsu, “Soliton induced supercontinuum generation in photonic crystal fiber,” IEEE J. Sel. Top. Quantum Electron. 10, 876-884(2004).
[CrossRef]

Sasaoka, E.

T. Hasegawa, M. Onishi, E. Sasaoka, and M. Nishimura, “Optical fiber and method for making the same,” U.S. Patent 6,766,088 (20 July 2004).

Silvestre, E.

Skovgaard, P. M. W.

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 14, 1094-1096 (2002).

Tai, K.

Tanner, R. I.

Thyagarajan, K.

A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1999).

Tucknott, J. A.

K. E. Frampton, D. W. Hewak, K. M. Kiang, T. M. Monro, R. C. Moore, D. J. Richardson, H. Rutt, and J. A. Tucknott, “Fabrication of microstructured optical fibre,” WO 03/078339 A1 [World Intellectual Property Organization (PCT), 25 September 2003].

Vienne, G.

C. Jackobsen, G. Vienne, and T. P. Hansen, “Preform method of its production, and use thereof in production of microstructured optical fibres,” WO 03/078338 A2 [World Intellectual Property Organization (PCT), 25 September 2003].

Wadsworth, W. J.

W. J. Wadsworth, N. Joly, J. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single mode photonic crystal fibers,” Opt. Express 12, 299-309 (2004).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “ Experimental evidence for supercontinuum generation by fission of higher order solitons in photonics crystal fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).

White, T. P.

Wright, J. F.

N. F. Borelli, J. F. Wright,Jr., and R. R. Wusirika, “Method of fabricating photonic structures,” U.S. Patent 6,496,632 (17 December 2002).

Wusirika, R. R.

N. F. Borelli, J. F. Wright,Jr., and R. R. Wusirika, “Method of fabricating photonic structures,” U.S. Patent 6,496,632 (17 December 2002).

Xue, S. C.

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “ Experimental evidence for supercontinuum generation by fission of higher order solitons in photonics crystal fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

submitted to Appl. Phys. B.

D. Ghosh, S. Roy, A. Pal, M. Pal, S. Bandyopadhyay, and S. K. Bhadra, “Analysis of fundamental modal effective index in microstructured fibers: a variational approach,” submitted to Appl. Phys. B.

IEEE J. Sel. Top. Quantum Electron.

K. Sakamaki, M. Nakao, M. Naganuma, and M. Izutsu, “Soliton induced supercontinuum generation in photonic crystal fiber,” IEEE J. Sel. Top. Quantum Electron. 10, 876-884(2004).
[CrossRef]

IEEE Photon. Technol. Lett.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 14, 1094-1096 (2002).

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

Opt. Fiber Technol.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. 6, 181-191 (2000).

Opt. Lett.

Phys. Rev. Lett.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “ Experimental evidence for supercontinuum generation by fission of higher order solitons in photonics crystal fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Other

A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1999).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

J. C. Knight, T. A. Birks, and P. St. J. Russell, “Holey silica fibers,” in Optics of Nanostructured Materials, A. V. Markel and T. George, eds. (Wiley, 2001), pp. 39-71.

K. E. Frampton, D. W. Hewak, K. M. Kiang, T. M. Monro, R. C. Moore, D. J. Richardson, H. Rutt, and J. A. Tucknott, “Fabrication of microstructured optical fibre,” WO 03/078339 A1 [World Intellectual Property Organization (PCT), 25 September 2003].

N. F. Borelli, J. F. Wright,Jr., and R. R. Wusirika, “Method of fabricating photonic structures,” U.S. Patent 6,496,632 (17 December 2002).

C. Jackobsen, G. Vienne, and T. P. Hansen, “Preform method of its production, and use thereof in production of microstructured optical fibres,” WO 03/078338 A2 [World Intellectual Property Organization (PCT), 25 September 2003].

T. Hasegawa, M. Onishi, E. Sasaoka, and M. Nishimura, “Optical fiber and method for making the same,” U.S. Patent 6,766,088 (20 July 2004).

A. F. Benabid and J. C. Knight, “Improvements in and relating to microstructured optical fibres,” WO 2004/001461 A1[World Intellectual Property Organization (PCT), 31 December 2003].

J. Broeng, S. E. Barkou, and A. O. Bjarklev, “Microstructured optical fibres,” WO 99/064903 [World Intellectual Property Organization (PCT), 16 December 1999].

P. St. J. Russell, T. A. Birks, J. C. Knight, and B. J. Mangan, “Photonic crystal fibre and a method for its production,” WO 00/060388 [World Intellectual Property Organization (PCT), 12 October 2000].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Cross section of MOF-I and (b) corresponding attenuation loss curve.

Fig. 2
Fig. 2

(a) Cross section of MOF-II and (b) corresponding attenuation loss curve.

Fig. 3
Fig. 3

Dispersion curve of (a) MOF-I and (b) MOF-II obtained experimentally as well as with the FEM. The inset in both cases is a magnified view of the wavelength range in which the experimental data are superimposed upon the theoretical curve.

Fig. 4
Fig. 4

Experimental setup used for SC generation in the MOFs.

Fig. 5
Fig. 5

Continuum spectra obtained from MOF-I for 800, 400, 200, and 110 nJ incident pulse energy.

Fig. 6
Fig. 6

(a) SC spectra obtained from 30 cm of MOF-II for a pump wavelength of 1060 nm and an incident pulse energy of 4.55    nJ ; top curve, the experimentally obtained spectra; bottom curve, the theoretical simulation. (b) Group delay (dashed curve) as a function of wavelength and the output spectrum demonstrates soliton trapping.

Tables (3)

Tables Icon

Table 1 Geometric Parameters of the Two Fabricated MOFs

Tables Icon

Table 2 Comparison of Experimental and Theoretical Dispersion Values of MOF-I and MOF-II

Tables Icon

Table 3 List of HOD Coefficients for MOF-II at an Operating Wavelength of 1060 nm

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

D = λ c d 2 n eff d λ 2 .
D ( λ ) D m ( λ ) + D g ( λ ) .
β 2 = λ 2 2 π c D .
γ = 2 π n 2 λ A eff .
A eff = π r 2 .
tan θ 5 % = ln 20 2 tan θ 1 / e 2 .
tan θ 1 / e 2 = λ π r .
U ξ = i 2 2 U τ 2 + m 3 i m + 1 δ m m U τ m + i N 2 ( 1 + i s τ ) ( U ( ξ , τ ) x R ( τ τ ) | U ( ξ , τ ) | 2 d τ ) ,
ξ = z L D , τ = t z / v g T 0 , N = γ P 0 L D , δ m = β m m ! | β 2 | T 0 m 2 .
R ( τ ) = ( 1 f R ) δ ( τ ) + f R h R ( τ ) ,
h R ( τ ) = ( f a + f c ) h a ( τ ) + f b h b ( τ ) ,
h a ( τ ) = τ 1 2 + τ 2 2 τ 1 τ 2 2 exp ( τ τ 2 ) sin ( τ τ 1 ) , h b ( τ ) = ( 2 τ b τ τ b 2 ) exp ( τ τ b ) ,

Metrics