Abstract

A new route was recently proposed to modify some spectroscopic properties of rare-earth ions in silica-based fibers. We had shown the incorporation of erbium ions in amorphous dielectric nanoparticles, grown in fiber preforms. Here we present the achieved stabilization of nanometric erbium-doped dielectric nanoparticles within the core of silica fibers. We present the nanoparticle dimensional characterization in fiber samples. We also show the spectroscopic characterization of erbium in preform samples with similar nanoparticle size and composition. This new route could have important potentials in improving rare-earth-doped fiber amplifiers and laser sources.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low noise erbium-doped fiber amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026-1068 (1987).
    [CrossRef]
  2. E. Desurvire, D. Bayart, B. Dethieux, and S. Bigo, Erbium-Doped fiber Amplifier, Device and System Developments (Wiley Interscience, 2002).
  3. L. Bigot, A.-M. Jurdyc, B. Jacquier, L. Gasca, and D. Bayart, “Resonant fluorescence line narrowing measurements in erbium-doped glasses for optical amplifiers,” Phys. Rev. B. 66, 214204 (2002).
  4. J. Yang, S. Dai, N. Dai, S. Xu, L. Wen, L. Hu, and Z. Jiang, “Effect of Bi2O3 on the spectroscopic properties of erbium-doped bismuth silicate glasses,” J. Opt. Soc. Am. B 20, 810-815 (2003).
    [CrossRef]
  5. Y. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett. 63, 3268-3270 (1993).
    [CrossRef]
  6. M. Fujii, M. Yoshida, S. Hayashi, and K. Yamamoto, “Photoluminescence from SiO2 films containing Si nanocrystals and Er: effects of nanocrystalline size on the photoluminescence efficiency of Er3+,” J. Appl. Phys. 84, 4525-4531 (1998).
    [CrossRef]
  7. J. St. John, J. L. Coffer, Y. Chen, and R. F. Pinizzotto, “Synthesis and characterization of discrete luminescent erbium doped silicon nanocrystals,” J. Am. Chem. Soc. 121, 1888-1892(1999).
    [CrossRef]
  8. C. E. Chryssou, A. J. Kenyon, T. S. Iwayama, C. W. Pitt, and D. E. Hole, “Evidence of energy coupling between Si nanocrystals and Er3+ in ion-implanted silica thin films,” Appl. Phys. Lett. 75, 2011-3013 (1999).
    [CrossRef]
  9. W. T. Nichols, J. W. Keto, D. E. Henneke, J. R. Brock, G. Malyavanatham, M. F. Becker, and H. D. Glicksman, “Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol,” Appl. Phys. Lett. 78, 1128-1130 (2001).
    [CrossRef]
  10. E. M. Yeatman, M. M. Ahmad, O. McCarthy, A. Martucci, and M. Guglielmi, “Sol-gel fabrication of rare-earth doped photonic components,” J. Sol-Gel Sci. Tech. 19, 231-236 (2000).
  11. P. A. Tick, “Are low-loss glass ceramic optical waveguide possible?,” Opt. Lett. 23, 1904-1907 (1998).
    [CrossRef]
  12. B. N. Samson, P. A. Tick, and N. F. Borrelli, “Efficient neodymium-doped glass-ceramic fiber laser and amplifier,” Opt. Lett. 26, 145-147 (2001).
    [CrossRef]
  13. S. Yoo, U.-C. Paek, W.-T. Han, “Optical properties of the optical fiber containing Co2+ doped ZnO-Al2O3-SiO2 glass-ceramics,” J. Non-Cryst. Solids 303, 291-295 (2002).
    [CrossRef]
  14. J. Zarzycki, Glasses and the Vitreous State, R. W. Cahn, E. A. Davis, and I. M. Ward, eds. (Cambridge University Press, 1991).
  15. W. Blanc, B. Dussardier, and M. C. Paul, “Er-doped oxide nanoparticles in silica-based optical fibers,” Glass Technol.: Eur. J. Glass Sci. Technol. A 50, 79-81 (2009).
  16. S. R. Nagel, J. B. McChesney, K. L. Walker, “Modified chemical vapor deposition,” in Optical Fiber Telecommunications: Fiber Fabrication, T. Li, ed., Vol. 1 (Academic, 1985).
  17. J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution-doping technique for fabrication of rare earth-doped optical fibers”. “Solution-doping technique for fabrication of rare-earth-doped optical fibers,” Electron. Lett. 23, 329-342 (1987).
    [CrossRef]
  18. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817(1998).
    [CrossRef]
  19. A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27, 2061-2063 (2002).
    [CrossRef]
  20. F. d'Acapito, C. Maurizio, M. C. Paul, Th. S. Lee, W. Blanc, and B. Dussardier, “Role of CaO addition in the local order around erbium in SiO2-GeO2-P2O5 fiber preforms,” Mater. Sci. Eng. B 146, 167-170 (2008).
    [CrossRef]
  21. G. P. Morgan and W. M. Yen , “Optical energy transfer in insulators,” in Laser Spectroscopy of Solids II, W. M. Yen, ed., Vol. 65 of Topics in Applied Physics (Springer-Verlag, 1989), Chap 3.
  22. R. Peretti, “Saturation spectrale de gain dans les amplificateurs à fibers dopées erbium :largeur homogène et inhomogène et approche des nano matériaux,” Ph.D. thesis (Universté Claude Bernard Lyon 1,2008).
  23. A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties and quenching processes of Yb3+ in fluoride single crystals for laser applications,” J. Lumin. 122, 444-446 (2007).
    [CrossRef]
  24. A. Stoita, S. Guy, and B. Jacquier, “Measurement of the fraction of reabsorbed light in an Er3+-doped glass,” Appl. Phys. B: Lasers Opt. 87, 445-449 (2007).
  25. S. Guy, “Modelization of lifetime measurement in the presence of radiation trapping in solid-state materials,” Phys. Rev. B 73, 144101 (2006).

2009

W. Blanc, B. Dussardier, and M. C. Paul, “Er-doped oxide nanoparticles in silica-based optical fibers,” Glass Technol.: Eur. J. Glass Sci. Technol. A 50, 79-81 (2009).

2008

F. d'Acapito, C. Maurizio, M. C. Paul, Th. S. Lee, W. Blanc, and B. Dussardier, “Role of CaO addition in the local order around erbium in SiO2-GeO2-P2O5 fiber preforms,” Mater. Sci. Eng. B 146, 167-170 (2008).
[CrossRef]

2007

A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties and quenching processes of Yb3+ in fluoride single crystals for laser applications,” J. Lumin. 122, 444-446 (2007).
[CrossRef]

A. Stoita, S. Guy, and B. Jacquier, “Measurement of the fraction of reabsorbed light in an Er3+-doped glass,” Appl. Phys. B: Lasers Opt. 87, 445-449 (2007).

2006

S. Guy, “Modelization of lifetime measurement in the presence of radiation trapping in solid-state materials,” Phys. Rev. B 73, 144101 (2006).

2003

2002

A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27, 2061-2063 (2002).
[CrossRef]

L. Bigot, A.-M. Jurdyc, B. Jacquier, L. Gasca, and D. Bayart, “Resonant fluorescence line narrowing measurements in erbium-doped glasses for optical amplifiers,” Phys. Rev. B. 66, 214204 (2002).

S. Yoo, U.-C. Paek, W.-T. Han, “Optical properties of the optical fiber containing Co2+ doped ZnO-Al2O3-SiO2 glass-ceramics,” J. Non-Cryst. Solids 303, 291-295 (2002).
[CrossRef]

2001

B. N. Samson, P. A. Tick, and N. F. Borrelli, “Efficient neodymium-doped glass-ceramic fiber laser and amplifier,” Opt. Lett. 26, 145-147 (2001).
[CrossRef]

W. T. Nichols, J. W. Keto, D. E. Henneke, J. R. Brock, G. Malyavanatham, M. F. Becker, and H. D. Glicksman, “Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol,” Appl. Phys. Lett. 78, 1128-1130 (2001).
[CrossRef]

2000

E. M. Yeatman, M. M. Ahmad, O. McCarthy, A. Martucci, and M. Guglielmi, “Sol-gel fabrication of rare-earth doped photonic components,” J. Sol-Gel Sci. Tech. 19, 231-236 (2000).

1999

J. St. John, J. L. Coffer, Y. Chen, and R. F. Pinizzotto, “Synthesis and characterization of discrete luminescent erbium doped silicon nanocrystals,” J. Am. Chem. Soc. 121, 1888-1892(1999).
[CrossRef]

C. E. Chryssou, A. J. Kenyon, T. S. Iwayama, C. W. Pitt, and D. E. Hole, “Evidence of energy coupling between Si nanocrystals and Er3+ in ion-implanted silica thin films,” Appl. Phys. Lett. 75, 2011-3013 (1999).
[CrossRef]

1998

M. Fujii, M. Yoshida, S. Hayashi, and K. Yamamoto, “Photoluminescence from SiO2 films containing Si nanocrystals and Er: effects of nanocrystalline size on the photoluminescence efficiency of Er3+,” J. Appl. Phys. 84, 4525-4531 (1998).
[CrossRef]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817(1998).
[CrossRef]

P. A. Tick, “Are low-loss glass ceramic optical waveguide possible?,” Opt. Lett. 23, 1904-1907 (1998).
[CrossRef]

1993

Y. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett. 63, 3268-3270 (1993).
[CrossRef]

1987

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution-doping technique for fabrication of rare earth-doped optical fibers”. “Solution-doping technique for fabrication of rare-earth-doped optical fibers,” Electron. Lett. 23, 329-342 (1987).
[CrossRef]

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low noise erbium-doped fiber amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026-1068 (1987).
[CrossRef]

Ahmad, M. M.

E. M. Yeatman, M. M. Ahmad, O. McCarthy, A. Martucci, and M. Guglielmi, “Sol-gel fabrication of rare-earth doped photonic components,” J. Sol-Gel Sci. Tech. 19, 231-236 (2000).

Ampem-Lassen, E.

Barty, A.

Baxter, G. W.

Bayart, D.

L. Bigot, A.-M. Jurdyc, B. Jacquier, L. Gasca, and D. Bayart, “Resonant fluorescence line narrowing measurements in erbium-doped glasses for optical amplifiers,” Phys. Rev. B. 66, 214204 (2002).

E. Desurvire, D. Bayart, B. Dethieux, and S. Bigo, Erbium-Doped fiber Amplifier, Device and System Developments (Wiley Interscience, 2002).

Becker, M. F.

W. T. Nichols, J. W. Keto, D. E. Henneke, J. R. Brock, G. Malyavanatham, M. F. Becker, and H. D. Glicksman, “Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol,” Appl. Phys. Lett. 78, 1128-1130 (2001).
[CrossRef]

Bensalah, A.

A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties and quenching processes of Yb3+ in fluoride single crystals for laser applications,” J. Lumin. 122, 444-446 (2007).
[CrossRef]

Bigo, S.

E. Desurvire, D. Bayart, B. Dethieux, and S. Bigo, Erbium-Doped fiber Amplifier, Device and System Developments (Wiley Interscience, 2002).

Bigot, L.

L. Bigot, A.-M. Jurdyc, B. Jacquier, L. Gasca, and D. Bayart, “Resonant fluorescence line narrowing measurements in erbium-doped glasses for optical amplifiers,” Phys. Rev. B. 66, 214204 (2002).

Blanc, W.

W. Blanc, B. Dussardier, and M. C. Paul, “Er-doped oxide nanoparticles in silica-based optical fibers,” Glass Technol.: Eur. J. Glass Sci. Technol. A 50, 79-81 (2009).

F. d'Acapito, C. Maurizio, M. C. Paul, Th. S. Lee, W. Blanc, and B. Dussardier, “Role of CaO addition in the local order around erbium in SiO2-GeO2-P2O5 fiber preforms,” Mater. Sci. Eng. B 146, 167-170 (2008).
[CrossRef]

Borrelli, N. F.

Boulon, G.

A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties and quenching processes of Yb3+ in fluoride single crystals for laser applications,” J. Lumin. 122, 444-446 (2007).
[CrossRef]

Brenier, A.

A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties and quenching processes of Yb3+ in fluoride single crystals for laser applications,” J. Lumin. 122, 444-446 (2007).
[CrossRef]

Brock, J. R.

W. T. Nichols, J. W. Keto, D. E. Henneke, J. R. Brock, G. Malyavanatham, M. F. Becker, and H. D. Glicksman, “Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol,” Appl. Phys. Lett. 78, 1128-1130 (2001).
[CrossRef]

Chen, Y.

J. St. John, J. L. Coffer, Y. Chen, and R. F. Pinizzotto, “Synthesis and characterization of discrete luminescent erbium doped silicon nanocrystals,” J. Am. Chem. Soc. 121, 1888-1892(1999).
[CrossRef]

Chryssou, C. E.

C. E. Chryssou, A. J. Kenyon, T. S. Iwayama, C. W. Pitt, and D. E. Hole, “Evidence of energy coupling between Si nanocrystals and Er3+ in ion-implanted silica thin films,” Appl. Phys. Lett. 75, 2011-3013 (1999).
[CrossRef]

Coffer, J. L.

J. St. John, J. L. Coffer, Y. Chen, and R. F. Pinizzotto, “Synthesis and characterization of discrete luminescent erbium doped silicon nanocrystals,” J. Am. Chem. Soc. 121, 1888-1892(1999).
[CrossRef]

d'Acapito, F.

F. d'Acapito, C. Maurizio, M. C. Paul, Th. S. Lee, W. Blanc, and B. Dussardier, “Role of CaO addition in the local order around erbium in SiO2-GeO2-P2O5 fiber preforms,” Mater. Sci. Eng. B 146, 167-170 (2008).
[CrossRef]

Dai, N.

Dai, S.

Desurvire, E.

E. Desurvire, D. Bayart, B. Dethieux, and S. Bigo, Erbium-Doped fiber Amplifier, Device and System Developments (Wiley Interscience, 2002).

Dethieux, B.

E. Desurvire, D. Bayart, B. Dethieux, and S. Bigo, Erbium-Doped fiber Amplifier, Device and System Developments (Wiley Interscience, 2002).

Dragomir, N. M.

Dussardier, B.

W. Blanc, B. Dussardier, and M. C. Paul, “Er-doped oxide nanoparticles in silica-based optical fibers,” Glass Technol.: Eur. J. Glass Sci. Technol. A 50, 79-81 (2009).

F. d'Acapito, C. Maurizio, M. C. Paul, Th. S. Lee, W. Blanc, and B. Dussardier, “Role of CaO addition in the local order around erbium in SiO2-GeO2-P2O5 fiber preforms,” Mater. Sci. Eng. B 146, 167-170 (2008).
[CrossRef]

Fujii, M.

M. Fujii, M. Yoshida, S. Hayashi, and K. Yamamoto, “Photoluminescence from SiO2 films containing Si nanocrystals and Er: effects of nanocrystalline size on the photoluminescence efficiency of Er3+,” J. Appl. Phys. 84, 4525-4531 (1998).
[CrossRef]

Fukuda, T.

A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties and quenching processes of Yb3+ in fluoride single crystals for laser applications,” J. Lumin. 122, 444-446 (2007).
[CrossRef]

Gasca, L.

L. Bigot, A.-M. Jurdyc, B. Jacquier, L. Gasca, and D. Bayart, “Resonant fluorescence line narrowing measurements in erbium-doped glasses for optical amplifiers,” Phys. Rev. B. 66, 214204 (2002).

Glicksman, H. D.

W. T. Nichols, J. W. Keto, D. E. Henneke, J. R. Brock, G. Malyavanatham, M. F. Becker, and H. D. Glicksman, “Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol,” Appl. Phys. Lett. 78, 1128-1130 (2001).
[CrossRef]

Goutaudier, C.

A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties and quenching processes of Yb3+ in fluoride single crystals for laser applications,” J. Lumin. 122, 444-446 (2007).
[CrossRef]

Guglielmi, M.

E. M. Yeatman, M. M. Ahmad, O. McCarthy, A. Martucci, and M. Guglielmi, “Sol-gel fabrication of rare-earth doped photonic components,” J. Sol-Gel Sci. Tech. 19, 231-236 (2000).

Guy, S.

A. Stoita, S. Guy, and B. Jacquier, “Measurement of the fraction of reabsorbed light in an Er3+-doped glass,” Appl. Phys. B: Lasers Opt. 87, 445-449 (2007).

S. Guy, “Modelization of lifetime measurement in the presence of radiation trapping in solid-state materials,” Phys. Rev. B 73, 144101 (2006).

Guyot, Y.

A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties and quenching processes of Yb3+ in fluoride single crystals for laser applications,” J. Lumin. 122, 444-446 (2007).
[CrossRef]

Han, W.-T.

S. Yoo, U.-C. Paek, W.-T. Han, “Optical properties of the optical fiber containing Co2+ doped ZnO-Al2O3-SiO2 glass-ceramics,” J. Non-Cryst. Solids 303, 291-295 (2002).
[CrossRef]

Hayashi, S.

M. Fujii, M. Yoshida, S. Hayashi, and K. Yamamoto, “Photoluminescence from SiO2 films containing Si nanocrystals and Er: effects of nanocrystalline size on the photoluminescence efficiency of Er3+,” J. Appl. Phys. 84, 4525-4531 (1998).
[CrossRef]

Henneke, D. E.

W. T. Nichols, J. W. Keto, D. E. Henneke, J. R. Brock, G. Malyavanatham, M. F. Becker, and H. D. Glicksman, “Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol,” Appl. Phys. Lett. 78, 1128-1130 (2001).
[CrossRef]

Hole, D. E.

C. E. Chryssou, A. J. Kenyon, T. S. Iwayama, C. W. Pitt, and D. E. Hole, “Evidence of energy coupling between Si nanocrystals and Er3+ in ion-implanted silica thin films,” Appl. Phys. Lett. 75, 2011-3013 (1999).
[CrossRef]

Hu, L.

Huntington, S. T.

Ito, M.

A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties and quenching processes of Yb3+ in fluoride single crystals for laser applications,” J. Lumin. 122, 444-446 (2007).
[CrossRef]

Iwayama, T. S.

C. E. Chryssou, A. J. Kenyon, T. S. Iwayama, C. W. Pitt, and D. E. Hole, “Evidence of energy coupling between Si nanocrystals and Er3+ in ion-implanted silica thin films,” Appl. Phys. Lett. 75, 2011-3013 (1999).
[CrossRef]

Jacquier, B.

A. Stoita, S. Guy, and B. Jacquier, “Measurement of the fraction of reabsorbed light in an Er3+-doped glass,” Appl. Phys. B: Lasers Opt. 87, 445-449 (2007).

L. Bigot, A.-M. Jurdyc, B. Jacquier, L. Gasca, and D. Bayart, “Resonant fluorescence line narrowing measurements in erbium-doped glasses for optical amplifiers,” Phys. Rev. B. 66, 214204 (2002).

Jauncey, I. M.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low noise erbium-doped fiber amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026-1068 (1987).
[CrossRef]

Jiang, Z.

Jouini, A.

A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties and quenching processes of Yb3+ in fluoride single crystals for laser applications,” J. Lumin. 122, 444-446 (2007).
[CrossRef]

Jurdyc, A.-M.

L. Bigot, A.-M. Jurdyc, B. Jacquier, L. Gasca, and D. Bayart, “Resonant fluorescence line narrowing measurements in erbium-doped glasses for optical amplifiers,” Phys. Rev. B. 66, 214204 (2002).

Kenyon, A. J.

C. E. Chryssou, A. J. Kenyon, T. S. Iwayama, C. W. Pitt, and D. E. Hole, “Evidence of energy coupling between Si nanocrystals and Er3+ in ion-implanted silica thin films,” Appl. Phys. Lett. 75, 2011-3013 (1999).
[CrossRef]

Keto, J. W.

W. T. Nichols, J. W. Keto, D. E. Henneke, J. R. Brock, G. Malyavanatham, M. F. Becker, and H. D. Glicksman, “Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol,” Appl. Phys. Lett. 78, 1128-1130 (2001).
[CrossRef]

Lee, Th. S.

F. d'Acapito, C. Maurizio, M. C. Paul, Th. S. Lee, W. Blanc, and B. Dussardier, “Role of CaO addition in the local order around erbium in SiO2-GeO2-P2O5 fiber preforms,” Mater. Sci. Eng. B 146, 167-170 (2008).
[CrossRef]

Malyavanatham, G.

W. T. Nichols, J. W. Keto, D. E. Henneke, J. R. Brock, G. Malyavanatham, M. F. Becker, and H. D. Glicksman, “Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol,” Appl. Phys. Lett. 78, 1128-1130 (2001).
[CrossRef]

Martucci, A.

E. M. Yeatman, M. M. Ahmad, O. McCarthy, A. Martucci, and M. Guglielmi, “Sol-gel fabrication of rare-earth doped photonic components,” J. Sol-Gel Sci. Tech. 19, 231-236 (2000).

Maurizio, C.

F. d'Acapito, C. Maurizio, M. C. Paul, Th. S. Lee, W. Blanc, and B. Dussardier, “Role of CaO addition in the local order around erbium in SiO2-GeO2-P2O5 fiber preforms,” Mater. Sci. Eng. B 146, 167-170 (2008).
[CrossRef]

McCarthy, O.

E. M. Yeatman, M. M. Ahmad, O. McCarthy, A. Martucci, and M. Guglielmi, “Sol-gel fabrication of rare-earth doped photonic components,” J. Sol-Gel Sci. Tech. 19, 231-236 (2000).

McChesney, J. B.

S. R. Nagel, J. B. McChesney, K. L. Walker, “Modified chemical vapor deposition,” in Optical Fiber Telecommunications: Fiber Fabrication, T. Li, ed., Vol. 1 (Academic, 1985).

Mears, R. J.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low noise erbium-doped fiber amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026-1068 (1987).
[CrossRef]

Morgan, G. P.

G. P. Morgan and W. M. Yen , “Optical energy transfer in insulators,” in Laser Spectroscopy of Solids II, W. M. Yen, ed., Vol. 65 of Topics in Applied Physics (Springer-Verlag, 1989), Chap 3.

Nagel, S. R.

S. R. Nagel, J. B. McChesney, K. L. Walker, “Modified chemical vapor deposition,” in Optical Fiber Telecommunications: Fiber Fabrication, T. Li, ed., Vol. 1 (Academic, 1985).

Nichols, W. T.

W. T. Nichols, J. W. Keto, D. E. Henneke, J. R. Brock, G. Malyavanatham, M. F. Becker, and H. D. Glicksman, “Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol,” Appl. Phys. Lett. 78, 1128-1130 (2001).
[CrossRef]

Nugent, K. A.

Ohwaki, J.

Y. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett. 63, 3268-3270 (1993).
[CrossRef]

Paek, U.-C.

S. Yoo, U.-C. Paek, W.-T. Han, “Optical properties of the optical fiber containing Co2+ doped ZnO-Al2O3-SiO2 glass-ceramics,” J. Non-Cryst. Solids 303, 291-295 (2002).
[CrossRef]

Paganin, D.

Paul, M. C.

W. Blanc, B. Dussardier, and M. C. Paul, “Er-doped oxide nanoparticles in silica-based optical fibers,” Glass Technol.: Eur. J. Glass Sci. Technol. A 50, 79-81 (2009).

F. d'Acapito, C. Maurizio, M. C. Paul, Th. S. Lee, W. Blanc, and B. Dussardier, “Role of CaO addition in the local order around erbium in SiO2-GeO2-P2O5 fiber preforms,” Mater. Sci. Eng. B 146, 167-170 (2008).
[CrossRef]

Payne, D. N.

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution-doping technique for fabrication of rare earth-doped optical fibers”. “Solution-doping technique for fabrication of rare-earth-doped optical fibers,” Electron. Lett. 23, 329-342 (1987).
[CrossRef]

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low noise erbium-doped fiber amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026-1068 (1987).
[CrossRef]

Peretti, R.

R. Peretti, “Saturation spectrale de gain dans les amplificateurs à fibers dopées erbium :largeur homogène et inhomogène et approche des nano matériaux,” Ph.D. thesis (Universté Claude Bernard Lyon 1,2008).

Pinizzotto, R. F.

J. St. John, J. L. Coffer, Y. Chen, and R. F. Pinizzotto, “Synthesis and characterization of discrete luminescent erbium doped silicon nanocrystals,” J. Am. Chem. Soc. 121, 1888-1892(1999).
[CrossRef]

Pitt, C. W.

C. E. Chryssou, A. J. Kenyon, T. S. Iwayama, C. W. Pitt, and D. E. Hole, “Evidence of energy coupling between Si nanocrystals and Er3+ in ion-implanted silica thin films,” Appl. Phys. Lett. 75, 2011-3013 (1999).
[CrossRef]

Poole, S. B.

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution-doping technique for fabrication of rare earth-doped optical fibers”. “Solution-doping technique for fabrication of rare-earth-doped optical fibers,” Electron. Lett. 23, 329-342 (1987).
[CrossRef]

Reekie, L.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low noise erbium-doped fiber amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026-1068 (1987).
[CrossRef]

Roberts, A.

Samson, B. N.

Sato, H.

A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties and quenching processes of Yb3+ in fluoride single crystals for laser applications,” J. Lumin. 122, 444-446 (2007).
[CrossRef]

St. John, J.

J. St. John, J. L. Coffer, Y. Chen, and R. F. Pinizzotto, “Synthesis and characterization of discrete luminescent erbium doped silicon nanocrystals,” J. Am. Chem. Soc. 121, 1888-1892(1999).
[CrossRef]

Stoita, A.

A. Stoita, S. Guy, and B. Jacquier, “Measurement of the fraction of reabsorbed light in an Er3+-doped glass,” Appl. Phys. B: Lasers Opt. 87, 445-449 (2007).

Tick, P. A.

Townsend, J. E.

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution-doping technique for fabrication of rare earth-doped optical fibers”. “Solution-doping technique for fabrication of rare-earth-doped optical fibers,” Electron. Lett. 23, 329-342 (1987).
[CrossRef]

Walker, K. L.

S. R. Nagel, J. B. McChesney, K. L. Walker, “Modified chemical vapor deposition,” in Optical Fiber Telecommunications: Fiber Fabrication, T. Li, ed., Vol. 1 (Academic, 1985).

Wang, Y.

Y. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett. 63, 3268-3270 (1993).
[CrossRef]

Wen, L.

Xu, S.

Yamamoto, K.

M. Fujii, M. Yoshida, S. Hayashi, and K. Yamamoto, “Photoluminescence from SiO2 films containing Si nanocrystals and Er: effects of nanocrystalline size on the photoluminescence efficiency of Er3+,” J. Appl. Phys. 84, 4525-4531 (1998).
[CrossRef]

Yang, J.

Yeatman, E. M.

E. M. Yeatman, M. M. Ahmad, O. McCarthy, A. Martucci, and M. Guglielmi, “Sol-gel fabrication of rare-earth doped photonic components,” J. Sol-Gel Sci. Tech. 19, 231-236 (2000).

Yen, W. M.

G. P. Morgan and W. M. Yen , “Optical energy transfer in insulators,” in Laser Spectroscopy of Solids II, W. M. Yen, ed., Vol. 65 of Topics in Applied Physics (Springer-Verlag, 1989), Chap 3.

G. P. Morgan and W. M. Yen , “Optical energy transfer in insulators,” in Laser Spectroscopy of Solids II, W. M. Yen, ed., Vol. 65 of Topics in Applied Physics (Springer-Verlag, 1989), Chap 3.

Yoo, S.

S. Yoo, U.-C. Paek, W.-T. Han, “Optical properties of the optical fiber containing Co2+ doped ZnO-Al2O3-SiO2 glass-ceramics,” J. Non-Cryst. Solids 303, 291-295 (2002).
[CrossRef]

Yoshida, M.

M. Fujii, M. Yoshida, S. Hayashi, and K. Yamamoto, “Photoluminescence from SiO2 films containing Si nanocrystals and Er: effects of nanocrystalline size on the photoluminescence efficiency of Er3+,” J. Appl. Phys. 84, 4525-4531 (1998).
[CrossRef]

Zarzycki, J.

J. Zarzycki, Glasses and the Vitreous State, R. W. Cahn, E. A. Davis, and I. M. Ward, eds. (Cambridge University Press, 1991).

Appl. Phys. B: Lasers Opt.

A. Stoita, S. Guy, and B. Jacquier, “Measurement of the fraction of reabsorbed light in an Er3+-doped glass,” Appl. Phys. B: Lasers Opt. 87, 445-449 (2007).

Appl. Phys. Lett.

Y. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett. 63, 3268-3270 (1993).
[CrossRef]

C. E. Chryssou, A. J. Kenyon, T. S. Iwayama, C. W. Pitt, and D. E. Hole, “Evidence of energy coupling between Si nanocrystals and Er3+ in ion-implanted silica thin films,” Appl. Phys. Lett. 75, 2011-3013 (1999).
[CrossRef]

W. T. Nichols, J. W. Keto, D. E. Henneke, J. R. Brock, G. Malyavanatham, M. F. Becker, and H. D. Glicksman, “Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol,” Appl. Phys. Lett. 78, 1128-1130 (2001).
[CrossRef]

Electron. Lett.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low noise erbium-doped fiber amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026-1068 (1987).
[CrossRef]

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution-doping technique for fabrication of rare earth-doped optical fibers”. “Solution-doping technique for fabrication of rare-earth-doped optical fibers,” Electron. Lett. 23, 329-342 (1987).
[CrossRef]

Glass Technol.: Eur. J. Glass Sci. Technol. A

W. Blanc, B. Dussardier, and M. C. Paul, “Er-doped oxide nanoparticles in silica-based optical fibers,” Glass Technol.: Eur. J. Glass Sci. Technol. A 50, 79-81 (2009).

J. Am. Chem. Soc.

J. St. John, J. L. Coffer, Y. Chen, and R. F. Pinizzotto, “Synthesis and characterization of discrete luminescent erbium doped silicon nanocrystals,” J. Am. Chem. Soc. 121, 1888-1892(1999).
[CrossRef]

J. Appl. Phys.

M. Fujii, M. Yoshida, S. Hayashi, and K. Yamamoto, “Photoluminescence from SiO2 films containing Si nanocrystals and Er: effects of nanocrystalline size on the photoluminescence efficiency of Er3+,” J. Appl. Phys. 84, 4525-4531 (1998).
[CrossRef]

J. Lumin.

A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties and quenching processes of Yb3+ in fluoride single crystals for laser applications,” J. Lumin. 122, 444-446 (2007).
[CrossRef]

J. Non-Cryst. Solids

S. Yoo, U.-C. Paek, W.-T. Han, “Optical properties of the optical fiber containing Co2+ doped ZnO-Al2O3-SiO2 glass-ceramics,” J. Non-Cryst. Solids 303, 291-295 (2002).
[CrossRef]

J. Opt. Soc. Am. B

J. Sol-Gel Sci. Tech.

E. M. Yeatman, M. M. Ahmad, O. McCarthy, A. Martucci, and M. Guglielmi, “Sol-gel fabrication of rare-earth doped photonic components,” J. Sol-Gel Sci. Tech. 19, 231-236 (2000).

Mater. Sci. Eng. B

F. d'Acapito, C. Maurizio, M. C. Paul, Th. S. Lee, W. Blanc, and B. Dussardier, “Role of CaO addition in the local order around erbium in SiO2-GeO2-P2O5 fiber preforms,” Mater. Sci. Eng. B 146, 167-170 (2008).
[CrossRef]

Opt. Lett.

Phys. Rev. B

S. Guy, “Modelization of lifetime measurement in the presence of radiation trapping in solid-state materials,” Phys. Rev. B 73, 144101 (2006).

Phys. Rev. B.

L. Bigot, A.-M. Jurdyc, B. Jacquier, L. Gasca, and D. Bayart, “Resonant fluorescence line narrowing measurements in erbium-doped glasses for optical amplifiers,” Phys. Rev. B. 66, 214204 (2002).

Other

E. Desurvire, D. Bayart, B. Dethieux, and S. Bigo, Erbium-Doped fiber Amplifier, Device and System Developments (Wiley Interscience, 2002).

G. P. Morgan and W. M. Yen , “Optical energy transfer in insulators,” in Laser Spectroscopy of Solids II, W. M. Yen, ed., Vol. 65 of Topics in Applied Physics (Springer-Verlag, 1989), Chap 3.

R. Peretti, “Saturation spectrale de gain dans les amplificateurs à fibers dopées erbium :largeur homogène et inhomogène et approche des nano matériaux,” Ph.D. thesis (Universté Claude Bernard Lyon 1,2008).

J. Zarzycki, Glasses and the Vitreous State, R. W. Cahn, E. A. Davis, and I. M. Ward, eds. (Cambridge University Press, 1991).

S. R. Nagel, J. B. McChesney, K. L. Walker, “Modified chemical vapor deposition,” in Optical Fiber Telecommunications: Fiber Fabrication, T. Li, ed., Vol. 1 (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

QPM measurement of calcium-doped fibers. The bright region is the 125 μm diameter cladding, and the core is the dark central region (diameter 8 μm ). The calcium concentration in the doping solution is (from top to bottom) 1, 0.1, 0.01, and 0 mol / l .

Fig. 2
Fig. 2

SEM pictures of fibers doped with 0.1 mol / l of calcium. Black regions correspond to pure silica, whereas gray and white regions are chemically contrasted. The light gray ring corresponds to the Ge-doped core, of diameter 8 μm . Inset: enlargement of typical DNP.

Fig. 3
Fig. 3

Mapping of Er 3 + emission intensity in a calcium-doped fiber ( 0.1 mol / l ) under a confocal microscope. Intensity increases from blue to red. The dashed line delimits the fiber core. Excitation, 514 nm ; detection, 540 nm .

Fig. 4
Fig. 4

Room temperature erbium emission spectra in a standard preform (dashed line) and a DNP-doped preform with 0.01 and 0.1 mol / l of calcium (gray and black lines, respectively). Excitation wavelength 980 nm .

Fig. 5
Fig. 5

Resonant fluorescence of erbium emission for two excitation wavelengths.

Fig. 6
Fig. 6

Fluorescence decay at 1.5 K from a calcium-doped preform sample at 1540 nm , measured close to the excitation point (dark solid line) and at 4 mm away from it (gray line). Excitation: 980 nm (top) and 1536 nm (bottom). The pump is modulated with 1 ms long pulses.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

Er 2 O 3
Er 3 +
Er 3 +
Er 3 +
Er 3 +
Er 3 +
Er 3 +
Er 3 +
Bi 2 O 3
Er 3 +
Yb 3 +
SiO 2
Er 3 +
Er 3 +
Co 2 +
Al 2 O 3
SiO 2
SiO 2
GeO 2
P 2 O 5
Yb 3 +
Er 3 +
Er 3 +

Metrics