Abstract

The effects of tapering fabricated air–silica photonic crystal fibers (PCFs) by tailoring the key modal and nonlinear properties of PCFs have been studied by analyzing the tapered structure using a finite difference mode calculation algorithm. The process of tapering is simulated through repeatedly redefining the geometry of the fiber cross section in a progressively tapered dimension preserving the shape. We tested the performance of the analysis by evaluating the modal characteristics, namely, the mode-effective area, birefringence, dispersion, nonlinearity, and supercontinuum properties of some well-known PCF examples under successive tapered conditions. Tapering, as an additional parameter, is seen to improve birefringence of a typical high-birefringence PCF by 1 order of magnitude. The analysis also estimates the extent of tapering that is required to achieve a target amount of evanescent field that has potential applications in an evanescent field sensor. Our investigation with tapered PCF structures includes tailoring dispersion properties and increasing nonlinearity, which leads to broader and lower threshold supercontinuum generation. The analysis should, therefore, be useful as a ready technique for taper analysis of any arbitrary structure PCF and also in PCF-preform (stacking structure) analysis, which can provide preestimates of properties in a targeted dimension of the final PCF before drawing.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432-438 (1992).
    [CrossRef]
  2. C. P. Botham, “Theory of tapering single-mode optical fibres by controlled core diffusion,” Electron. Lett. 24, 243-244 (1988).
    [CrossRef]
  3. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  4. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963(1997).
    [CrossRef] [PubMed]
  5. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093-1099 (1999).
    [CrossRef]
  6. J. C. Knight, T. A. Birks, P. St. J. Russell, and J. P. de Sandro, “Properties of photonic crystal fiber and the effective index model,” J. Opt. Soc Am. A 15, 748-752 (1998).
    [CrossRef]
  7. H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81, 377-387 (2005).
    [CrossRef]
  8. P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Efficient input and output optical fiber coupling to a photonic crystal waveguide,” Opt. Lett. 29, 697-699 (2004).
    [CrossRef] [PubMed]
  9. P. J. Wiejata, P. M. Shankar, and R. Mutharasan, “Fluorescent sensing using biconical tapers,” Sens. Actuators B 96, 315-320 (2003).
    [CrossRef]
  10. J. Hu, B. S. Marks, C. R. Menyuk, J. Kim, T. F. Carruthers, B. M. Wright, T. F. Taunay, and E. J. Friebele, “Pulse compression using a tapered microstructure optical fiber,” Opt. Express 14, 4026-4036 (2006).
    [CrossRef] [PubMed]
  11. G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. St. J. Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14, 1596-1603 (2006).
    [CrossRef] [PubMed]
  12. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. Martin Man, and P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19, 2148-2155 (2002).
    [CrossRef]
  13. D. Turke, W. Wohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, “Chirp-controlled soliton fission in tapered optical fibers,” Appl. Phys. B 83, 37-42 (2006).
    [CrossRef]
  14. S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864-2869 (2004).
    [CrossRef] [PubMed]
  15. E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, “Transverse characterization of tapered photonic crystal fibers,” J. Appl. Phys. 96, 3976-3982 (2004).
    [CrossRef]
  16. P. Roy Chaudhuri, and S. Roy, “Determining properties of fabricated index-guiding photonic crystal fibers using SEM micrograph and mode convergence algorithm,” J. Lightwave Technol. 26, 379-386 (2008).
    [CrossRef]
  17. P. Roy Chaudhuri and S. Roy, “Analysis of arbitrary index profile planar optical waveguides and multilayer nonlinear structures: a simple finite difference algorithm,” Opt. Quantum Electron. 39, 221-237 (2007).
    [CrossRef]
  18. S. Roy and P. Roy Chaudhuri, “Analysis of nonlinear multilayered waveguides and MQW structures: a field evolution approach using finite difference formulation,” IEEE J. Quantum Electron. 45, 345-350 (2009).
    [CrossRef]
  19. M. S. Stern, “Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles,” Proc. Inst. Electr. Eng. 135 (J), 56-63 (1988).
  20. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662-1664 (1998).
    [CrossRef]
  21. N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express 10, 341-348 (2002).
    [PubMed]
  22. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  23. P. Roy Chaudhuri, “Mode calculation of optical waveguides by perturbed field convergence method,” in Proceedings of the Seventh Optoelectronics and Communications Conference (OECC, 2002), 11B3-4, pp. 448-449.
  24. F. Gonthier, S. Lacroix, and J. Bures, “Numerical calculations of modes of optical waveguides with two-dimensional refractive index profiles by a field correction method,” Opt. Quantum Electron. 26, S135-S149 (1994).
    [CrossRef]
  25. K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36, 773-779 (2000).
    [CrossRef]
  26. S. Roy and P. Roy Chaudhuri, “Supercontinuum generation in visible to mid-infrared region in square-lattice photonic crystal fiber made from highly nonlinear glasses,” Opt. Commun. 282, 3448-3455 (2009).
    [CrossRef]
  27. Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31, 3086-3088 (2006).
    [CrossRef] [PubMed]
  28. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. Riis Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
    [CrossRef]
  29. C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535-2537 (2004).
    [CrossRef]
  30. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325-1327 (2000).
    [CrossRef]
  31. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
    [CrossRef]
  32. PM Highly nonlinear PCF, PM-NL-3.0-850, Blaze Photonics, Bath, UK.
  33. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125-133 (1986).
    [CrossRef]
  34. J. M. Dudley, G. Genty, S. Coen, “Super-continuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184(2006).
    [CrossRef]

2009 (2)

S. Roy and P. Roy Chaudhuri, “Analysis of nonlinear multilayered waveguides and MQW structures: a field evolution approach using finite difference formulation,” IEEE J. Quantum Electron. 45, 345-350 (2009).
[CrossRef]

S. Roy and P. Roy Chaudhuri, “Supercontinuum generation in visible to mid-infrared region in square-lattice photonic crystal fiber made from highly nonlinear glasses,” Opt. Commun. 282, 3448-3455 (2009).
[CrossRef]

2008 (1)

2007 (1)

P. Roy Chaudhuri and S. Roy, “Analysis of arbitrary index profile planar optical waveguides and multilayer nonlinear structures: a simple finite difference algorithm,” Opt. Quantum Electron. 39, 221-237 (2007).
[CrossRef]

2006 (5)

2005 (1)

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

2004 (4)

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535-2537 (2004).
[CrossRef]

E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, “Transverse characterization of tapered photonic crystal fibers,” J. Appl. Phys. 96, 3976-3982 (2004).
[CrossRef]

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Efficient input and output optical fiber coupling to a photonic crystal waveguide,” Opt. Lett. 29, 697-699 (2004).
[CrossRef] [PubMed]

S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864-2869 (2004).
[CrossRef] [PubMed]

2003 (1)

P. J. Wiejata, P. M. Shankar, and R. Mutharasan, “Fluorescent sensing using biconical tapers,” Sens. Actuators B 96, 315-320 (2003).
[CrossRef]

2002 (2)

2001 (1)

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. Riis Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

2000 (3)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36, 773-779 (2000).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325-1327 (2000).
[CrossRef]

1999 (1)

1998 (2)

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662-1664 (1998).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and J. P. de Sandro, “Properties of photonic crystal fiber and the effective index model,” J. Opt. Soc Am. A 15, 748-752 (1998).
[CrossRef]

1997 (1)

1996 (1)

1994 (1)

F. Gonthier, S. Lacroix, and J. Bures, “Numerical calculations of modes of optical waveguides with two-dimensional refractive index profiles by a field correction method,” Opt. Quantum Electron. 26, S135-S149 (1994).
[CrossRef]

1992 (1)

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

1988 (2)

C. P. Botham, “Theory of tapering single-mode optical fibres by controlled core diffusion,” Electron. Lett. 24, 243-244 (1988).
[CrossRef]

M. S. Stern, “Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles,” Proc. Inst. Electr. Eng. 135 (J), 56-63 (1988).

1986 (1)

Agrawal, G. P.

Arriaga, J.

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325-1327 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

Atkin, D. M.

Barclay, P. E.

Bennett, P. J.

Birks, T.

Birks, T. A.

Bjarklev, A.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. Riis Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Borselli, M.

Botham, C. P.

C. P. Botham, “Theory of tapering single-mode optical fibres by controlled core diffusion,” Electron. Lett. 24, 243-244 (1988).
[CrossRef]

Breuer, E.

Broderick, N. G. R.

Broeng, J.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. Riis Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Bures, J.

F. Gonthier, S. Lacroix, and J. Bures, “Numerical calculations of modes of optical waveguides with two-dimensional refractive index profiles by a field correction method,” Opt. Quantum Electron. 26, S135-S149 (1994).
[CrossRef]

Carruthers, T. F.

Coen, S.

J. M. Dudley, G. Genty, S. Coen, “Super-continuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184(2006).
[CrossRef]

de Sandro, J. P.

J. C. Knight, T. A. Birks, P. St. J. Russell, and J. P. de Sandro, “Properties of photonic crystal fiber and the effective index model,” J. Opt. Soc Am. A 15, 748-752 (1998).
[CrossRef]

Demokan, M. S.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535-2537 (2004).
[CrossRef]

Domachuk, P.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

Dudley, J.

D. Turke, W. Wohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, “Chirp-controlled soliton fission in tapered optical fibers,” Appl. Phys. B 83, 37-42 (2006).
[CrossRef]

Dudley, J. M.

J. M. Dudley, G. Genty, S. Coen, “Super-continuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184(2006).
[CrossRef]

Eggleton, B. J.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, “Transverse characterization of tapered photonic crystal fibers,” J. Appl. Phys. 96, 3976-3982 (2004).
[CrossRef]

Friebele, E. J.

Genty, G.

J. M. Dudley, G. Genty, S. Coen, “Super-continuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184(2006).
[CrossRef]

Giessen, H.

D. Turke, W. Wohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, “Chirp-controlled soliton fission in tapered optical fibers,” Appl. Phys. B 83, 37-42 (2006).
[CrossRef]

Gonthier, F.

F. Gonthier, S. Lacroix, and J. Bures, “Numerical calculations of modes of optical waveguides with two-dimensional refractive index profiles by a field correction method,” Opt. Quantum Electron. 26, S135-S149 (1994).
[CrossRef]

Hansen, T. P.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. Riis Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Hu, J.

Humbert, G.

Jin, W.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535-2537 (2004).
[CrossRef]

Kibler, B.

D. Turke, W. Wohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, “Chirp-controlled soliton fission in tapered optical fibers,” Appl. Phys. B 83, 37-42 (2006).
[CrossRef]

Kim, J.

Knight, J.

Knight, J. C.

Knudsen, E.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. Riis Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Kopf, D.

Kubota, H.

K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36, 773-779 (2000).
[CrossRef]

Kuhlmey, B. T.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

Lacroix, S.

F. Gonthier, S. Lacroix, and J. Bures, “Numerical calculations of modes of optical waveguides with two-dimensional refractive index profiles by a field correction method,” Opt. Quantum Electron. 26, S135-S149 (1994).
[CrossRef]

Lederer, M.

Leon-Saval, S.

Li, Y. W.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

Libori, S. E. B.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. Riis Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Lin, Q.

Lu, C.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535-2537 (2004).
[CrossRef]

Mägi, E. C.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, “Transverse characterization of tapered photonic crystal fibers,” J. Appl. Phys. 96, 3976-3982 (2004).
[CrossRef]

Mangan, B. J.

Marks, B. S.

Martin Man, T.-P.

Mason, M.

Menyuk, C. R.

Mogilevtsev, D.

Monro, T. M.

Mortensen, N. A.

Motzkus, M.

D. Turke, W. Wohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, “Chirp-controlled soliton fission in tapered optical fibers,” Appl. Phys. B 83, 37-42 (2006).
[CrossRef]

Moulton, P. F.

Mutharasan, R.

P. J. Wiejata, P. M. Shankar, and R. Mutharasan, “Fluorescent sensing using biconical tapers,” Sens. Actuators B 96, 315-320 (2003).
[CrossRef]

Nakazawa, M.

K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36, 773-779 (2000).
[CrossRef]

Nguyen, H. C.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

Ortigosa-Blanch, A.

Painter, O.

Richardson, D. J.

Riis Jensen, J.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. Riis Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Roy, S.

S. Roy and P. Roy Chaudhuri, “Analysis of nonlinear multilayered waveguides and MQW structures: a field evolution approach using finite difference formulation,” IEEE J. Quantum Electron. 45, 345-350 (2009).
[CrossRef]

S. Roy and P. Roy Chaudhuri, “Supercontinuum generation in visible to mid-infrared region in square-lattice photonic crystal fiber made from highly nonlinear glasses,” Opt. Commun. 282, 3448-3455 (2009).
[CrossRef]

P. Roy Chaudhuri, and S. Roy, “Determining properties of fabricated index-guiding photonic crystal fibers using SEM micrograph and mode convergence algorithm,” J. Lightwave Technol. 26, 379-386 (2008).
[CrossRef]

P. Roy Chaudhuri and S. Roy, “Analysis of arbitrary index profile planar optical waveguides and multilayer nonlinear structures: a simple finite difference algorithm,” Opt. Quantum Electron. 39, 221-237 (2007).
[CrossRef]

Roy Chaudhuri, P.

S. Roy and P. Roy Chaudhuri, “Supercontinuum generation in visible to mid-infrared region in square-lattice photonic crystal fiber made from highly nonlinear glasses,” Opt. Commun. 282, 3448-3455 (2009).
[CrossRef]

S. Roy and P. Roy Chaudhuri, “Analysis of nonlinear multilayered waveguides and MQW structures: a field evolution approach using finite difference formulation,” IEEE J. Quantum Electron. 45, 345-350 (2009).
[CrossRef]

P. Roy Chaudhuri, and S. Roy, “Determining properties of fabricated index-guiding photonic crystal fibers using SEM micrograph and mode convergence algorithm,” J. Lightwave Technol. 26, 379-386 (2008).
[CrossRef]

P. Roy Chaudhuri and S. Roy, “Analysis of arbitrary index profile planar optical waveguides and multilayer nonlinear structures: a simple finite difference algorithm,” Opt. Quantum Electron. 39, 221-237 (2007).
[CrossRef]

P. Roy Chaudhuri, “Mode calculation of optical waveguides by perturbed field convergence method,” in Proceedings of the Seventh Optoelectronics and Communications Conference (OECC, 2002), 11B3-4, pp. 448-449.

Russell, P. St. J.

G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. St. J. Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14, 1596-1603 (2006).
[CrossRef] [PubMed]

S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864-2869 (2004).
[CrossRef] [PubMed]

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. Martin Man, and P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19, 2148-2155 (2002).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325-1327 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and J. P. de Sandro, “Properties of photonic crystal fiber and the effective index model,” J. Opt. Soc Am. A 15, 748-752 (1998).
[CrossRef]

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662-1664 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963(1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).
[CrossRef] [PubMed]

Shankar, P. M.

P. J. Wiejata, P. M. Shankar, and R. Mutharasan, “Fluorescent sensing using biconical tapers,” Sens. Actuators B 96, 315-320 (2003).
[CrossRef]

Simonsen, H.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. Riis Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Smith, C. L.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

Srinivasan, K.

Steel, M. J.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

Steinvurzel, P.

E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, “Transverse characterization of tapered photonic crystal fibers,” J. Appl. Phys. 96, 3976-3982 (2004).
[CrossRef]

Stern, M. S.

M. S. Stern, “Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles,” Proc. Inst. Electr. Eng. 135 (J), 56-63 (1988).

Stifter, D.

Tamura, K. R.

K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36, 773-779 (2000).
[CrossRef]

Taunay, T. F.

Teipel, J.

D. Turke, W. Wohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, “Chirp-controlled soliton fission in tapered optical fibers,” Appl. Phys. B 83, 37-42 (2006).
[CrossRef]

Turke, D.

D. Turke, W. Wohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, “Chirp-controlled soliton fission in tapered optical fibers,” Appl. Phys. B 83, 37-42 (2006).
[CrossRef]

Wadsworth, W.

Wadsworth, W. J.

Wiejata, P. J.

P. J. Wiejata, P. M. Shankar, and R. Mutharasan, “Fluorescent sensing using biconical tapers,” Sens. Actuators B 96, 315-320 (2003).
[CrossRef]

Wiesauer, K.

Wohlleben, W.

D. Turke, W. Wohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, “Chirp-controlled soliton fission in tapered optical fibers,” Appl. Phys. B 83, 37-42 (2006).
[CrossRef]

Wright, B. M.

Yang, X.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535-2537 (2004).
[CrossRef]

Zhao, C.-L.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535-2537 (2004).
[CrossRef]

Appl. Phys. B (2)

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

D. Turke, W. Wohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, “Chirp-controlled soliton fission in tapered optical fibers,” Appl. Phys. B 83, 37-42 (2006).
[CrossRef]

Electron. Lett. (1)

C. P. Botham, “Theory of tapering single-mode optical fibres by controlled core diffusion,” Electron. Lett. 24, 243-244 (1988).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. Roy and P. Roy Chaudhuri, “Analysis of nonlinear multilayered waveguides and MQW structures: a field evolution approach using finite difference formulation,” IEEE J. Quantum Electron. 45, 345-350 (2009).
[CrossRef]

K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36, 773-779 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. Riis Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535-2537 (2004).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

J. Appl. Phys. (1)

E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, “Transverse characterization of tapered photonic crystal fibers,” J. Appl. Phys. 96, 3976-3982 (2004).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc Am. A (1)

J. C. Knight, T. A. Birks, P. St. J. Russell, and J. P. de Sandro, “Properties of photonic crystal fiber and the effective index model,” J. Opt. Soc Am. A 15, 748-752 (1998).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

S. Roy and P. Roy Chaudhuri, “Supercontinuum generation in visible to mid-infrared region in square-lattice photonic crystal fiber made from highly nonlinear glasses,” Opt. Commun. 282, 3448-3455 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (6)

Opt. Quantum Electron. (2)

F. Gonthier, S. Lacroix, and J. Bures, “Numerical calculations of modes of optical waveguides with two-dimensional refractive index profiles by a field correction method,” Opt. Quantum Electron. 26, S135-S149 (1994).
[CrossRef]

P. Roy Chaudhuri and S. Roy, “Analysis of arbitrary index profile planar optical waveguides and multilayer nonlinear structures: a simple finite difference algorithm,” Opt. Quantum Electron. 39, 221-237 (2007).
[CrossRef]

Proc. Inst. Electr. Eng. (1)

M. S. Stern, “Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles,” Proc. Inst. Electr. Eng. 135 (J), 56-63 (1988).

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, S. Coen, “Super-continuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184(2006).
[CrossRef]

Sens. Actuators B (1)

P. J. Wiejata, P. M. Shankar, and R. Mutharasan, “Fluorescent sensing using biconical tapers,” Sens. Actuators B 96, 315-320 (2003).
[CrossRef]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

P. Roy Chaudhuri, “Mode calculation of optical waveguides by perturbed field convergence method,” in Proceedings of the Seventh Optoelectronics and Communications Conference (OECC, 2002), 11B3-4, pp. 448-449.

PM Highly nonlinear PCF, PM-NL-3.0-850, Blaze Photonics, Bath, UK.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Increased birefringence of the fabricated PCF shown in the inset with various tapering dimensions.

Fig. 2
Fig. 2

Change of birefringence of the PCF (cross section given in the inset) as a function of tapering dimension.

Fig. 3
Fig. 3

Evolution of fields with increased tapering showing the spread of the evanescent field.

Fig. 4
Fig. 4

Variation of A eff with tapering of the PCF structure shown in the inset.

Fig. 5
Fig. 5

Computed increasing nonlinearity parameter as a function of tapering of the PCF shown in the inset of Fig. 4.

Fig. 6
Fig. 6

Dispersion characteristics of the PCF with tapering as computed for the structure shown in the inset.

Fig. 7
Fig. 7

Computed dispersion curves with tapering effect as parameter of the PCF shown in the inset of Fig. 4.

Fig. 8
Fig. 8

Generated broadband output at the end of a 30 cm long PCF (shown in Fig. 6) when 100 fs pulse is injected: gray curve, original dimension; black curve, 5% tapering dimension.

Fig. 9
Fig. 9

Broadband output results of 30 cm long PCF with 100 fs input pulse propagation of the same PCF (shown in Fig. 6) for a 15% tapering dimension (black curve) compared with that for the original dimension (gray curve).

Fig. 10
Fig. 10

(a) Nonlinear propagation of the pulse of 100 fs width and peak power of 2.5 kW through the fiber in its original dimension. (b) Propagation of the same pulse through the PCF with 15% tapering.

Tables (1)

Tables Icon

Table 1 Broadband Properties of Fabricated PCF [32] with a Tapering Effect

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

e i , j = e i + 1 , j + e i 1 , j + 2 ε i , j 1 ε i , j 1 + ε i , j e i , j 1 + 2 ε i , j + 1 ε i , j + 1 + ε i , j e i , j + 1 4 k 0 2 ( Δ y ) 2 ( ε i , j n eff 2 ) + ε i , j ε i , j 1 ε i , j 1 + ε i , j + ε i , j ε i , j + 1 ε i , j + 1 + ε i , j ,
n eff 2 = + + [ e i + 1 , j + e i 1 , j + 2 ε i , j 1 ε i , j 1 + ε i , j e i , j + 2 ε i , j + 1 ε i , j + 1 + ε i , j e i , j + 1 { 4 + ε i , j ε i , j 1 ε i , j 1 + ε i , j + ε i , j ε i , j + 1 ε i , j + 1 + ε i , j k 0 2 ( Δ y ) 2 ε i , j } e i , j ] e i , j d x d y k 0 2 ( Δ y ) 2 + + e i , j d x d y .
D ( λ ) = ( λ C ) ( d 2 n eff d λ 2 ) .
A eff = ( + + | E 2 | d x d y ) 2 + + | E | 4 d x d y .
γ = 2 π n 2 λ A eff ,
A T n 2 i n + 1 n ! β n k A T k = i γ ( 1 + i ω 0 T ) [ A ( z , T ) T R ( τ ) | A ( z , T τ ) | 2 τ ] ,

Metrics