Abstract

The theory of autocorrelation-function evaluation in fluorescence correlation spectroscopy is applied to a Lorentzian intensity distribution. An analytical solution to the autocorrelation function for diffusion is deduced for this spatial distribution. Experimental investigation of the distribution is performed using an enlarged detector aperture in a standard confocal setup. The data from the experiment are fitted to the derived autocorrelation function, and a reasonable estimate of the spatial distribution is provided. Estimates are also compared to values computed by molecular detection efficiency simulation. The use of Lorentzian intensity distributions complements conditions where a Gaussian intensity distribution applies, expanding the applicability range of analytical correlation functions.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Magde, E. L. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system--measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29, 705-708 (1972).
    [CrossRef]
  2. E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13, 1-27(1974).
    [CrossRef]
  3. S. R. Aragon and R. Pecora, “Fluorescence correlation spectroscopy as a probe of molecular dynamics,” J. Chem. Phys. 64, 1791-1803 (1976).
    [CrossRef]
  4. R. Rigler and E. S. Elson, eds., Fluorescence Correlation Spectroscopy--Theory and Application (Springer-Verlag, 2001).
  5. O. Krichevsky and G. Bonnet, “Fluorescence-correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251-297 (2002).
    [CrossRef]
  6. D. Magde, W. W. Webb, and E. L. Elson, “Fluorescence correlation spectroscopy. III. Uniform translation and laminar flow,” Biopolymers 17, 361-376 (1978).
    [CrossRef]
  7. J. Widengren and P. Schwille, “Characterization of photoinduced isomerization and back-isomerization of the cyanine dye Cy5 by fluorescence correlation spectroscopy,” J. Phys. Chem. A 104, 6416-6428 (2000).
    [CrossRef]
  8. J. Widengren, B. Terry, and R. Rigler, “Protonation kinetics of GFP and FITC investigated by FCS--aspects of the use of fluorescent indicators for measuring pH,” Chem. Phys. 249, 259-271 (1999).
    [CrossRef]
  9. J. Widengren, Ü. Mets, and R. Rigler, “Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study,” J. Phys. Chem. 99, 13368-13377(1995).
    [CrossRef]
  10. D. Koppel, D. Axelrod, J. Schlessinger, E. L. Elson, and W. W. Webb, “Dynamics of fluorescence marker concentration as a probe of mobility,” Biophys. J. 16, 1315-1329 (1976).
    [CrossRef]
  11. A. G. Palmer III and N. L. Thompson, “Optical spatial intensity profiles for high order autocorrelation in fluorescence spectroscopy,” Appl. Opt. 28, 1214-1220 (1989).
    [CrossRef]
  12. H. Qian and E. L. Elson, “Analysis of confocal laser-microscope optics for 3-D fluorescence correlation spectroscopy,” Appl. Opt. 30, 1185-1195 (1991).
    [CrossRef]
  13. R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22, 169-175 (1993).
    [CrossRef]
  14. N. L. Thompson, T. P. Burghardt, and D. Axelrod, “Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery and correlation spectroscopy,” Biophys. J. 33, 435-454 (1981).
    [CrossRef]
  15. T. Ruckstuhl and S. Seeger, “Attoliter detection volumes by confocal total-internal-reflection fluorescence microscopy,” Opt. Lett. 29, 569-571 (2004).
    [CrossRef]
  16. K. Hassler, M. Leutenegger, P. Rigler, R. Rao, R. Rigler, M. Gösch, and T. Lasser, “Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) with low background and high count rate per molecule,” Opt. Express 13, 7415-7423(2005).
    [CrossRef]
  17. J. Ries, T. Ruckstuhl, D. Verdes, and P. Schwille, “Supercritical angle fluorescence correlation spectroscopy,” Biophys. J. 94, 221-229 (2008).
    [CrossRef]
  18. K. M. Berland, P. T. C. So, and E. Gratton, “Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment,” Biophys. J. 68, 694-701 (1995).
    [CrossRef]
  19. A. Arkhipov, J. Hüve, M. Kahms, R. Peters, and K. Schulten, “Continous fluorescence microphotolysis and correlation spectroscopy using 4Pi microscopy,” Biophys. J. 93, 4006-4017(2007).
    [CrossRef]
  20. K. M. Hansen, S. K. Davis, and C. J. Bardeen, “Two-photon standing wave fluorescence correlation spectroscopy,” Opt. Lett. 32, 2121-2123 (2007).
    [CrossRef]
  21. D. Vobornik, D. S. Bank, Z. Lu, C. Fradin, R. Taylor, and L. J. Johnston, “Fluorescence correlation spectroscopy with sub-diffraction-limited resolution using near-field optical probes,” Appl. Phys. Lett. 93, 163904 (2008).
    [CrossRef]
  22. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682-686 (2003).
    [CrossRef]
  23. K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, and H. G. Craighead, “λ-repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides,” Biophys. J. 88, 2145-2153 (2005).
    [CrossRef]
  24. L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volume,” Phys. Rev. Lett. 94, 178104 (2005).
    [CrossRef]
  25. H. Blom, L. Kastrup, and C. Eggeling, “Fluorescence fluctuation spectroscopy in reduced detection volumes,” Curr. Pharm. Biotechnol. 7, 51-66 (2006).
  26. C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159-1163 (2009).
  27. J. Enderlein and C. Zander, “Theoretical foundations of single molecule detection in solution,” in Single Molecule Detection in Solution, Ch. Zander, J. Enderlein, and R. A. Keller, eds. (Wiley-VCH, 2002), Chap. 2, p. 21.
  28. T. Krouglova, J. Vercammen, and Y. Engelborghs, “Correct diffusion coefficient of proteins in fluorescence correlation spectroscopy. Application to tubulin oligomers induced by Mg2+ and Paclitaxel,” Biophys. J. 87, 2635-2646 (2004).
    [CrossRef]
  29. S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83, 2300-2317 (2002).
    [CrossRef]
  30. Y. Chen, J. D. Müller, P. T. C. So, and E. Gratton, “The photon counting histogram in fluorescence fluctuation spectroscopy,” Biophys. J. 77, 553-567 (1999).
    [CrossRef]
  31. B. Huang, T. D. Perroud, and R. N. Zare, “Photon counting histogram: one-photon excitation,” Chem. Phys. Chem. 5, 1523-1531 (2004).
    [CrossRef]
  32. P. Kask, R. Günter, and P. Axhausen, “Statistical accuracy in fluorescence fluctuation experiments,” Eur. Biophys. J. 25, 163-169 (1997).
    [CrossRef]
  33. A. Yariv, ed., Optical Electronics, 4th ed. (Saunders College, 1991).
  34. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Table (Dover, 1972).
  35. C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Diffusion coefficient measurement in microfluidic devices,” Talanta 56, 365-373 (2002).
    [CrossRef]
  36. J. B. Pawley, ed., Handbook of Biological Confocal Microscopy, 2nd ed. (Plenum, 1995).
  37. J. Enderlein, I. Gregor, D. Patra, and J. Fitter, “Art and artefacts of fluorescence correlation spectroscopy,” Curr. Pharm. Biotechnol. 5, 155-161 (2004).
  38. J. Enderlein, I. Gregor, D. Patra, T. Dertinger, and U. B. Kaupp, “Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration,” Chem. Phys. Chem. 6, 2324-2336 (2005).
    [CrossRef]
  39. M. Marrocco, “Fluorescence correlation spectroscopy: incorporation of probe volume effects into the three-dimensional Gaussian approximation,” Appl. Opt. 43, 5251-5262 (2004).
    [CrossRef]

2009 (1)

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159-1163 (2009).

2008 (2)

D. Vobornik, D. S. Bank, Z. Lu, C. Fradin, R. Taylor, and L. J. Johnston, “Fluorescence correlation spectroscopy with sub-diffraction-limited resolution using near-field optical probes,” Appl. Phys. Lett. 93, 163904 (2008).
[CrossRef]

J. Ries, T. Ruckstuhl, D. Verdes, and P. Schwille, “Supercritical angle fluorescence correlation spectroscopy,” Biophys. J. 94, 221-229 (2008).
[CrossRef]

2007 (2)

A. Arkhipov, J. Hüve, M. Kahms, R. Peters, and K. Schulten, “Continous fluorescence microphotolysis and correlation spectroscopy using 4Pi microscopy,” Biophys. J. 93, 4006-4017(2007).
[CrossRef]

K. M. Hansen, S. K. Davis, and C. J. Bardeen, “Two-photon standing wave fluorescence correlation spectroscopy,” Opt. Lett. 32, 2121-2123 (2007).
[CrossRef]

2006 (1)

H. Blom, L. Kastrup, and C. Eggeling, “Fluorescence fluctuation spectroscopy in reduced detection volumes,” Curr. Pharm. Biotechnol. 7, 51-66 (2006).

2005 (4)

K. Hassler, M. Leutenegger, P. Rigler, R. Rao, R. Rigler, M. Gösch, and T. Lasser, “Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) with low background and high count rate per molecule,” Opt. Express 13, 7415-7423(2005).
[CrossRef]

K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, and H. G. Craighead, “λ-repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides,” Biophys. J. 88, 2145-2153 (2005).
[CrossRef]

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volume,” Phys. Rev. Lett. 94, 178104 (2005).
[CrossRef]

J. Enderlein, I. Gregor, D. Patra, T. Dertinger, and U. B. Kaupp, “Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration,” Chem. Phys. Chem. 6, 2324-2336 (2005).
[CrossRef]

2004 (5)

M. Marrocco, “Fluorescence correlation spectroscopy: incorporation of probe volume effects into the three-dimensional Gaussian approximation,” Appl. Opt. 43, 5251-5262 (2004).
[CrossRef]

T. Krouglova, J. Vercammen, and Y. Engelborghs, “Correct diffusion coefficient of proteins in fluorescence correlation spectroscopy. Application to tubulin oligomers induced by Mg2+ and Paclitaxel,” Biophys. J. 87, 2635-2646 (2004).
[CrossRef]

B. Huang, T. D. Perroud, and R. N. Zare, “Photon counting histogram: one-photon excitation,” Chem. Phys. Chem. 5, 1523-1531 (2004).
[CrossRef]

J. Enderlein, I. Gregor, D. Patra, and J. Fitter, “Art and artefacts of fluorescence correlation spectroscopy,” Curr. Pharm. Biotechnol. 5, 155-161 (2004).

T. Ruckstuhl and S. Seeger, “Attoliter detection volumes by confocal total-internal-reflection fluorescence microscopy,” Opt. Lett. 29, 569-571 (2004).
[CrossRef]

2003 (1)

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682-686 (2003).
[CrossRef]

2002 (3)

C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Diffusion coefficient measurement in microfluidic devices,” Talanta 56, 365-373 (2002).
[CrossRef]

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83, 2300-2317 (2002).
[CrossRef]

O. Krichevsky and G. Bonnet, “Fluorescence-correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251-297 (2002).
[CrossRef]

2000 (1)

J. Widengren and P. Schwille, “Characterization of photoinduced isomerization and back-isomerization of the cyanine dye Cy5 by fluorescence correlation spectroscopy,” J. Phys. Chem. A 104, 6416-6428 (2000).
[CrossRef]

1999 (2)

J. Widengren, B. Terry, and R. Rigler, “Protonation kinetics of GFP and FITC investigated by FCS--aspects of the use of fluorescent indicators for measuring pH,” Chem. Phys. 249, 259-271 (1999).
[CrossRef]

Y. Chen, J. D. Müller, P. T. C. So, and E. Gratton, “The photon counting histogram in fluorescence fluctuation spectroscopy,” Biophys. J. 77, 553-567 (1999).
[CrossRef]

1997 (1)

P. Kask, R. Günter, and P. Axhausen, “Statistical accuracy in fluorescence fluctuation experiments,” Eur. Biophys. J. 25, 163-169 (1997).
[CrossRef]

1995 (2)

J. Widengren, Ü. Mets, and R. Rigler, “Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study,” J. Phys. Chem. 99, 13368-13377(1995).
[CrossRef]

K. M. Berland, P. T. C. So, and E. Gratton, “Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment,” Biophys. J. 68, 694-701 (1995).
[CrossRef]

1993 (1)

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22, 169-175 (1993).
[CrossRef]

1991 (1)

1989 (1)

1981 (1)

N. L. Thompson, T. P. Burghardt, and D. Axelrod, “Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery and correlation spectroscopy,” Biophys. J. 33, 435-454 (1981).
[CrossRef]

1978 (1)

D. Magde, W. W. Webb, and E. L. Elson, “Fluorescence correlation spectroscopy. III. Uniform translation and laminar flow,” Biopolymers 17, 361-376 (1978).
[CrossRef]

1976 (2)

D. Koppel, D. Axelrod, J. Schlessinger, E. L. Elson, and W. W. Webb, “Dynamics of fluorescence marker concentration as a probe of mobility,” Biophys. J. 16, 1315-1329 (1976).
[CrossRef]

S. R. Aragon and R. Pecora, “Fluorescence correlation spectroscopy as a probe of molecular dynamics,” J. Chem. Phys. 64, 1791-1803 (1976).
[CrossRef]

1974 (1)

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13, 1-27(1974).
[CrossRef]

1972 (1)

D. Magde, E. L. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system--measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29, 705-708 (1972).
[CrossRef]

Abramowitz, M.

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Table (Dover, 1972).

Aragon, S. R.

S. R. Aragon and R. Pecora, “Fluorescence correlation spectroscopy as a probe of molecular dynamics,” J. Chem. Phys. 64, 1791-1803 (1976).
[CrossRef]

Arkhipov, A.

A. Arkhipov, J. Hüve, M. Kahms, R. Peters, and K. Schulten, “Continous fluorescence microphotolysis and correlation spectroscopy using 4Pi microscopy,” Biophys. J. 93, 4006-4017(2007).
[CrossRef]

Axelrod, D.

N. L. Thompson, T. P. Burghardt, and D. Axelrod, “Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery and correlation spectroscopy,” Biophys. J. 33, 435-454 (1981).
[CrossRef]

D. Koppel, D. Axelrod, J. Schlessinger, E. L. Elson, and W. W. Webb, “Dynamics of fluorescence marker concentration as a probe of mobility,” Biophys. J. 16, 1315-1329 (1976).
[CrossRef]

Axhausen, P.

P. Kask, R. Günter, and P. Axhausen, “Statistical accuracy in fluorescence fluctuation experiments,” Eur. Biophys. J. 25, 163-169 (1997).
[CrossRef]

Bank, D. S.

D. Vobornik, D. S. Bank, Z. Lu, C. Fradin, R. Taylor, and L. J. Johnston, “Fluorescence correlation spectroscopy with sub-diffraction-limited resolution using near-field optical probes,” Appl. Phys. Lett. 93, 163904 (2008).
[CrossRef]

Bardeen, C. J.

Belov, V. N.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159-1163 (2009).

Berland, K. M.

K. M. Berland, P. T. C. So, and E. Gratton, “Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment,” Biophys. J. 68, 694-701 (1995).
[CrossRef]

Blom, H.

H. Blom, L. Kastrup, and C. Eggeling, “Fluorescence fluctuation spectroscopy in reduced detection volumes,” Curr. Pharm. Biotechnol. 7, 51-66 (2006).

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volume,” Phys. Rev. Lett. 94, 178104 (2005).
[CrossRef]

Bonnet, G.

O. Krichevsky and G. Bonnet, “Fluorescence-correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251-297 (2002).
[CrossRef]

Burghardt, T. P.

N. L. Thompson, T. P. Burghardt, and D. Axelrod, “Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery and correlation spectroscopy,” Biophys. J. 33, 435-454 (1981).
[CrossRef]

Chen, Y.

Y. Chen, J. D. Müller, P. T. C. So, and E. Gratton, “The photon counting histogram in fluorescence fluctuation spectroscopy,” Biophys. J. 77, 553-567 (1999).
[CrossRef]

Cox, E. C.

K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, and H. G. Craighead, “λ-repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides,” Biophys. J. 88, 2145-2153 (2005).
[CrossRef]

Craighead, H. G.

K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, and H. G. Craighead, “λ-repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides,” Biophys. J. 88, 2145-2153 (2005).
[CrossRef]

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682-686 (2003).
[CrossRef]

Culbertson, C. T.

C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Diffusion coefficient measurement in microfluidic devices,” Talanta 56, 365-373 (2002).
[CrossRef]

Davis, S. K.

Dertinger, T.

J. Enderlein, I. Gregor, D. Patra, T. Dertinger, and U. B. Kaupp, “Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration,” Chem. Phys. Chem. 6, 2324-2336 (2005).
[CrossRef]

Eggeling, C.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159-1163 (2009).

H. Blom, L. Kastrup, and C. Eggeling, “Fluorescence fluctuation spectroscopy in reduced detection volumes,” Curr. Pharm. Biotechnol. 7, 51-66 (2006).

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volume,” Phys. Rev. Lett. 94, 178104 (2005).
[CrossRef]

Elson, E. L.

H. Qian and E. L. Elson, “Analysis of confocal laser-microscope optics for 3-D fluorescence correlation spectroscopy,” Appl. Opt. 30, 1185-1195 (1991).
[CrossRef]

D. Magde, W. W. Webb, and E. L. Elson, “Fluorescence correlation spectroscopy. III. Uniform translation and laminar flow,” Biopolymers 17, 361-376 (1978).
[CrossRef]

D. Koppel, D. Axelrod, J. Schlessinger, E. L. Elson, and W. W. Webb, “Dynamics of fluorescence marker concentration as a probe of mobility,” Biophys. J. 16, 1315-1329 (1976).
[CrossRef]

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13, 1-27(1974).
[CrossRef]

D. Magde, E. L. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system--measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29, 705-708 (1972).
[CrossRef]

Elson, E. S.

R. Rigler and E. S. Elson, eds., Fluorescence Correlation Spectroscopy--Theory and Application (Springer-Verlag, 2001).

Enderlein, J.

J. Enderlein, I. Gregor, D. Patra, T. Dertinger, and U. B. Kaupp, “Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration,” Chem. Phys. Chem. 6, 2324-2336 (2005).
[CrossRef]

J. Enderlein, I. Gregor, D. Patra, and J. Fitter, “Art and artefacts of fluorescence correlation spectroscopy,” Curr. Pharm. Biotechnol. 5, 155-161 (2004).

J. Enderlein and C. Zander, “Theoretical foundations of single molecule detection in solution,” in Single Molecule Detection in Solution, Ch. Zander, J. Enderlein, and R. A. Keller, eds. (Wiley-VCH, 2002), Chap. 2, p. 21.

Engelborghs, Y.

T. Krouglova, J. Vercammen, and Y. Engelborghs, “Correct diffusion coefficient of proteins in fluorescence correlation spectroscopy. Application to tubulin oligomers induced by Mg2+ and Paclitaxel,” Biophys. J. 87, 2635-2646 (2004).
[CrossRef]

Fitter, J.

J. Enderlein, I. Gregor, D. Patra, and J. Fitter, “Art and artefacts of fluorescence correlation spectroscopy,” Curr. Pharm. Biotechnol. 5, 155-161 (2004).

Foquet, M.

K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, and H. G. Craighead, “λ-repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides,” Biophys. J. 88, 2145-2153 (2005).
[CrossRef]

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682-686 (2003).
[CrossRef]

Fradin, C.

D. Vobornik, D. S. Bank, Z. Lu, C. Fradin, R. Taylor, and L. J. Johnston, “Fluorescence correlation spectroscopy with sub-diffraction-limited resolution using near-field optical probes,” Appl. Phys. Lett. 93, 163904 (2008).
[CrossRef]

Gösch, M.

Gratton, E.

Y. Chen, J. D. Müller, P. T. C. So, and E. Gratton, “The photon counting histogram in fluorescence fluctuation spectroscopy,” Biophys. J. 77, 553-567 (1999).
[CrossRef]

K. M. Berland, P. T. C. So, and E. Gratton, “Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment,” Biophys. J. 68, 694-701 (1995).
[CrossRef]

Gregor, I.

J. Enderlein, I. Gregor, D. Patra, T. Dertinger, and U. B. Kaupp, “Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration,” Chem. Phys. Chem. 6, 2324-2336 (2005).
[CrossRef]

J. Enderlein, I. Gregor, D. Patra, and J. Fitter, “Art and artefacts of fluorescence correlation spectroscopy,” Curr. Pharm. Biotechnol. 5, 155-161 (2004).

Günter, R.

P. Kask, R. Günter, and P. Axhausen, “Statistical accuracy in fluorescence fluctuation experiments,” Eur. Biophys. J. 25, 163-169 (1997).
[CrossRef]

Guo, L.

K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, and H. G. Craighead, “λ-repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides,” Biophys. J. 88, 2145-2153 (2005).
[CrossRef]

Hansen, K. M.

Hassler, K.

Hein, B.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159-1163 (2009).

Hell, S. W.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159-1163 (2009).

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volume,” Phys. Rev. Lett. 94, 178104 (2005).
[CrossRef]

Hess, S. T.

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83, 2300-2317 (2002).
[CrossRef]

Huang, B.

B. Huang, T. D. Perroud, and R. N. Zare, “Photon counting histogram: one-photon excitation,” Chem. Phys. Chem. 5, 1523-1531 (2004).
[CrossRef]

Hüve, J.

A. Arkhipov, J. Hüve, M. Kahms, R. Peters, and K. Schulten, “Continous fluorescence microphotolysis and correlation spectroscopy using 4Pi microscopy,” Biophys. J. 93, 4006-4017(2007).
[CrossRef]

Jacobson, S. C.

C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Diffusion coefficient measurement in microfluidic devices,” Talanta 56, 365-373 (2002).
[CrossRef]

Johnston, L. J.

D. Vobornik, D. S. Bank, Z. Lu, C. Fradin, R. Taylor, and L. J. Johnston, “Fluorescence correlation spectroscopy with sub-diffraction-limited resolution using near-field optical probes,” Appl. Phys. Lett. 93, 163904 (2008).
[CrossRef]

Kahms, M.

A. Arkhipov, J. Hüve, M. Kahms, R. Peters, and K. Schulten, “Continous fluorescence microphotolysis and correlation spectroscopy using 4Pi microscopy,” Biophys. J. 93, 4006-4017(2007).
[CrossRef]

Kask, P.

P. Kask, R. Günter, and P. Axhausen, “Statistical accuracy in fluorescence fluctuation experiments,” Eur. Biophys. J. 25, 163-169 (1997).
[CrossRef]

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22, 169-175 (1993).
[CrossRef]

Kastrup, L.

H. Blom, L. Kastrup, and C. Eggeling, “Fluorescence fluctuation spectroscopy in reduced detection volumes,” Curr. Pharm. Biotechnol. 7, 51-66 (2006).

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volume,” Phys. Rev. Lett. 94, 178104 (2005).
[CrossRef]

Kaupp, U. B.

J. Enderlein, I. Gregor, D. Patra, T. Dertinger, and U. B. Kaupp, “Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration,” Chem. Phys. Chem. 6, 2324-2336 (2005).
[CrossRef]

Keller, R. A.

J. Enderlein and C. Zander, “Theoretical foundations of single molecule detection in solution,” in Single Molecule Detection in Solution, Ch. Zander, J. Enderlein, and R. A. Keller, eds. (Wiley-VCH, 2002), Chap. 2, p. 21.

Koppel, D.

D. Koppel, D. Axelrod, J. Schlessinger, E. L. Elson, and W. W. Webb, “Dynamics of fluorescence marker concentration as a probe of mobility,” Biophys. J. 16, 1315-1329 (1976).
[CrossRef]

Korlach, J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682-686 (2003).
[CrossRef]

Krichevsky, O.

O. Krichevsky and G. Bonnet, “Fluorescence-correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251-297 (2002).
[CrossRef]

Krouglova, T.

T. Krouglova, J. Vercammen, and Y. Engelborghs, “Correct diffusion coefficient of proteins in fluorescence correlation spectroscopy. Application to tubulin oligomers induced by Mg2+ and Paclitaxel,” Biophys. J. 87, 2635-2646 (2004).
[CrossRef]

Lasser, T.

Leutenegger, M.

Levene, M. J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682-686 (2003).
[CrossRef]

Lu, Z.

D. Vobornik, D. S. Bank, Z. Lu, C. Fradin, R. Taylor, and L. J. Johnston, “Fluorescence correlation spectroscopy with sub-diffraction-limited resolution using near-field optical probes,” Appl. Phys. Lett. 93, 163904 (2008).
[CrossRef]

Magde, D.

D. Magde, W. W. Webb, and E. L. Elson, “Fluorescence correlation spectroscopy. III. Uniform translation and laminar flow,” Biopolymers 17, 361-376 (1978).
[CrossRef]

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13, 1-27(1974).
[CrossRef]

D. Magde, E. L. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system--measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29, 705-708 (1972).
[CrossRef]

Marrocco, M.

Medda, R.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159-1163 (2009).

Mets, Ü.

J. Widengren, Ü. Mets, and R. Rigler, “Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study,” J. Phys. Chem. 99, 13368-13377(1995).
[CrossRef]

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22, 169-175 (1993).
[CrossRef]

Müller, J. D.

Y. Chen, J. D. Müller, P. T. C. So, and E. Gratton, “The photon counting histogram in fluorescence fluctuation spectroscopy,” Biophys. J. 77, 553-567 (1999).
[CrossRef]

Palmer, A. G.

Patra, D.

J. Enderlein, I. Gregor, D. Patra, T. Dertinger, and U. B. Kaupp, “Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration,” Chem. Phys. Chem. 6, 2324-2336 (2005).
[CrossRef]

J. Enderlein, I. Gregor, D. Patra, and J. Fitter, “Art and artefacts of fluorescence correlation spectroscopy,” Curr. Pharm. Biotechnol. 5, 155-161 (2004).

Pawley, J. B.

J. B. Pawley, ed., Handbook of Biological Confocal Microscopy, 2nd ed. (Plenum, 1995).

Pecora, R.

S. R. Aragon and R. Pecora, “Fluorescence correlation spectroscopy as a probe of molecular dynamics,” J. Chem. Phys. 64, 1791-1803 (1976).
[CrossRef]

Perroud, T. D.

B. Huang, T. D. Perroud, and R. N. Zare, “Photon counting histogram: one-photon excitation,” Chem. Phys. Chem. 5, 1523-1531 (2004).
[CrossRef]

Peters, R.

A. Arkhipov, J. Hüve, M. Kahms, R. Peters, and K. Schulten, “Continous fluorescence microphotolysis and correlation spectroscopy using 4Pi microscopy,” Biophys. J. 93, 4006-4017(2007).
[CrossRef]

Polyakova, S.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159-1163 (2009).

Qian, H.

Ramsey, J. M.

C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Diffusion coefficient measurement in microfluidic devices,” Talanta 56, 365-373 (2002).
[CrossRef]

Rao, R.

Ries, J.

J. Ries, T. Ruckstuhl, D. Verdes, and P. Schwille, “Supercritical angle fluorescence correlation spectroscopy,” Biophys. J. 94, 221-229 (2008).
[CrossRef]

Rigler, P.

Rigler, R.

K. Hassler, M. Leutenegger, P. Rigler, R. Rao, R. Rigler, M. Gösch, and T. Lasser, “Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) with low background and high count rate per molecule,” Opt. Express 13, 7415-7423(2005).
[CrossRef]

J. Widengren, B. Terry, and R. Rigler, “Protonation kinetics of GFP and FITC investigated by FCS--aspects of the use of fluorescent indicators for measuring pH,” Chem. Phys. 249, 259-271 (1999).
[CrossRef]

J. Widengren, Ü. Mets, and R. Rigler, “Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study,” J. Phys. Chem. 99, 13368-13377(1995).
[CrossRef]

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22, 169-175 (1993).
[CrossRef]

R. Rigler and E. S. Elson, eds., Fluorescence Correlation Spectroscopy--Theory and Application (Springer-Verlag, 2001).

Ringemann, C.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159-1163 (2009).

Ruckstuhl, T.

J. Ries, T. Ruckstuhl, D. Verdes, and P. Schwille, “Supercritical angle fluorescence correlation spectroscopy,” Biophys. J. 94, 221-229 (2008).
[CrossRef]

T. Ruckstuhl and S. Seeger, “Attoliter detection volumes by confocal total-internal-reflection fluorescence microscopy,” Opt. Lett. 29, 569-571 (2004).
[CrossRef]

Samiee, K. T.

K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, and H. G. Craighead, “λ-repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides,” Biophys. J. 88, 2145-2153 (2005).
[CrossRef]

Sandhoff, K.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159-1163 (2009).

Schlessinger, J.

D. Koppel, D. Axelrod, J. Schlessinger, E. L. Elson, and W. W. Webb, “Dynamics of fluorescence marker concentration as a probe of mobility,” Biophys. J. 16, 1315-1329 (1976).
[CrossRef]

Schönle, A.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159-1163 (2009).

Schulten, K.

A. Arkhipov, J. Hüve, M. Kahms, R. Peters, and K. Schulten, “Continous fluorescence microphotolysis and correlation spectroscopy using 4Pi microscopy,” Biophys. J. 93, 4006-4017(2007).
[CrossRef]

Schwarzmann, G.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159-1163 (2009).

Schwille, P.

J. Ries, T. Ruckstuhl, D. Verdes, and P. Schwille, “Supercritical angle fluorescence correlation spectroscopy,” Biophys. J. 94, 221-229 (2008).
[CrossRef]

J. Widengren and P. Schwille, “Characterization of photoinduced isomerization and back-isomerization of the cyanine dye Cy5 by fluorescence correlation spectroscopy,” J. Phys. Chem. A 104, 6416-6428 (2000).
[CrossRef]

Seeger, S.

So, P. T. C.

Y. Chen, J. D. Müller, P. T. C. So, and E. Gratton, “The photon counting histogram in fluorescence fluctuation spectroscopy,” Biophys. J. 77, 553-567 (1999).
[CrossRef]

K. M. Berland, P. T. C. So, and E. Gratton, “Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment,” Biophys. J. 68, 694-701 (1995).
[CrossRef]

Stegun, I. A.

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Table (Dover, 1972).

Taylor, R.

D. Vobornik, D. S. Bank, Z. Lu, C. Fradin, R. Taylor, and L. J. Johnston, “Fluorescence correlation spectroscopy with sub-diffraction-limited resolution using near-field optical probes,” Appl. Phys. Lett. 93, 163904 (2008).
[CrossRef]

Terry, B.

J. Widengren, B. Terry, and R. Rigler, “Protonation kinetics of GFP and FITC investigated by FCS--aspects of the use of fluorescent indicators for measuring pH,” Chem. Phys. 249, 259-271 (1999).
[CrossRef]

Thompson, N. L.

A. G. Palmer III and N. L. Thompson, “Optical spatial intensity profiles for high order autocorrelation in fluorescence spectroscopy,” Appl. Opt. 28, 1214-1220 (1989).
[CrossRef]

N. L. Thompson, T. P. Burghardt, and D. Axelrod, “Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery and correlation spectroscopy,” Biophys. J. 33, 435-454 (1981).
[CrossRef]

Turner, S. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682-686 (2003).
[CrossRef]

Vercammen, J.

T. Krouglova, J. Vercammen, and Y. Engelborghs, “Correct diffusion coefficient of proteins in fluorescence correlation spectroscopy. Application to tubulin oligomers induced by Mg2+ and Paclitaxel,” Biophys. J. 87, 2635-2646 (2004).
[CrossRef]

Verdes, D.

J. Ries, T. Ruckstuhl, D. Verdes, and P. Schwille, “Supercritical angle fluorescence correlation spectroscopy,” Biophys. J. 94, 221-229 (2008).
[CrossRef]

Vobornik, D.

D. Vobornik, D. S. Bank, Z. Lu, C. Fradin, R. Taylor, and L. J. Johnston, “Fluorescence correlation spectroscopy with sub-diffraction-limited resolution using near-field optical probes,” Appl. Phys. Lett. 93, 163904 (2008).
[CrossRef]

von Middendorff, C.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159-1163 (2009).

Webb, W. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682-686 (2003).
[CrossRef]

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83, 2300-2317 (2002).
[CrossRef]

D. Magde, W. W. Webb, and E. L. Elson, “Fluorescence correlation spectroscopy. III. Uniform translation and laminar flow,” Biopolymers 17, 361-376 (1978).
[CrossRef]

D. Koppel, D. Axelrod, J. Schlessinger, E. L. Elson, and W. W. Webb, “Dynamics of fluorescence marker concentration as a probe of mobility,” Biophys. J. 16, 1315-1329 (1976).
[CrossRef]

D. Magde, E. L. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system--measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29, 705-708 (1972).
[CrossRef]

Widengren, J.

J. Widengren and P. Schwille, “Characterization of photoinduced isomerization and back-isomerization of the cyanine dye Cy5 by fluorescence correlation spectroscopy,” J. Phys. Chem. A 104, 6416-6428 (2000).
[CrossRef]

J. Widengren, B. Terry, and R. Rigler, “Protonation kinetics of GFP and FITC investigated by FCS--aspects of the use of fluorescent indicators for measuring pH,” Chem. Phys. 249, 259-271 (1999).
[CrossRef]

J. Widengren, Ü. Mets, and R. Rigler, “Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study,” J. Phys. Chem. 99, 13368-13377(1995).
[CrossRef]

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22, 169-175 (1993).
[CrossRef]

Yariv, A.

A. Yariv, ed., Optical Electronics, 4th ed. (Saunders College, 1991).

Zander, C.

J. Enderlein and C. Zander, “Theoretical foundations of single molecule detection in solution,” in Single Molecule Detection in Solution, Ch. Zander, J. Enderlein, and R. A. Keller, eds. (Wiley-VCH, 2002), Chap. 2, p. 21.

Zare, R. N.

B. Huang, T. D. Perroud, and R. N. Zare, “Photon counting histogram: one-photon excitation,” Chem. Phys. Chem. 5, 1523-1531 (2004).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

D. Vobornik, D. S. Bank, Z. Lu, C. Fradin, R. Taylor, and L. J. Johnston, “Fluorescence correlation spectroscopy with sub-diffraction-limited resolution using near-field optical probes,” Appl. Phys. Lett. 93, 163904 (2008).
[CrossRef]

Biophys. J. (9)

D. Koppel, D. Axelrod, J. Schlessinger, E. L. Elson, and W. W. Webb, “Dynamics of fluorescence marker concentration as a probe of mobility,” Biophys. J. 16, 1315-1329 (1976).
[CrossRef]

K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, and H. G. Craighead, “λ-repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides,” Biophys. J. 88, 2145-2153 (2005).
[CrossRef]

T. Krouglova, J. Vercammen, and Y. Engelborghs, “Correct diffusion coefficient of proteins in fluorescence correlation spectroscopy. Application to tubulin oligomers induced by Mg2+ and Paclitaxel,” Biophys. J. 87, 2635-2646 (2004).
[CrossRef]

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83, 2300-2317 (2002).
[CrossRef]

Y. Chen, J. D. Müller, P. T. C. So, and E. Gratton, “The photon counting histogram in fluorescence fluctuation spectroscopy,” Biophys. J. 77, 553-567 (1999).
[CrossRef]

N. L. Thompson, T. P. Burghardt, and D. Axelrod, “Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery and correlation spectroscopy,” Biophys. J. 33, 435-454 (1981).
[CrossRef]

J. Ries, T. Ruckstuhl, D. Verdes, and P. Schwille, “Supercritical angle fluorescence correlation spectroscopy,” Biophys. J. 94, 221-229 (2008).
[CrossRef]

K. M. Berland, P. T. C. So, and E. Gratton, “Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment,” Biophys. J. 68, 694-701 (1995).
[CrossRef]

A. Arkhipov, J. Hüve, M. Kahms, R. Peters, and K. Schulten, “Continous fluorescence microphotolysis and correlation spectroscopy using 4Pi microscopy,” Biophys. J. 93, 4006-4017(2007).
[CrossRef]

Biopolymers (2)

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13, 1-27(1974).
[CrossRef]

D. Magde, W. W. Webb, and E. L. Elson, “Fluorescence correlation spectroscopy. III. Uniform translation and laminar flow,” Biopolymers 17, 361-376 (1978).
[CrossRef]

Chem. Phys. (1)

J. Widengren, B. Terry, and R. Rigler, “Protonation kinetics of GFP and FITC investigated by FCS--aspects of the use of fluorescent indicators for measuring pH,” Chem. Phys. 249, 259-271 (1999).
[CrossRef]

Chem. Phys. Chem. (2)

B. Huang, T. D. Perroud, and R. N. Zare, “Photon counting histogram: one-photon excitation,” Chem. Phys. Chem. 5, 1523-1531 (2004).
[CrossRef]

J. Enderlein, I. Gregor, D. Patra, T. Dertinger, and U. B. Kaupp, “Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration,” Chem. Phys. Chem. 6, 2324-2336 (2005).
[CrossRef]

Curr. Pharm. Biotechnol. (2)

J. Enderlein, I. Gregor, D. Patra, and J. Fitter, “Art and artefacts of fluorescence correlation spectroscopy,” Curr. Pharm. Biotechnol. 5, 155-161 (2004).

H. Blom, L. Kastrup, and C. Eggeling, “Fluorescence fluctuation spectroscopy in reduced detection volumes,” Curr. Pharm. Biotechnol. 7, 51-66 (2006).

Eur. Biophys. J. (2)

P. Kask, R. Günter, and P. Axhausen, “Statistical accuracy in fluorescence fluctuation experiments,” Eur. Biophys. J. 25, 163-169 (1997).
[CrossRef]

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22, 169-175 (1993).
[CrossRef]

J. Chem. Phys. (1)

S. R. Aragon and R. Pecora, “Fluorescence correlation spectroscopy as a probe of molecular dynamics,” J. Chem. Phys. 64, 1791-1803 (1976).
[CrossRef]

J. Phys. Chem. (1)

J. Widengren, Ü. Mets, and R. Rigler, “Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study,” J. Phys. Chem. 99, 13368-13377(1995).
[CrossRef]

J. Phys. Chem. A (1)

J. Widengren and P. Schwille, “Characterization of photoinduced isomerization and back-isomerization of the cyanine dye Cy5 by fluorescence correlation spectroscopy,” J. Phys. Chem. A 104, 6416-6428 (2000).
[CrossRef]

Nature (1)

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159-1163 (2009).

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

D. Magde, E. L. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system--measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29, 705-708 (1972).
[CrossRef]

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volume,” Phys. Rev. Lett. 94, 178104 (2005).
[CrossRef]

Rep. Prog. Phys. (1)

O. Krichevsky and G. Bonnet, “Fluorescence-correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251-297 (2002).
[CrossRef]

Science (1)

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682-686 (2003).
[CrossRef]

Talanta (1)

C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Diffusion coefficient measurement in microfluidic devices,” Talanta 56, 365-373 (2002).
[CrossRef]

Other (5)

J. B. Pawley, ed., Handbook of Biological Confocal Microscopy, 2nd ed. (Plenum, 1995).

A. Yariv, ed., Optical Electronics, 4th ed. (Saunders College, 1991).

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Table (Dover, 1972).

J. Enderlein and C. Zander, “Theoretical foundations of single molecule detection in solution,” in Single Molecule Detection in Solution, Ch. Zander, J. Enderlein, and R. A. Keller, eds. (Wiley-VCH, 2002), Chap. 2, p. 21.

R. Rigler and E. S. Elson, eds., Fluorescence Correlation Spectroscopy--Theory and Application (Springer-Verlag, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Normalized spatial intensity distribution of an assumed rectangular (R, solid curve), Gaussian (G, dotted curve), and Lorentzian (L, dashed curve) molecular detection efficiency function. All distributions have the same full width at half- maximum. We have chosen b = c = 0.2 μm and z 0 = FWHM ( 2 ln 2 ) 1 / 2 = 0.34 μm .

Fig. 2
Fig. 2

Normalized autocorrelation functions for the rectangular [R, solid curve, Eq. (10)], the Gaussian [G, dotted curve], and the Lorentzian [L, dashed curve, Eq. (12)] intensity distributions, as functions of the dimensionless parameter v. Inserting τ = v z 0 2 / 4 D in Eqs. (10, 12) enables plotting of the autocorrelation functions using the same dimensionless parameter.

Fig. 3
Fig. 3

Experimentally measured and with Eq. (13) a fitted autocorrelation curve for freely diffusing TRITC dye molecules. The inset shows the full time range. The number of molecules deduced from the fit was N = 6.4 . The diffusion time in the cross-sectional plane ( τ D G = ω 0 2 / 4 D ) and along the optical axis ( τ D L = c 2 / D ) were simultaneously deduced to τ D G = 0.09 ms and τ D L = 5.1 ms .

Fig. 4
Fig. 4

Experimentally deduced spatial intensity distributions in the axial direction. In the main figure, the deduced Lorentzian distribution, c = 1.4 μm (L, dashed curve), is compared to a Gaussian distribution having the same FWHM (i.e., z 0 = 2.4 μm , G, dotted curve). In the inset, the deduced Lorentzian distribution is compared to a distribution generated by fitting the autocorrelation function assuming only Gaussian expressions (yielding s = 11 and ω 0 = 0.38 μm ).

Fig. 5
Fig. 5

Spatial distribution of the laser I ( ρ , z ) (top), the collection efficiency function, CEF ( ρ , z ) (middle), and the molecular detection efficiency function MDF ( ρ , Z ) (lower). All graphs are normalized to unity.

Fig. 6
Fig. 6

Axial profile of the computed MDF is shown (asterisks) together with the fits to a Lorentzian intensity distribution ( c = 0.47 μm , fit L, dashed curve) and a Gaussian intensity distribution ( z 0 = 0.89 μm , fit G, dotted curve).

Tables (1)

Tables Icon

Table 1 Summary of Commonly Used Spatial Intensity Distributions in FCS, Together with Deduced Expressions for the Time Dependent Part of the Autocorrelation Function

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

MDF ( ρ , z ) = CEF ( ρ , z ) I ( ρ , z ) .
CEF ( ρ , z ) = S circ ( ρ / a ) PSF ( ρ ρ , z ) d ρ .
F ( t ) = κ MDF ( ρ , z ) C ( ρ , z , t ) d Ω .
g ( τ ) = F ( t ) F ( t + τ ) / F 2 = 1 + δ F ( t ) δ F ( t + τ ) F 2 .
g ( τ ) | MDF ( q ) | 2 exp ( D | q | 2 τ ) d q | MDF ( q ) | 2 d q .
I ( ρ , z ) = 2 P π ω 2 ( z ) exp ( 2 ρ 2 ω 2 ( z ) ) ,
MDF ( ρ , z ) 1 1 + ( z / c ) 2 exp ( 2 ρ 2 / ω 0 2 ) ,
g ( τ ) exp ( 1 8 z 0 2 q z 2 ) 2 exp ( D q z 2 τ ) d q z exp ( 1 8 z 0 2 q z 2 ) 2 d q z .
g ( τ ) sin ( 2 b q z ) 2 ( 2 b q z ) 2 exp ( D q z 2 τ ) d q z sin ( 2 b q z ) 2 ( 2 b q z ) 2 d q z .
g ( τ ) ( 4 D τ ) 1 / 2 ( b 2 ) 1 / 2 ( Γ ( 1 2 , 0 ) Γ ( 1 2 , b 2 D τ ) ) ( 4 π b 2 ) 1 / 2 ,
g ( τ ) exp ( 2 c q z ) exp ( D q z 2 τ ) d q z exp ( 2 c q z ) d q z .
g ( τ ) exp ( c 2 / D τ ) ( π D τ ) 1 / 2 ( 1 e r f [ c / ( D τ ) 1 / 2 ] ) D τ / c ,
g ( τ ) = 1 + 1 N ( 1 + τ / τ D G ) 1 exp ( τ D L ) ( π τ D L ) 1 / 2 ( 1 e r f ( τ D L ) 1 / 2 ) .

Metrics