Abstract

A macrobending-based all-fiber refractometer sensor with a simple optical configuration is proposed and investigated both theoretically and experimentally. The proposed fiber refractometer sensor consists of a single-loop structure of bare macrobending standard single-mode fiber (SMF28) with a selected bending radius and reduced cladding diameter. The well-known scalar approximation theory is employed to theoretically predict the characteristics of the proposed fiber refractometer sensor. An approach to improve the resolution of the refractometer is presented, which shows that the refractometer with a reduced cladding diameter of 81μm has an experimentally verified resolution of 5.75×105 for a refractive index range from 1.4586 to 1.5396 at the wavelength of 1550nm.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription