Abstract

A macrobending-based all-fiber refractometer sensor with a simple optical configuration is proposed and investigated both theoretically and experimentally. The proposed fiber refractometer sensor consists of a single-loop structure of bare macrobending standard single-mode fiber (SMF28) with a selected bending radius and reduced cladding diameter. The well-known scalar approximation theory is employed to theoretically predict the characteristics of the proposed fiber refractometer sensor. An approach to improve the resolution of the refractometer is presented, which shows that the refractometer with a reduced cladding diameter of 81μm has an experimentally verified resolution of 5.75×105 for a refractive index range from 1.4586 to 1.5396 at the wavelength of 1550nm.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
    [CrossRef]
  2. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253-1255(2005).
    [CrossRef]
  3. T. Wei, Y. Han, Y. Li, H.-L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16, 5764-5769 (2008).
    [CrossRef] [PubMed]
  4. Z. Tian, S. S.-H. Yam, and H.-P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33, 1105-1107(2008).
    [CrossRef] [PubMed]
  5. J. Villatoro and D. Monzón-Hernández, “Low-cost optical fiber refractive-index sensor based on core diameter mismatch,” J. Lightwave Technol. 24, 1409-1413 (2006).
    [CrossRef]
  6. Q. Wang and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Opt. Lett. 31, 317-319 (2006).
    [CrossRef] [PubMed]
  7. Y. Murakami and H. Tsuchia, “Bending losses of coated single-mode optical fibres,” IEEE J. Quantum Electron. 14, 495-501(1978).
    [CrossRef]
  8. G. J. Veldhuis and P. V. Lambeck, “Highly-sensitive passive integrated optical spiral-shaped waveguide refractometer,” Appl. Phys. Lett. 71, 2895-2897 (1997).
    [CrossRef]
  9. G. J. Veldhuis, L. E. W. van der Veen, and P. V. Lambeck, “Integrated optical refractometer based on waveguide bend loss,” J. Lightwave Technol. 17, 857-864 (1999).
    [CrossRef]
  10. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. 66, 216-220 (1976).
    [CrossRef]
  11. I. Valiente and C. Vassallo, “New formalism for bending losses in coated single-mode optical fibres,” Electron. Lett. 25, 1544-1545 (1989).
    [CrossRef]
  12. H. Renner, “Bending losses of coated single-mode fibers: a simple approach,” J. Lightwave Technol. 10, 544-551 (1992).
    [CrossRef]
  13. L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15, 671-679 (1997).
    [CrossRef]
  14. Q. Wang, G. Farrell, and T. Freir, “Theoretical and experimental investigations of macro-bend losses for standard single mode fibers,” Opt. Express 13, 4476-4484 (2005).
    [CrossRef] [PubMed]

2008 (2)

2006 (2)

2005 (3)

Q. Wang, G. Farrell, and T. Freir, “Theoretical and experimental investigations of macro-bend losses for standard single mode fibers,” Opt. Express 13, 4476-4484 (2005).
[CrossRef] [PubMed]

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253-1255(2005).
[CrossRef]

1999 (1)

1997 (2)

L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15, 671-679 (1997).
[CrossRef]

G. J. Veldhuis and P. V. Lambeck, “Highly-sensitive passive integrated optical spiral-shaped waveguide refractometer,” Appl. Phys. Lett. 71, 2895-2897 (1997).
[CrossRef]

1992 (1)

H. Renner, “Bending losses of coated single-mode fibers: a simple approach,” J. Lightwave Technol. 10, 544-551 (1992).
[CrossRef]

1989 (1)

I. Valiente and C. Vassallo, “New formalism for bending losses in coated single-mode optical fibres,” Electron. Lett. 25, 1544-1545 (1989).
[CrossRef]

1978 (1)

Y. Murakami and H. Tsuchia, “Bending losses of coated single-mode optical fibres,” IEEE J. Quantum Electron. 14, 495-501(1978).
[CrossRef]

1976 (1)

Chryssis, A. N.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253-1255(2005).
[CrossRef]

Dagenais, M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253-1255(2005).
[CrossRef]

Farrell, G.

Faustini, L.

L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15, 671-679 (1997).
[CrossRef]

Freir, T.

Han, Y.

Huang, Y. Y.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Lambeck, P. V.

G. J. Veldhuis, L. E. W. van der Veen, and P. V. Lambeck, “Integrated optical refractometer based on waveguide bend loss,” J. Lightwave Technol. 17, 857-864 (1999).
[CrossRef]

G. J. Veldhuis and P. V. Lambeck, “Highly-sensitive passive integrated optical spiral-shaped waveguide refractometer,” Appl. Phys. Lett. 71, 2895-2897 (1997).
[CrossRef]

Lee, R. K.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Lee, S. B.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253-1255(2005).
[CrossRef]

Lee, S. M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253-1255(2005).
[CrossRef]

Li, Y.

Liang, W.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Loock, H.-P.

Marcuse, D.

Martini, G.

L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15, 671-679 (1997).
[CrossRef]

Monzón-Hernández, D.

Murakami, Y.

Y. Murakami and H. Tsuchia, “Bending losses of coated single-mode optical fibres,” IEEE J. Quantum Electron. 14, 495-501(1978).
[CrossRef]

Renner, H.

H. Renner, “Bending losses of coated single-mode fibers: a simple approach,” J. Lightwave Technol. 10, 544-551 (1992).
[CrossRef]

Saini, S. S.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253-1255(2005).
[CrossRef]

Tian, Z.

Tsai, H.-L.

Tsuchia, H.

Y. Murakami and H. Tsuchia, “Bending losses of coated single-mode optical fibres,” IEEE J. Quantum Electron. 14, 495-501(1978).
[CrossRef]

Valiente, I.

I. Valiente and C. Vassallo, “New formalism for bending losses in coated single-mode optical fibres,” Electron. Lett. 25, 1544-1545 (1989).
[CrossRef]

van der Veen, L. E. W.

Vassallo, C.

I. Valiente and C. Vassallo, “New formalism for bending losses in coated single-mode optical fibres,” Electron. Lett. 25, 1544-1545 (1989).
[CrossRef]

Veldhuis, G. J.

G. J. Veldhuis, L. E. W. van der Veen, and P. V. Lambeck, “Integrated optical refractometer based on waveguide bend loss,” J. Lightwave Technol. 17, 857-864 (1999).
[CrossRef]

G. J. Veldhuis and P. V. Lambeck, “Highly-sensitive passive integrated optical spiral-shaped waveguide refractometer,” Appl. Phys. Lett. 71, 2895-2897 (1997).
[CrossRef]

Villatoro, J.

Wang, Q.

Wei, T.

Xiao, H.

Xu, Y.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Yam, S. S.-H.

Yariv, A.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

G. J. Veldhuis and P. V. Lambeck, “Highly-sensitive passive integrated optical spiral-shaped waveguide refractometer,” Appl. Phys. Lett. 71, 2895-2897 (1997).
[CrossRef]

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Electron. Lett. (1)

I. Valiente and C. Vassallo, “New formalism for bending losses in coated single-mode optical fibres,” Electron. Lett. 25, 1544-1545 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Murakami and H. Tsuchia, “Bending losses of coated single-mode optical fibres,” IEEE J. Quantum Electron. 14, 495-501(1978).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253-1255(2005).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. (1)

Opt. Express (2)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of macrobending single-mode-fiber-based refractometer sensor.

Fig. 2
Fig. 2

Calculated bend losses versus bend radius and refractive index for SMF28 single-mode-fiber-based refractometer, where the operating wavelength is 1550 nm .

Fig. 3
Fig. 3

Schematic of the experimental setup for refractive index sensing.

Fig. 4
Fig. 4

Calculated and measured differences of bending loss as a function of refractive index for bending radii in the vicinity of 7.7 mm , where the operating wavelength is 1550 nm .

Fig. 5
Fig. 5

Calculated bending loss versus cladding radii and refractive index for SMF28 single-mode-fiber-based refractometer. The bending radius is 7.7 mm and the wavelength is 1550 nm .

Fig. 6
Fig. 6

Microscope images of etched bare SMF28 fiber (a) after the chemical etching process (calibration bar is 40 μm ), surface defects visible; and (b) after the fire-polishing process, surface quality improved (calibration bar is 80 μm ).

Fig. 7
Fig. 7

Calculated and measured the differences of bend loss as a function of refractive index at a bending radius of 7.7 mm , where the wavelength is 1550 nm and the cladding diameter is (a) 67 and (b)  81 μm .

Tables (1)

Tables Icon

Table 1 Specified Refractive Indices of Cargille Oils at Wavelengths of 589.3 and 1550 nm , at a Temperature of 25 ° C .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Resolution = Measureable RI range Discrimination range × Resolution of detector.

Metrics