Abstract

Multimode, low-gain continuous-wave lasers are often subject to having intracavity apertures that create diffractive losses inside the optical resonator. For very low-gain systems with short gain lengths, highly reflective mirrors are required to obtain laser oscillation. The Rigrod theory was modified to include a diffractive loss term and comparisons with experimental data show that the intracavity diffractive losses, while small in magnitude, can play a significant role for these low-gain cases with high mirror reflectivities.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. W. Rigrod, “Gain saturation and output power of optical masers,” J. Appl. Phys. 34, 2602-2609 (1963).
    [CrossRef]
  2. W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36 (8), 2487-2490 (1965).
    [CrossRef]
  3. W. W. Rigrod, “Homogeneously broadened CW lasers with uniform distributed loss,” IEEE J. Quantum Electron. 14, 377-381 (1978).
    [CrossRef]
  4. H. Mirels and S. B. Batdorf, “Centerline laser radiation intensity in an unstable cavity,” Appl. Opt. 11, 2384-2386 (1972).
    [CrossRef] [PubMed]
  5. G. M. Schindler, “Optimum output efficiency of homogeneously broadened lasers with constant loss,” IEEE J. Quantum Electron. 16, 546-549 (1980).
    [CrossRef]
  6. D. Eimerl, “Optical extraction characteristics of homogeneously broadened cw lasers with nonsaturating lasers,” J. Appl. Phys. 51, 3008-3016 (1980).
    [CrossRef]
  7. T. R. Ferguson, “Lasers with saturable gain and distributed loss,” Appl. Opt. 26, 2522-2527 (1987).
    [CrossRef] [PubMed]
  8. T. R. Ferguson and W. P. Latham, “Efficiency and equivalence of homogeneously broadened lossy lasers,” Appl. Opt. 31, 4113-4121 (1992).
    [CrossRef] [PubMed]
  9. D. L. Carroll and L. H. Sentman, “Maximizing output power of a low-gain laser system,” Appl. Opt. 32, 3930-3941 (1993).
    [CrossRef] [PubMed]
  10. D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
    [CrossRef]
  11. J. W. Zimmerman, G. F. Benavides, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, and W. C. Solomon, “Measurements of improved ElectricOIL performance, gain, and laser power,” presented at the 40th Plasmadynamics and Lasers Conference, San Antonio, Texas, 22-25 June 2009, AIAA paper 2009-4059.
  12. A. D. Palla, J. W. Zimmerman, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, T. C. Lim, and W. C. Solomon, “Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system,” J. Phys. Chem. A 111, 6713-6721 (2007).
    [CrossRef] [PubMed]
  13. J. W. Zimmerman, G. F. Benavides, A. D. Palla, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, and W. C. Solomon, “Gain recovery in an electric oxygen-iodine laser,” Appl. Phys. Lett. 94, 021109 (2009).
    [CrossRef]
  14. T. L. Rittenhouse, S. P. Phipps, and C. A. Helms, “Performance of a high-efficiency 5 cm gain length supersonic chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 35, 857-866 (1999).
    [CrossRef]
  15. D. L. Carroll, D. M. King, L. Fockler, D. Stromberg, W. C. Solomon, L. H. Sentman, and C. H. Fisher, “High-performance chemical oxygen-iodine laser using nitrogen diluent for commercial applications,” IEEE J. Quantum Electron. 36, 40-51(2000).
    [CrossRef]
  16. G. D. Hager, C. A. Helms, K. A. Truesdell, D. Plummer, J. Erkkila, and P. Crowell, “A simplified analytic model for gain saturation and power extraction in the flowing chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 32, 1525-1536 (1996).
    [CrossRef]
  17. D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, N. R. Richardson, K. Kittell, and W. C. Solomon, “Studies of cw laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” IEEE J. Quantum Electron. 41, 1309-1318 (2005).
    [CrossRef]

2009 (1)

J. W. Zimmerman, G. F. Benavides, A. D. Palla, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, and W. C. Solomon, “Gain recovery in an electric oxygen-iodine laser,” Appl. Phys. Lett. 94, 021109 (2009).
[CrossRef]

2007 (1)

A. D. Palla, J. W. Zimmerman, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, T. C. Lim, and W. C. Solomon, “Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system,” J. Phys. Chem. A 111, 6713-6721 (2007).
[CrossRef] [PubMed]

2005 (2)

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, N. R. Richardson, K. Kittell, and W. C. Solomon, “Studies of cw laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” IEEE J. Quantum Electron. 41, 1309-1318 (2005).
[CrossRef]

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

2000 (1)

D. L. Carroll, D. M. King, L. Fockler, D. Stromberg, W. C. Solomon, L. H. Sentman, and C. H. Fisher, “High-performance chemical oxygen-iodine laser using nitrogen diluent for commercial applications,” IEEE J. Quantum Electron. 36, 40-51(2000).
[CrossRef]

1999 (1)

T. L. Rittenhouse, S. P. Phipps, and C. A. Helms, “Performance of a high-efficiency 5 cm gain length supersonic chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 35, 857-866 (1999).
[CrossRef]

1996 (1)

G. D. Hager, C. A. Helms, K. A. Truesdell, D. Plummer, J. Erkkila, and P. Crowell, “A simplified analytic model for gain saturation and power extraction in the flowing chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 32, 1525-1536 (1996).
[CrossRef]

1993 (1)

1992 (1)

1987 (1)

1980 (2)

G. M. Schindler, “Optimum output efficiency of homogeneously broadened lasers with constant loss,” IEEE J. Quantum Electron. 16, 546-549 (1980).
[CrossRef]

D. Eimerl, “Optical extraction characteristics of homogeneously broadened cw lasers with nonsaturating lasers,” J. Appl. Phys. 51, 3008-3016 (1980).
[CrossRef]

1978 (1)

W. W. Rigrod, “Homogeneously broadened CW lasers with uniform distributed loss,” IEEE J. Quantum Electron. 14, 377-381 (1978).
[CrossRef]

1972 (1)

1965 (1)

W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36 (8), 2487-2490 (1965).
[CrossRef]

1963 (1)

W. W. Rigrod, “Gain saturation and output power of optical masers,” J. Appl. Phys. 34, 2602-2609 (1963).
[CrossRef]

Batdorf, S. B.

Benavides, G. F.

J. W. Zimmerman, G. F. Benavides, A. D. Palla, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, and W. C. Solomon, “Gain recovery in an electric oxygen-iodine laser,” Appl. Phys. Lett. 94, 021109 (2009).
[CrossRef]

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, N. R. Richardson, K. Kittell, and W. C. Solomon, “Studies of cw laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” IEEE J. Quantum Electron. 41, 1309-1318 (2005).
[CrossRef]

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

J. W. Zimmerman, G. F. Benavides, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, and W. C. Solomon, “Measurements of improved ElectricOIL performance, gain, and laser power,” presented at the 40th Plasmadynamics and Lasers Conference, San Antonio, Texas, 22-25 June 2009, AIAA paper 2009-4059.

Carroll, D. L.

J. W. Zimmerman, G. F. Benavides, A. D. Palla, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, and W. C. Solomon, “Gain recovery in an electric oxygen-iodine laser,” Appl. Phys. Lett. 94, 021109 (2009).
[CrossRef]

A. D. Palla, J. W. Zimmerman, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, T. C. Lim, and W. C. Solomon, “Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system,” J. Phys. Chem. A 111, 6713-6721 (2007).
[CrossRef] [PubMed]

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, N. R. Richardson, K. Kittell, and W. C. Solomon, “Studies of cw laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” IEEE J. Quantum Electron. 41, 1309-1318 (2005).
[CrossRef]

D. L. Carroll, D. M. King, L. Fockler, D. Stromberg, W. C. Solomon, L. H. Sentman, and C. H. Fisher, “High-performance chemical oxygen-iodine laser using nitrogen diluent for commercial applications,” IEEE J. Quantum Electron. 36, 40-51(2000).
[CrossRef]

D. L. Carroll and L. H. Sentman, “Maximizing output power of a low-gain laser system,” Appl. Opt. 32, 3930-3941 (1993).
[CrossRef] [PubMed]

J. W. Zimmerman, G. F. Benavides, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, and W. C. Solomon, “Measurements of improved ElectricOIL performance, gain, and laser power,” presented at the 40th Plasmadynamics and Lasers Conference, San Antonio, Texas, 22-25 June 2009, AIAA paper 2009-4059.

Crowell, P.

G. D. Hager, C. A. Helms, K. A. Truesdell, D. Plummer, J. Erkkila, and P. Crowell, “A simplified analytic model for gain saturation and power extraction in the flowing chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 32, 1525-1536 (1996).
[CrossRef]

Eimerl, D.

D. Eimerl, “Optical extraction characteristics of homogeneously broadened cw lasers with nonsaturating lasers,” J. Appl. Phys. 51, 3008-3016 (1980).
[CrossRef]

Erkkila, J.

G. D. Hager, C. A. Helms, K. A. Truesdell, D. Plummer, J. Erkkila, and P. Crowell, “A simplified analytic model for gain saturation and power extraction in the flowing chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 32, 1525-1536 (1996).
[CrossRef]

Ferguson, T. R.

Fisher, C. H.

D. L. Carroll, D. M. King, L. Fockler, D. Stromberg, W. C. Solomon, L. H. Sentman, and C. H. Fisher, “High-performance chemical oxygen-iodine laser using nitrogen diluent for commercial applications,” IEEE J. Quantum Electron. 36, 40-51(2000).
[CrossRef]

Fockler, L.

D. L. Carroll, D. M. King, L. Fockler, D. Stromberg, W. C. Solomon, L. H. Sentman, and C. H. Fisher, “High-performance chemical oxygen-iodine laser using nitrogen diluent for commercial applications,” IEEE J. Quantum Electron. 36, 40-51(2000).
[CrossRef]

Hager, G. D.

G. D. Hager, C. A. Helms, K. A. Truesdell, D. Plummer, J. Erkkila, and P. Crowell, “A simplified analytic model for gain saturation and power extraction in the flowing chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 32, 1525-1536 (1996).
[CrossRef]

Helms, C. A.

T. L. Rittenhouse, S. P. Phipps, and C. A. Helms, “Performance of a high-efficiency 5 cm gain length supersonic chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 35, 857-866 (1999).
[CrossRef]

G. D. Hager, C. A. Helms, K. A. Truesdell, D. Plummer, J. Erkkila, and P. Crowell, “A simplified analytic model for gain saturation and power extraction in the flowing chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 32, 1525-1536 (1996).
[CrossRef]

King, D. M.

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, N. R. Richardson, K. Kittell, and W. C. Solomon, “Studies of cw laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” IEEE J. Quantum Electron. 41, 1309-1318 (2005).
[CrossRef]

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

D. L. Carroll, D. M. King, L. Fockler, D. Stromberg, W. C. Solomon, L. H. Sentman, and C. H. Fisher, “High-performance chemical oxygen-iodine laser using nitrogen diluent for commercial applications,” IEEE J. Quantum Electron. 36, 40-51(2000).
[CrossRef]

Kittell, K.

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, N. R. Richardson, K. Kittell, and W. C. Solomon, “Studies of cw laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” IEEE J. Quantum Electron. 41, 1309-1318 (2005).
[CrossRef]

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

Kushner, M. J.

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

Latham, W. P.

Laystrom, J. K.

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, N. R. Richardson, K. Kittell, and W. C. Solomon, “Studies of cw laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” IEEE J. Quantum Electron. 41, 1309-1318 (2005).
[CrossRef]

Lim, T. C.

A. D. Palla, J. W. Zimmerman, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, T. C. Lim, and W. C. Solomon, “Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system,” J. Phys. Chem. A 111, 6713-6721 (2007).
[CrossRef] [PubMed]

Mirels, H.

Palla, A. D.

J. W. Zimmerman, G. F. Benavides, A. D. Palla, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, and W. C. Solomon, “Gain recovery in an electric oxygen-iodine laser,” Appl. Phys. Lett. 94, 021109 (2009).
[CrossRef]

A. D. Palla, J. W. Zimmerman, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, T. C. Lim, and W. C. Solomon, “Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system,” J. Phys. Chem. A 111, 6713-6721 (2007).
[CrossRef] [PubMed]

Phipps, S. P.

T. L. Rittenhouse, S. P. Phipps, and C. A. Helms, “Performance of a high-efficiency 5 cm gain length supersonic chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 35, 857-866 (1999).
[CrossRef]

Plummer, D.

G. D. Hager, C. A. Helms, K. A. Truesdell, D. Plummer, J. Erkkila, and P. Crowell, “A simplified analytic model for gain saturation and power extraction in the flowing chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 32, 1525-1536 (1996).
[CrossRef]

Richardson, N. R.

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, N. R. Richardson, K. Kittell, and W. C. Solomon, “Studies of cw laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” IEEE J. Quantum Electron. 41, 1309-1318 (2005).
[CrossRef]

Rigrod, W. W.

W. W. Rigrod, “Homogeneously broadened CW lasers with uniform distributed loss,” IEEE J. Quantum Electron. 14, 377-381 (1978).
[CrossRef]

W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36 (8), 2487-2490 (1965).
[CrossRef]

W. W. Rigrod, “Gain saturation and output power of optical masers,” J. Appl. Phys. 34, 2602-2609 (1963).
[CrossRef]

Rittenhouse, T. L.

T. L. Rittenhouse, S. P. Phipps, and C. A. Helms, “Performance of a high-efficiency 5 cm gain length supersonic chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 35, 857-866 (1999).
[CrossRef]

Schindler, G. M.

G. M. Schindler, “Optimum output efficiency of homogeneously broadened lasers with constant loss,” IEEE J. Quantum Electron. 16, 546-549 (1980).
[CrossRef]

Sentman, L. H.

D. L. Carroll, D. M. King, L. Fockler, D. Stromberg, W. C. Solomon, L. H. Sentman, and C. H. Fisher, “High-performance chemical oxygen-iodine laser using nitrogen diluent for commercial applications,” IEEE J. Quantum Electron. 36, 40-51(2000).
[CrossRef]

D. L. Carroll and L. H. Sentman, “Maximizing output power of a low-gain laser system,” Appl. Opt. 32, 3930-3941 (1993).
[CrossRef] [PubMed]

Solomon, W. C.

J. W. Zimmerman, G. F. Benavides, A. D. Palla, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, and W. C. Solomon, “Gain recovery in an electric oxygen-iodine laser,” Appl. Phys. Lett. 94, 021109 (2009).
[CrossRef]

A. D. Palla, J. W. Zimmerman, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, T. C. Lim, and W. C. Solomon, “Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system,” J. Phys. Chem. A 111, 6713-6721 (2007).
[CrossRef] [PubMed]

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, N. R. Richardson, K. Kittell, and W. C. Solomon, “Studies of cw laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” IEEE J. Quantum Electron. 41, 1309-1318 (2005).
[CrossRef]

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

D. L. Carroll, D. M. King, L. Fockler, D. Stromberg, W. C. Solomon, L. H. Sentman, and C. H. Fisher, “High-performance chemical oxygen-iodine laser using nitrogen diluent for commercial applications,” IEEE J. Quantum Electron. 36, 40-51(2000).
[CrossRef]

J. W. Zimmerman, G. F. Benavides, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, and W. C. Solomon, “Measurements of improved ElectricOIL performance, gain, and laser power,” presented at the 40th Plasmadynamics and Lasers Conference, San Antonio, Texas, 22-25 June 2009, AIAA paper 2009-4059.

Stafford, D. S.

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

Stromberg, D.

D. L. Carroll, D. M. King, L. Fockler, D. Stromberg, W. C. Solomon, L. H. Sentman, and C. H. Fisher, “High-performance chemical oxygen-iodine laser using nitrogen diluent for commercial applications,” IEEE J. Quantum Electron. 36, 40-51(2000).
[CrossRef]

Truesdell, K. A.

G. D. Hager, C. A. Helms, K. A. Truesdell, D. Plummer, J. Erkkila, and P. Crowell, “A simplified analytic model for gain saturation and power extraction in the flowing chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 32, 1525-1536 (1996).
[CrossRef]

Verdeyen, J. T.

J. W. Zimmerman, G. F. Benavides, A. D. Palla, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, and W. C. Solomon, “Gain recovery in an electric oxygen-iodine laser,” Appl. Phys. Lett. 94, 021109 (2009).
[CrossRef]

A. D. Palla, J. W. Zimmerman, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, T. C. Lim, and W. C. Solomon, “Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system,” J. Phys. Chem. A 111, 6713-6721 (2007).
[CrossRef] [PubMed]

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, N. R. Richardson, K. Kittell, and W. C. Solomon, “Studies of cw laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” IEEE J. Quantum Electron. 41, 1309-1318 (2005).
[CrossRef]

J. W. Zimmerman, G. F. Benavides, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, and W. C. Solomon, “Measurements of improved ElectricOIL performance, gain, and laser power,” presented at the 40th Plasmadynamics and Lasers Conference, San Antonio, Texas, 22-25 June 2009, AIAA paper 2009-4059.

Woodard, B. S.

J. W. Zimmerman, G. F. Benavides, A. D. Palla, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, and W. C. Solomon, “Gain recovery in an electric oxygen-iodine laser,” Appl. Phys. Lett. 94, 021109 (2009).
[CrossRef]

A. D. Palla, J. W. Zimmerman, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, T. C. Lim, and W. C. Solomon, “Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system,” J. Phys. Chem. A 111, 6713-6721 (2007).
[CrossRef] [PubMed]

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, N. R. Richardson, K. Kittell, and W. C. Solomon, “Studies of cw laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” IEEE J. Quantum Electron. 41, 1309-1318 (2005).
[CrossRef]

J. W. Zimmerman, G. F. Benavides, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, and W. C. Solomon, “Measurements of improved ElectricOIL performance, gain, and laser power,” presented at the 40th Plasmadynamics and Lasers Conference, San Antonio, Texas, 22-25 June 2009, AIAA paper 2009-4059.

Zimmerman, J. W.

J. W. Zimmerman, G. F. Benavides, A. D. Palla, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, and W. C. Solomon, “Gain recovery in an electric oxygen-iodine laser,” Appl. Phys. Lett. 94, 021109 (2009).
[CrossRef]

A. D. Palla, J. W. Zimmerman, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, T. C. Lim, and W. C. Solomon, “Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system,” J. Phys. Chem. A 111, 6713-6721 (2007).
[CrossRef] [PubMed]

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, N. R. Richardson, K. Kittell, and W. C. Solomon, “Studies of cw laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” IEEE J. Quantum Electron. 41, 1309-1318 (2005).
[CrossRef]

J. W. Zimmerman, G. F. Benavides, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, and W. C. Solomon, “Measurements of improved ElectricOIL performance, gain, and laser power,” presented at the 40th Plasmadynamics and Lasers Conference, San Antonio, Texas, 22-25 June 2009, AIAA paper 2009-4059.

Appl. Opt. (4)

Appl. Phys. Lett. (2)

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

J. W. Zimmerman, G. F. Benavides, A. D. Palla, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, and W. C. Solomon, “Gain recovery in an electric oxygen-iodine laser,” Appl. Phys. Lett. 94, 021109 (2009).
[CrossRef]

IEEE J. Quantum Electron. (6)

T. L. Rittenhouse, S. P. Phipps, and C. A. Helms, “Performance of a high-efficiency 5 cm gain length supersonic chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 35, 857-866 (1999).
[CrossRef]

D. L. Carroll, D. M. King, L. Fockler, D. Stromberg, W. C. Solomon, L. H. Sentman, and C. H. Fisher, “High-performance chemical oxygen-iodine laser using nitrogen diluent for commercial applications,” IEEE J. Quantum Electron. 36, 40-51(2000).
[CrossRef]

G. D. Hager, C. A. Helms, K. A. Truesdell, D. Plummer, J. Erkkila, and P. Crowell, “A simplified analytic model for gain saturation and power extraction in the flowing chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 32, 1525-1536 (1996).
[CrossRef]

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, N. R. Richardson, K. Kittell, and W. C. Solomon, “Studies of cw laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” IEEE J. Quantum Electron. 41, 1309-1318 (2005).
[CrossRef]

W. W. Rigrod, “Homogeneously broadened CW lasers with uniform distributed loss,” IEEE J. Quantum Electron. 14, 377-381 (1978).
[CrossRef]

G. M. Schindler, “Optimum output efficiency of homogeneously broadened lasers with constant loss,” IEEE J. Quantum Electron. 16, 546-549 (1980).
[CrossRef]

J. Appl. Phys. (3)

D. Eimerl, “Optical extraction characteristics of homogeneously broadened cw lasers with nonsaturating lasers,” J. Appl. Phys. 51, 3008-3016 (1980).
[CrossRef]

W. W. Rigrod, “Gain saturation and output power of optical masers,” J. Appl. Phys. 34, 2602-2609 (1963).
[CrossRef]

W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36 (8), 2487-2490 (1965).
[CrossRef]

J. Phys. Chem. A (1)

A. D. Palla, J. W. Zimmerman, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, T. C. Lim, and W. C. Solomon, “Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system,” J. Phys. Chem. A 111, 6713-6721 (2007).
[CrossRef] [PubMed]

Other (1)

J. W. Zimmerman, G. F. Benavides, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, and W. C. Solomon, “Measurements of improved ElectricOIL performance, gain, and laser power,” presented at the 40th Plasmadynamics and Lasers Conference, San Antonio, Texas, 22-25 June 2009, AIAA paper 2009-4059.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of laser with mirrors ( r 1 and r 2 ) and intracavity apertures ( δ 1 and δ 2 ) having unsaturated gain g o and gain length L. Normalized intensity levels (β) are shown for the forward and backward running waves in an asymmetric laser oscillator.

Fig. 2
Fig. 2

Schematic diagram showing the effect of an intracavity aperture ( δ 2 ) on the normalized intensity levels (β) transmitted and reflected back into the laser oscillator.

Fig. 3
Fig. 3

Comparison of original and modified Rigrod theory including a single-pass diffractive loss with experimental VertiCOIL data [14]. Total outcoupled power [using Eqs. (16, 19)] is plotted as a function of the reflectivity of mirror 1, r 1 . Rigrod parameters used were I sat = 5100 W / cm 2 , g o = 0.0145 cm 1 , L = 5.0 cm , A = 5.76 cm 2 ( = 1.8 cm × 3.2 cm ), r 2 = 0.9987 , a 1 = a 2 = a = 0.00031 , t = 1 r a , δ 1 = 0.0 , and δ 2 = 0.0009 (with all parameters taken from Rittenhouse et al. [14], except for I sat , which was not previously estimated).

Fig. 4
Fig. 4

Comparison of modified Rigrod theory including a single-pass diffractive loss with experimental VertiCOIL data [14]. Intracavity diffractive spill to outcoupled laser power [using Eq. (23)], ξ, is plotted as a function of the reflectivity of mirror 1, r 1 . Mirror and loss parameters used were r 2 = 0.9987 , a 1 = a 2 = a = 0.00031 , t = 1 r a , δ 1 = 0.0 , and δ 2 = 0.0009 .

Fig. 5
Fig. 5

Illustration of the effect of the aperture that clips off the shaded area, which results from diffraction. Note that the size of the unclipped beam A is exaggerated.

Fig. 6
Fig. 6

Comparison of original and modified Rigrod theory including diffractive losses with experimental ElectricOIL data [11]. Total outcoupled power [using Eqs. (16, 19)] is plotted as a function of the product of reflectivities of the two mirrors, r 1 r 2 . Rigrod parameters used were I sat = 700 W / cm 2 , g o = 0.0020 cm 1 , L = 5.0 cm , A = 8.87 cm 2 , a 1 = a 2 = a = 0.00002 , t = 1 r a , and δ 1 = δ 2 = δ = 0.00056 .

Fig. 7
Fig. 7

Comparison of experimental ElectricOIL data [11] with original Rigrod theory as I sat is varied. Rigrod pa rameters used were g o = 0.0020 cm 1 , L = 5.0 cm , A = 8.87 cm 2 , a 1 = a 2 = a = 0.00002 , and t = 1 r a . Note the diffractive term δ 1 = δ 2 = δ was zeroed.

Fig. 8
Fig. 8

Comparison of experimental ElectricOIL data [11] with original Rigrod theory as the absorption scattering term a is varied. Rigrod parameters used were I sat = 700 W / cm 2 , g o = 0.0020 cm 1 , L = 5.0 cm , A = 8.87 cm 2 , and t = 1 r a . Note the diffractive term δ 1 = δ 2 = δ was zeroed.

Fig. 9
Fig. 9

Comparison of experimental ElectricOIL data [11] with modified Rigrod theory including diffractive losses as I sat is varied. Rigrod parameters used were g o = 0.0020 cm 1 , L = 5.0 cm , A = 8.87 cm 2 , a 1 = a 2 = a = 0.00002 , t = 1 r a , and δ 1 = δ 2 = δ = 0.00056 .

Fig. 10
Fig. 10

Comparison of experimental ElectricOIL data [11] with original and modified Rigrod theory including diffractive losses as δ is varied. Rigrod parameters used were I sat = 700 W / cm 2 , g o = 0.0020 cm 1 , L = 5.0 cm , A = 8.87 cm 2 , a 1 = a 2 = a = 0.00002 , and t = 1 r a .

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

β + ( z ) = I + ( z ) I sat , β ( z ) = I ( z ) I sat ,
g ( z ) = g o ( 1 + β + + β ) ,
g ( z ) = 1 β + d β + d z = 1 β d β d z ,
β + β = constant = C .
R 1 = r 1 ( 1 δ 1 ) , R 2 = r 2 ( 1 δ 2 ) .
β 2 β 3 R 2 = β 4 β 1 R 1 = 1.
β 1 β 4 = β 2 β 3 = C ,
β 2 β 4 = R 1 R 2 .
g ( z ) = g o ( 1 + β + + C / β + ) ,
g o L = ln ( β 2 β 1 ) + β 2 β 1 C ( 1 β 2 1 β 1 ) ,
g o L = ln ( β 4 β 3 ) + β 4 β 3 C ( 1 β 4 1 β 3 ) .
2 g o L = ln ( 1 R 1 R 2 ) + 2 [ β 2 ( 1 R 2 ) + β 4 ( 1 R 1 ) ] .
β 2 = R 1 ( R 1 + R 2 ) ( 1 R 1 R 2 ) [ g o L + ln R 1 R 2 ] ,
β 4 = R 2 ( R 1 + R 2 ) ( 1 R 1 R 2 ) [ g o L + ln R 1 R 2 ] .
I out = I trans , 2 + I trans , 1 = I sat [ β 2 ( 1 δ 2 ) t 2 + β 4 ( 1 δ 1 ) t 1 ] ,
= I sat ( 1 δ 1 ) t 1 R 2 + ( 1 δ 2 ) t 2 R 1 ( R 1 + R 2 ) ( 1 R 1 R 2 ) [ g o L + ln R 1 R 2 ] .
I out = I sat ( 1 δ 1 ) t 1 ( 1 δ 2 ) r 2 + ( 1 δ 2 ) t 2 ( 1 δ 1 ) r 1 ( ( 1 δ 1 ) r 1 + ( 1 δ 2 ) r 2 ) ( 1 ( 1 δ 1 ) ( 1 δ 2 ) r 1 r 2 ) [ g o L + ln ( 1 δ 1 ) ( 1 δ 2 ) r 1 r 2 ] .
I out = I sat ( 1 δ ) [ t 1 r 2 + t 2 r 1 ] ( r 1 + r 2 ) [ 1 ( 1 δ ) r 1 r 2 ] [ g o L + ln { ( 1 δ ) r 1 r 2 } ] for     δ 1 = δ 2 = δ .
I out = I sat { ( 1 δ ) t [ 1 ( 1 δ ) r ] } { g o L + ln [ ( 1 δ ) r ] }
P out = I out A .
β IC β 2 = ( 1 δ 1 ) r 1 ( ( 1 δ 1 ) r 1 + ( 1 δ 2 ) r 2 ) ( 1 ( 1 δ 1 ) ( 1 δ 2 ) r 1 r 2 ) [ g o L + ln ( 1 δ 1 ) ( 1 δ 2 ) r 1 r 2 ]
P IC = β IC I sat A .
ξ = Diffracted Power Outcoupled Power = β 2 δ 2 + β 4 δ 1 β 2 ( 1 δ 2 ) t 2 + β 4 ( 1 δ 1 ) t 1 .
ξ = δ 2 ( 1 δ 1 ) r 1 + δ 1 ( 1 δ 2 ) r 2 ( 1 δ 2 ) t 2 ( 1 δ 1 ) r 1 + ( 1 δ 1 ) t 1 ( 1 δ 2 ) r 2 ,
ξ δ = δ ( r 1 + r 2 ) ( 1 δ ) [ t 2 r 1 + t 1 r 2 ] ,
ξ δ , r , t = δ ( 1 δ ) 1 t .
ξ δ , r , t , a = 0 = δ ( 1 δ ) ( 1 1 r ) .

Metrics