Abstract

Optical triggering via direct bleaching of a Cr:YAG saturable absorber was applied to a monolithic Nd:YAG/Cr:YAG laser crystal. The method uses a single laser diode bar to bleach a thin sheet within the saturable absorber from a direction orthogonal to the lasing axis. By placing the Q-switch at the time corresponding to the steepest slope (dT/dt) for change in transmission during bleaching, the pulse-to-pulse timing jitter showed a 13.2× reduction in standard deviation, from 132ns for free-running operation to 10ns with optical triggering. We measured that a fluence of 60kW/cm2 was sufficient to enable optical triggering, where a diode appropriately sized for the length of the Cr:YAG (3mm) would then require only 150W of optical power over a 12μs duration to enable effective jitter reduction. Additionally, we measured an increase in optical-to-optical efficiency with optical triggering, where the efficiency improved from 12% to 13.5%.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).
  2. D. E. Nieuwsma and J. Wang, “Design of an advanced diode-pumped solid-state laser for high altitude airborne operations,” Proc. SPIE 5659, 163-170 (2005).
    [CrossRef]
  3. Y. Shimony, Y. Kalisky, and B. H. T. Chai, “Quantitative studies of Cr4+:YAG as a saturable absorber for Nd:YAG laser,” Opt. Mater. 4, 547-551 (1995).
    [CrossRef]
  4. A. Agnesi, S. Dell'Acqua, C. Morello, G. Piccinno, G. C. Reali, and Z. Sun, “Diode-pumped neodymium lasers repetitively Q-switched by Cr4+:YAG solid-state saturable absorbers,” IEEE J. Quantum Electron. 3, 45-52 (1997).
    [CrossRef]
  5. L. Goldberg, J. Nettleton, B. Schilling, W. Trussell, and A. Hays, “Compact laser sources for laser designating, ranging, and active imaging,” Proc. SPIE 6552, 65520G (2007).
    [CrossRef]
  6. D. E. Nieuwsma and J. Wang, “Design of an advanced diode-pumped solid-state laser for high-altitude airborne operations,” Proc. SPIE 5659, 163-170 (2005).
    [CrossRef]
  7. J. B. Khurgin, F. Jin, G. Solyar, C. C. Wang, and S. Trivedi, “Cost-effective low timing jitter passively Q-switched diode-pumped solid-state laser with composite pumping pulses,” Appl. Opt. 41, 1095-1097 (2002).
    [CrossRef]
  8. H. Hemmati, “Laser with optically driven Q-switch,” U.S. patent 5,408,480 (18 April 1995).
  9. K. Spariosu and M. Birnbaum, “Modulated saturable absorber controlled laser,” U.S. patent 7,324,568 (29 January 2008).
  10. W. J. Mandeville, K. M. Dinndorf, and N. E. Champigny, “Characterization of passively Q-switched microchip lasers for laser radar,” Proc. SPIE 2748, 358-366 (1996).
    [CrossRef]
  11. A. Owyoung, G. R. Hadley, P. Esherick, R. L. Schmitt, and L. A. Rahn, “Gain switching of a monolithic single-frequency laser-diode-excited Nd:YAG laser,” Opt. Lett. 10, 484-486 (1985).
    [CrossRef]
  12. S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38, L239-L241 (1999).
    [CrossRef]
  13. T. Dascalu, N. Pavel, V. Lupei, G. Philipps, T. Beck, and H. Weber, “Investigation of a passive Q-switched, externally controlled, quasicontinuous or continuous pumped Nd:YAG laser,” Opt. Eng. 35, 1247-1251 (1996).
    [CrossRef]
  14. X. Yin, C. Yang, D. Zhao, W. Liu, and Y. Huo, “Actively-controllable passively Q-switched laser,” Proc. SPIE 5627, 199-208 (2005).
    [CrossRef]
  15. B. Cole, L. Goldberg, C. W. Trussell, A. Hays, B. W. Schilling, and C. McIntosh, “Reduction of timing jitter in a Q-switched Nd:YAG laser by direct bleaching of a Cr4+:YAG saturable absorber,” Opt. Express 17, 1766-1771 (2009).
    [CrossRef]
  16. H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960 (1992).
    [CrossRef]
  17. N. N. Il'ichev, A. V. Kir'yanov, E. S. Gulyamova, and P. P. Pashinin, “Influence of the nonlinear anisotropy of absorption in a passive Cr4+:YAG switch on the energy and polarization characteristics of a neodymium laser,” Quantum Electron. 27, 298-301 (1997).
    [CrossRef]

2009 (1)

2007 (1)

L. Goldberg, J. Nettleton, B. Schilling, W. Trussell, and A. Hays, “Compact laser sources for laser designating, ranging, and active imaging,” Proc. SPIE 6552, 65520G (2007).
[CrossRef]

2005 (3)

D. E. Nieuwsma and J. Wang, “Design of an advanced diode-pumped solid-state laser for high-altitude airborne operations,” Proc. SPIE 5659, 163-170 (2005).
[CrossRef]

D. E. Nieuwsma and J. Wang, “Design of an advanced diode-pumped solid-state laser for high altitude airborne operations,” Proc. SPIE 5659, 163-170 (2005).
[CrossRef]

X. Yin, C. Yang, D. Zhao, W. Liu, and Y. Huo, “Actively-controllable passively Q-switched laser,” Proc. SPIE 5627, 199-208 (2005).
[CrossRef]

2002 (1)

1999 (1)

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38, L239-L241 (1999).
[CrossRef]

1997 (2)

A. Agnesi, S. Dell'Acqua, C. Morello, G. Piccinno, G. C. Reali, and Z. Sun, “Diode-pumped neodymium lasers repetitively Q-switched by Cr4+:YAG solid-state saturable absorbers,” IEEE J. Quantum Electron. 3, 45-52 (1997).
[CrossRef]

N. N. Il'ichev, A. V. Kir'yanov, E. S. Gulyamova, and P. P. Pashinin, “Influence of the nonlinear anisotropy of absorption in a passive Cr4+:YAG switch on the energy and polarization characteristics of a neodymium laser,” Quantum Electron. 27, 298-301 (1997).
[CrossRef]

1996 (2)

T. Dascalu, N. Pavel, V. Lupei, G. Philipps, T. Beck, and H. Weber, “Investigation of a passive Q-switched, externally controlled, quasicontinuous or continuous pumped Nd:YAG laser,” Opt. Eng. 35, 1247-1251 (1996).
[CrossRef]

W. J. Mandeville, K. M. Dinndorf, and N. E. Champigny, “Characterization of passively Q-switched microchip lasers for laser radar,” Proc. SPIE 2748, 358-366 (1996).
[CrossRef]

1995 (1)

Y. Shimony, Y. Kalisky, and B. H. T. Chai, “Quantitative studies of Cr4+:YAG as a saturable absorber for Nd:YAG laser,” Opt. Mater. 4, 547-551 (1995).
[CrossRef]

1992 (1)

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960 (1992).
[CrossRef]

1985 (1)

Agnesi, A.

A. Agnesi, S. Dell'Acqua, C. Morello, G. Piccinno, G. C. Reali, and Z. Sun, “Diode-pumped neodymium lasers repetitively Q-switched by Cr4+:YAG solid-state saturable absorbers,” IEEE J. Quantum Electron. 3, 45-52 (1997).
[CrossRef]

Beck, T.

T. Dascalu, N. Pavel, V. Lupei, G. Philipps, T. Beck, and H. Weber, “Investigation of a passive Q-switched, externally controlled, quasicontinuous or continuous pumped Nd:YAG laser,” Opt. Eng. 35, 1247-1251 (1996).
[CrossRef]

Birnbaum, M.

K. Spariosu and M. Birnbaum, “Modulated saturable absorber controlled laser,” U.S. patent 7,324,568 (29 January 2008).

Chai, B. H. T.

Y. Shimony, Y. Kalisky, and B. H. T. Chai, “Quantitative studies of Cr4+:YAG as a saturable absorber for Nd:YAG laser,” Opt. Mater. 4, 547-551 (1995).
[CrossRef]

Champigny, N. E.

W. J. Mandeville, K. M. Dinndorf, and N. E. Champigny, “Characterization of passively Q-switched microchip lasers for laser radar,” Proc. SPIE 2748, 358-366 (1996).
[CrossRef]

Cole, B.

Dascalu, T.

T. Dascalu, N. Pavel, V. Lupei, G. Philipps, T. Beck, and H. Weber, “Investigation of a passive Q-switched, externally controlled, quasicontinuous or continuous pumped Nd:YAG laser,” Opt. Eng. 35, 1247-1251 (1996).
[CrossRef]

Dell'Acqua, S.

A. Agnesi, S. Dell'Acqua, C. Morello, G. Piccinno, G. C. Reali, and Z. Sun, “Diode-pumped neodymium lasers repetitively Q-switched by Cr4+:YAG solid-state saturable absorbers,” IEEE J. Quantum Electron. 3, 45-52 (1997).
[CrossRef]

Dennis, W. M.

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960 (1992).
[CrossRef]

Dinndorf, K. M.

W. J. Mandeville, K. M. Dinndorf, and N. E. Champigny, “Characterization of passively Q-switched microchip lasers for laser radar,” Proc. SPIE 2748, 358-366 (1996).
[CrossRef]

Eilers, H.

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960 (1992).
[CrossRef]

Esherick, P.

Goldberg, L.

B. Cole, L. Goldberg, C. W. Trussell, A. Hays, B. W. Schilling, and C. McIntosh, “Reduction of timing jitter in a Q-switched Nd:YAG laser by direct bleaching of a Cr4+:YAG saturable absorber,” Opt. Express 17, 1766-1771 (2009).
[CrossRef]

L. Goldberg, J. Nettleton, B. Schilling, W. Trussell, and A. Hays, “Compact laser sources for laser designating, ranging, and active imaging,” Proc. SPIE 6552, 65520G (2007).
[CrossRef]

Gulyamova, E. S.

N. N. Il'ichev, A. V. Kir'yanov, E. S. Gulyamova, and P. P. Pashinin, “Influence of the nonlinear anisotropy of absorption in a passive Cr4+:YAG switch on the energy and polarization characteristics of a neodymium laser,” Quantum Electron. 27, 298-301 (1997).
[CrossRef]

Hadley, G. R.

Hays, A.

B. Cole, L. Goldberg, C. W. Trussell, A. Hays, B. W. Schilling, and C. McIntosh, “Reduction of timing jitter in a Q-switched Nd:YAG laser by direct bleaching of a Cr4+:YAG saturable absorber,” Opt. Express 17, 1766-1771 (2009).
[CrossRef]

L. Goldberg, J. Nettleton, B. Schilling, W. Trussell, and A. Hays, “Compact laser sources for laser designating, ranging, and active imaging,” Proc. SPIE 6552, 65520G (2007).
[CrossRef]

Hemmati, H.

H. Hemmati, “Laser with optically driven Q-switch,” U.S. patent 5,408,480 (18 April 1995).

Hoffman, K. R.

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960 (1992).
[CrossRef]

Huang, S. L.

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38, L239-L241 (1999).
[CrossRef]

Huo, Y.

X. Yin, C. Yang, D. Zhao, W. Liu, and Y. Huo, “Actively-controllable passively Q-switched laser,” Proc. SPIE 5627, 199-208 (2005).
[CrossRef]

Il'ichev, N. N.

N. N. Il'ichev, A. V. Kir'yanov, E. S. Gulyamova, and P. P. Pashinin, “Influence of the nonlinear anisotropy of absorption in a passive Cr4+:YAG switch on the energy and polarization characteristics of a neodymium laser,” Quantum Electron. 27, 298-301 (1997).
[CrossRef]

Jacobsen, S. M.

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960 (1992).
[CrossRef]

Jin, F.

Kalisky, Y.

Y. Shimony, Y. Kalisky, and B. H. T. Chai, “Quantitative studies of Cr4+:YAG as a saturable absorber for Nd:YAG laser,” Opt. Mater. 4, 547-551 (1995).
[CrossRef]

Kao, F. J.

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38, L239-L241 (1999).
[CrossRef]

Khurgin, J. B.

Kir'yanov, A. V.

N. N. Il'ichev, A. V. Kir'yanov, E. S. Gulyamova, and P. P. Pashinin, “Influence of the nonlinear anisotropy of absorption in a passive Cr4+:YAG switch on the energy and polarization characteristics of a neodymium laser,” Quantum Electron. 27, 298-301 (1997).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).

Liu, W.

X. Yin, C. Yang, D. Zhao, W. Liu, and Y. Huo, “Actively-controllable passively Q-switched laser,” Proc. SPIE 5627, 199-208 (2005).
[CrossRef]

Lupei, V.

T. Dascalu, N. Pavel, V. Lupei, G. Philipps, T. Beck, and H. Weber, “Investigation of a passive Q-switched, externally controlled, quasicontinuous or continuous pumped Nd:YAG laser,” Opt. Eng. 35, 1247-1251 (1996).
[CrossRef]

Mandeville, W. J.

W. J. Mandeville, K. M. Dinndorf, and N. E. Champigny, “Characterization of passively Q-switched microchip lasers for laser radar,” Proc. SPIE 2748, 358-366 (1996).
[CrossRef]

McIntosh, C.

Morello, C.

A. Agnesi, S. Dell'Acqua, C. Morello, G. Piccinno, G. C. Reali, and Z. Sun, “Diode-pumped neodymium lasers repetitively Q-switched by Cr4+:YAG solid-state saturable absorbers,” IEEE J. Quantum Electron. 3, 45-52 (1997).
[CrossRef]

Nettleton, J.

L. Goldberg, J. Nettleton, B. Schilling, W. Trussell, and A. Hays, “Compact laser sources for laser designating, ranging, and active imaging,” Proc. SPIE 6552, 65520G (2007).
[CrossRef]

Nieuwsma, D. E.

D. E. Nieuwsma and J. Wang, “Design of an advanced diode-pumped solid-state laser for high-altitude airborne operations,” Proc. SPIE 5659, 163-170 (2005).
[CrossRef]

D. E. Nieuwsma and J. Wang, “Design of an advanced diode-pumped solid-state laser for high altitude airborne operations,” Proc. SPIE 5659, 163-170 (2005).
[CrossRef]

Owyoung, A.

Pashinin, P. P.

N. N. Il'ichev, A. V. Kir'yanov, E. S. Gulyamova, and P. P. Pashinin, “Influence of the nonlinear anisotropy of absorption in a passive Cr4+:YAG switch on the energy and polarization characteristics of a neodymium laser,” Quantum Electron. 27, 298-301 (1997).
[CrossRef]

Pavel, N.

T. Dascalu, N. Pavel, V. Lupei, G. Philipps, T. Beck, and H. Weber, “Investigation of a passive Q-switched, externally controlled, quasicontinuous or continuous pumped Nd:YAG laser,” Opt. Eng. 35, 1247-1251 (1996).
[CrossRef]

Philipps, G.

T. Dascalu, N. Pavel, V. Lupei, G. Philipps, T. Beck, and H. Weber, “Investigation of a passive Q-switched, externally controlled, quasicontinuous or continuous pumped Nd:YAG laser,” Opt. Eng. 35, 1247-1251 (1996).
[CrossRef]

Piccinno, G.

A. Agnesi, S. Dell'Acqua, C. Morello, G. Piccinno, G. C. Reali, and Z. Sun, “Diode-pumped neodymium lasers repetitively Q-switched by Cr4+:YAG solid-state saturable absorbers,” IEEE J. Quantum Electron. 3, 45-52 (1997).
[CrossRef]

Rahn, L. A.

Reali, G. C.

A. Agnesi, S. Dell'Acqua, C. Morello, G. Piccinno, G. C. Reali, and Z. Sun, “Diode-pumped neodymium lasers repetitively Q-switched by Cr4+:YAG solid-state saturable absorbers,” IEEE J. Quantum Electron. 3, 45-52 (1997).
[CrossRef]

Schilling, B.

L. Goldberg, J. Nettleton, B. Schilling, W. Trussell, and A. Hays, “Compact laser sources for laser designating, ranging, and active imaging,” Proc. SPIE 6552, 65520G (2007).
[CrossRef]

Schilling, B. W.

Schmitt, R. L.

Shimony, Y.

Y. Shimony, Y. Kalisky, and B. H. T. Chai, “Quantitative studies of Cr4+:YAG as a saturable absorber for Nd:YAG laser,” Opt. Mater. 4, 547-551 (1995).
[CrossRef]

Solyar, G.

Spariosu, K.

K. Spariosu and M. Birnbaum, “Modulated saturable absorber controlled laser,” U.S. patent 7,324,568 (29 January 2008).

Sun, Z.

A. Agnesi, S. Dell'Acqua, C. Morello, G. Piccinno, G. C. Reali, and Z. Sun, “Diode-pumped neodymium lasers repetitively Q-switched by Cr4+:YAG solid-state saturable absorbers,” IEEE J. Quantum Electron. 3, 45-52 (1997).
[CrossRef]

Trivedi, S.

Trussell, C. W.

Trussell, W.

L. Goldberg, J. Nettleton, B. Schilling, W. Trussell, and A. Hays, “Compact laser sources for laser designating, ranging, and active imaging,” Proc. SPIE 6552, 65520G (2007).
[CrossRef]

Tsui, T. Y.

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38, L239-L241 (1999).
[CrossRef]

Wang, C. C.

Wang, C. H.

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38, L239-L241 (1999).
[CrossRef]

Wang, J.

D. E. Nieuwsma and J. Wang, “Design of an advanced diode-pumped solid-state laser for high-altitude airborne operations,” Proc. SPIE 5659, 163-170 (2005).
[CrossRef]

D. E. Nieuwsma and J. Wang, “Design of an advanced diode-pumped solid-state laser for high altitude airborne operations,” Proc. SPIE 5659, 163-170 (2005).
[CrossRef]

Weber, H.

T. Dascalu, N. Pavel, V. Lupei, G. Philipps, T. Beck, and H. Weber, “Investigation of a passive Q-switched, externally controlled, quasicontinuous or continuous pumped Nd:YAG laser,” Opt. Eng. 35, 1247-1251 (1996).
[CrossRef]

Yang, C.

X. Yin, C. Yang, D. Zhao, W. Liu, and Y. Huo, “Actively-controllable passively Q-switched laser,” Proc. SPIE 5627, 199-208 (2005).
[CrossRef]

Yen, W. M.

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960 (1992).
[CrossRef]

Yin, X.

X. Yin, C. Yang, D. Zhao, W. Liu, and Y. Huo, “Actively-controllable passively Q-switched laser,” Proc. SPIE 5627, 199-208 (2005).
[CrossRef]

Zhao, D.

X. Yin, C. Yang, D. Zhao, W. Liu, and Y. Huo, “Actively-controllable passively Q-switched laser,” Proc. SPIE 5627, 199-208 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Agnesi, S. Dell'Acqua, C. Morello, G. Piccinno, G. C. Reali, and Z. Sun, “Diode-pumped neodymium lasers repetitively Q-switched by Cr4+:YAG solid-state saturable absorbers,” IEEE J. Quantum Electron. 3, 45-52 (1997).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38, L239-L241 (1999).
[CrossRef]

Opt. Eng. (1)

T. Dascalu, N. Pavel, V. Lupei, G. Philipps, T. Beck, and H. Weber, “Investigation of a passive Q-switched, externally controlled, quasicontinuous or continuous pumped Nd:YAG laser,” Opt. Eng. 35, 1247-1251 (1996).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

Y. Shimony, Y. Kalisky, and B. H. T. Chai, “Quantitative studies of Cr4+:YAG as a saturable absorber for Nd:YAG laser,” Opt. Mater. 4, 547-551 (1995).
[CrossRef]

Proc. SPIE (5)

W. J. Mandeville, K. M. Dinndorf, and N. E. Champigny, “Characterization of passively Q-switched microchip lasers for laser radar,” Proc. SPIE 2748, 358-366 (1996).
[CrossRef]

L. Goldberg, J. Nettleton, B. Schilling, W. Trussell, and A. Hays, “Compact laser sources for laser designating, ranging, and active imaging,” Proc. SPIE 6552, 65520G (2007).
[CrossRef]

D. E. Nieuwsma and J. Wang, “Design of an advanced diode-pumped solid-state laser for high-altitude airborne operations,” Proc. SPIE 5659, 163-170 (2005).
[CrossRef]

D. E. Nieuwsma and J. Wang, “Design of an advanced diode-pumped solid-state laser for high altitude airborne operations,” Proc. SPIE 5659, 163-170 (2005).
[CrossRef]

X. Yin, C. Yang, D. Zhao, W. Liu, and Y. Huo, “Actively-controllable passively Q-switched laser,” Proc. SPIE 5627, 199-208 (2005).
[CrossRef]

Quantum Electron. (1)

N. N. Il'ichev, A. V. Kir'yanov, E. S. Gulyamova, and P. P. Pashinin, “Influence of the nonlinear anisotropy of absorption in a passive Cr4+:YAG switch on the energy and polarization characteristics of a neodymium laser,” Quantum Electron. 27, 298-301 (1997).
[CrossRef]

Other (3)

W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).

H. Hemmati, “Laser with optically driven Q-switch,” U.S. patent 5,408,480 (18 April 1995).

K. Spariosu and M. Birnbaum, “Modulated saturable absorber controlled laser,” U.S. patent 7,324,568 (29 January 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup for Q-switched operation with optical triggering.

Fig. 2
Fig. 2

Envelope of a 2 s sequence of scope traces that contrasts (a) free-running operation with (b) the case for optical triggering.

Fig. 3
Fig. 3

Build-up time for a passively Q-switched Nd:YAG laser operated from a cold start.

Fig. 4
Fig. 4

Pulse-to-pulse timing jitter comparison for (a) free-running operation versus (b) optical triggering.

Fig. 5
Fig. 5

Count histogram of pulse-to-pulse timing jitter for (a) free-running Q-switched operation ( 10 ns bin) and (b) case for optical triggering ( 2 ns bin).

Fig. 6
Fig. 6

Evolution of timing jitter over time. The time-dependent standard deviation was calculated using a moving window that spanned 2 s of data (20 pulses).

Fig. 7
Fig. 7

Concept for optical triggering of a passively Q-switched laser. The Q-switched pulse is placed at a precise time, Δ t , after the trigger for the bleaching pulse. The process of bleaching the saturable absorber initiates the Q-switched pulse at a time, t p , before the natural event.

Fig. 8
Fig. 8

Q-switched pulse arrival time during a cold start using optical triggering.

Fig. 9
Fig. 9

Influence of Q-switched pulse Δ t , i.e., position within bleaching pulse, on the (a) “pull-in” time ( t p ) and (b) energy for the Q-switched pulse.

Fig. 10
Fig. 10

Efficiency measurements as a function of position within bleaching pulse, Q-switch Δ t . The case for free-running operation is plotted at the position Δ t = 0 .

Fig. 11
Fig. 11

Standard deviation of timing jitter as a function of position within bleaching pulse, Q-switch Δ t .

Fig. 12
Fig. 12

Influence of bleaching power density on the timing jitter for a Q-switched laser operating at a Δ t of 0.9 μs .

Metrics