Abstract

We present the results of a novel numerical and experimental investigation aimed at obtaining efficient 1.05μm operation with a Yb:YAG laser. The model shows that the emitting wavelength of the Yb:YAG laser is affected by the combination of length and doping concentration of the gain medium. Efficient continuous-wave laser operation at the wavelength of 1050nm was experimentally obtained in good agreement with the model predictions. Based on continuous-wave operation, generation of 1.8ps laser pulses at the central wavelength of 1050nm, as well as 170fs laser pulses at the central wavelength of 1053nm, were realized.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Innerhofer, T. Südmeyer, F. Brunner, R. Paschotta, and U. Keller, “Mode-locked high-power lasers and nonlinear optics: a powerful combination,” Laser Phys. Lett. 1, 82-85(2004).
    [CrossRef]
  2. S. V. Marchese, C. R. E. Baer, A. G. Engqvist, S. Hashimoto, D. J. H. C. Maas, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express 16, 6397-6407(2008).
    [CrossRef] [PubMed]
  3. J. Neuhaus, J. Kleinbauer, A. Killi, S. Weiler, D. Sutter, and T. Dekorsy, “Passively mode-locked Yb:YAG thin-disk laser with pulse energies exceeding 13 μJ by use of an active multipass geometry,” Opt. Lett. 33, 726-728 (2008).
    [CrossRef] [PubMed]
  4. S. Uemura and K. Torizuka, “Kerr-lens mode-locked diode-pumped Yb:YAG laser with the transverse mode passively stabilized,” Appl. Phys. Express 1, 012007 (2008)
    [CrossRef]
  5. C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3-17 (1999).
    [CrossRef]
  6. C. Hönninger, G. Zhang, U. Keller, and A. Giesen, “Femtosecond Yb:YAG laser using semiconductor saturable absorbers,” Opt. Lett. 20, 2402-2404 (1995).
    [CrossRef] [PubMed]
  7. M. Weitz, S. Reuter, R. Knappe, R. Wallenstein, and B. Henrich, “Passive mode-locked 21 W femtosecond Yb:YAG laser with 124 MHz repetition-rate, ” in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, 2004), paper CtuCC.
  8. J. Aus der Au, G. J. Spühler, T. Südmeyer, R. Paschotta, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, “16.2 W average power from a diode-pumped femtosecond Yb:YAG thin disk laser, ” Opt. Lett. 25, 859-861(2000).
    [CrossRef]
  9. S. Uemura and K. Torizuka, “Center-wavelength-shifted passively mode-locked diode-pumped ytterbium(Yb):yttrium aluminum garnet(YAG) laser,” Jpn. J. Appl. Phys. 44, L361-L363 (2005).
    [CrossRef]
  10. S. Magne, M. Druetta, J. P. Goure, J. C. Thevenin, P. Ferdinand, and G. Monnom, “An ytterbium-doped monomode fiber laser: amplified spontaneous emission, modeling of the gain and tenability in an external cavity,” J. Lumin. 60-61, 647-650 (1994).
    [CrossRef]
  11. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
    [CrossRef]
  12. G. L. Bourdet, “Theoretical investigation of quasi-three-level longitudinally pumped continuous wave lasers,” Appl. Opt. 39, 966-971 (2000).
    [CrossRef]
  13. G. L. Bourdet and E. Bartnicki, “Generalized formula for continuous-wave end-pumped Yb-doped material amplifier gain and laser output power in various pumping configurations,” Appl. Opt. 45, 9203-9209 (2006).
    [CrossRef] [PubMed]
  14. R. J. Beach, “CW theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123, 385-393 (1996).
    [CrossRef]

2008 (3)

2006 (1)

2005 (1)

S. Uemura and K. Torizuka, “Center-wavelength-shifted passively mode-locked diode-pumped ytterbium(Yb):yttrium aluminum garnet(YAG) laser,” Jpn. J. Appl. Phys. 44, L361-L363 (2005).
[CrossRef]

2004 (1)

E. Innerhofer, T. Südmeyer, F. Brunner, R. Paschotta, and U. Keller, “Mode-locked high-power lasers and nonlinear optics: a powerful combination,” Laser Phys. Lett. 1, 82-85(2004).
[CrossRef]

2000 (2)

1999 (1)

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3-17 (1999).
[CrossRef]

1996 (1)

R. J. Beach, “CW theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123, 385-393 (1996).
[CrossRef]

1995 (2)

C. Hönninger, G. Zhang, U. Keller, and A. Giesen, “Femtosecond Yb:YAG laser using semiconductor saturable absorbers,” Opt. Lett. 20, 2402-2404 (1995).
[CrossRef] [PubMed]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

1994 (1)

S. Magne, M. Druetta, J. P. Goure, J. C. Thevenin, P. Ferdinand, and G. Monnom, “An ytterbium-doped monomode fiber laser: amplified spontaneous emission, modeling of the gain and tenability in an external cavity,” J. Lumin. 60-61, 647-650 (1994).
[CrossRef]

Aus der Au, J.

Baer, C. R. E.

Barber, P. R.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

Bartnicki, E.

Beach, R. J.

R. J. Beach, “CW theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123, 385-393 (1996).
[CrossRef]

Biswal, S.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3-17 (1999).
[CrossRef]

Bourdet, G. L.

Braun, A.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3-17 (1999).
[CrossRef]

Brunner, F.

E. Innerhofer, T. Südmeyer, F. Brunner, R. Paschotta, and U. Keller, “Mode-locked high-power lasers and nonlinear optics: a powerful combination,” Laser Phys. Lett. 1, 82-85(2004).
[CrossRef]

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

Dawes, J. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

Dekorsy, T.

Druetta, M.

S. Magne, M. Druetta, J. P. Goure, J. C. Thevenin, P. Ferdinand, and G. Monnom, “An ytterbium-doped monomode fiber laser: amplified spontaneous emission, modeling of the gain and tenability in an external cavity,” J. Lumin. 60-61, 647-650 (1994).
[CrossRef]

Engqvist, A. G.

Erhard, S.

Ferdinand, P.

S. Magne, M. Druetta, J. P. Goure, J. C. Thevenin, P. Ferdinand, and G. Monnom, “An ytterbium-doped monomode fiber laser: amplified spontaneous emission, modeling of the gain and tenability in an external cavity,” J. Lumin. 60-61, 647-650 (1994).
[CrossRef]

Giesen, A.

Golling, M.

Goure, J. P.

S. Magne, M. Druetta, J. P. Goure, J. C. Thevenin, P. Ferdinand, and G. Monnom, “An ytterbium-doped monomode fiber laser: amplified spontaneous emission, modeling of the gain and tenability in an external cavity,” J. Lumin. 60-61, 647-650 (1994).
[CrossRef]

Graf, M.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3-17 (1999).
[CrossRef]

Hanna, D. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

Hashimoto, S.

Henrich, B.

M. Weitz, S. Reuter, R. Knappe, R. Wallenstein, and B. Henrich, “Passive mode-locked 21 W femtosecond Yb:YAG laser with 124 MHz repetition-rate, ” in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, 2004), paper CtuCC.

Hönninger, C.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3-17 (1999).
[CrossRef]

C. Hönninger, G. Zhang, U. Keller, and A. Giesen, “Femtosecond Yb:YAG laser using semiconductor saturable absorbers,” Opt. Lett. 20, 2402-2404 (1995).
[CrossRef] [PubMed]

Hövel, R.

Innerhofer, E.

E. Innerhofer, T. Südmeyer, F. Brunner, R. Paschotta, and U. Keller, “Mode-locked high-power lasers and nonlinear optics: a powerful combination,” Laser Phys. Lett. 1, 82-85(2004).
[CrossRef]

Johannsen, I.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3-17 (1999).
[CrossRef]

Karszewski, M.

Keller, U.

Killi, A.

Kleinbauer, J.

Knappe, R.

M. Weitz, S. Reuter, R. Knappe, R. Wallenstein, and B. Henrich, “Passive mode-locked 21 W femtosecond Yb:YAG laser with 124 MHz repetition-rate, ” in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, 2004), paper CtuCC.

Maas, D. J. H. C.

Mackechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

Magne, S.

S. Magne, M. Druetta, J. P. Goure, J. C. Thevenin, P. Ferdinand, and G. Monnom, “An ytterbium-doped monomode fiber laser: amplified spontaneous emission, modeling of the gain and tenability in an external cavity,” J. Lumin. 60-61, 647-650 (1994).
[CrossRef]

Marchese, S. V.

Monnom, G.

S. Magne, M. Druetta, J. P. Goure, J. C. Thevenin, P. Ferdinand, and G. Monnom, “An ytterbium-doped monomode fiber laser: amplified spontaneous emission, modeling of the gain and tenability in an external cavity,” J. Lumin. 60-61, 647-650 (1994).
[CrossRef]

Morier-Genoud, F.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3-17 (1999).
[CrossRef]

Moser, M.

J. Aus der Au, G. J. Spühler, T. Südmeyer, R. Paschotta, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, “16.2 W average power from a diode-pumped femtosecond Yb:YAG thin disk laser, ” Opt. Lett. 25, 859-861(2000).
[CrossRef]

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3-17 (1999).
[CrossRef]

Mourou, G. A.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3-17 (1999).
[CrossRef]

Nees, J.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3-17 (1999).
[CrossRef]

Neuhaus, J.

Paschotta, R.

E. Innerhofer, T. Südmeyer, F. Brunner, R. Paschotta, and U. Keller, “Mode-locked high-power lasers and nonlinear optics: a powerful combination,” Laser Phys. Lett. 1, 82-85(2004).
[CrossRef]

J. Aus der Au, G. J. Spühler, T. Südmeyer, R. Paschotta, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, “16.2 W average power from a diode-pumped femtosecond Yb:YAG thin disk laser, ” Opt. Lett. 25, 859-861(2000).
[CrossRef]

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3-17 (1999).
[CrossRef]

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

Reuter, S.

M. Weitz, S. Reuter, R. Knappe, R. Wallenstein, and B. Henrich, “Passive mode-locked 21 W femtosecond Yb:YAG laser with 124 MHz repetition-rate, ” in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, 2004), paper CtuCC.

Seeber, W.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3-17 (1999).
[CrossRef]

Spühler, G. J.

Südmeyer, T.

Sutter, D.

Thevenin, J. C.

S. Magne, M. Druetta, J. P. Goure, J. C. Thevenin, P. Ferdinand, and G. Monnom, “An ytterbium-doped monomode fiber laser: amplified spontaneous emission, modeling of the gain and tenability in an external cavity,” J. Lumin. 60-61, 647-650 (1994).
[CrossRef]

Torizuka, K.

S. Uemura and K. Torizuka, “Kerr-lens mode-locked diode-pumped Yb:YAG laser with the transverse mode passively stabilized,” Appl. Phys. Express 1, 012007 (2008)
[CrossRef]

S. Uemura and K. Torizuka, “Center-wavelength-shifted passively mode-locked diode-pumped ytterbium(Yb):yttrium aluminum garnet(YAG) laser,” Jpn. J. Appl. Phys. 44, L361-L363 (2005).
[CrossRef]

Tropper, A. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

Uemura, S.

S. Uemura and K. Torizuka, “Kerr-lens mode-locked diode-pumped Yb:YAG laser with the transverse mode passively stabilized,” Appl. Phys. Express 1, 012007 (2008)
[CrossRef]

S. Uemura and K. Torizuka, “Center-wavelength-shifted passively mode-locked diode-pumped ytterbium(Yb):yttrium aluminum garnet(YAG) laser,” Jpn. J. Appl. Phys. 44, L361-L363 (2005).
[CrossRef]

Wallenstein, R.

M. Weitz, S. Reuter, R. Knappe, R. Wallenstein, and B. Henrich, “Passive mode-locked 21 W femtosecond Yb:YAG laser with 124 MHz repetition-rate, ” in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, 2004), paper CtuCC.

Weiler, S.

Weitz, M.

M. Weitz, S. Reuter, R. Knappe, R. Wallenstein, and B. Henrich, “Passive mode-locked 21 W femtosecond Yb:YAG laser with 124 MHz repetition-rate, ” in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, 2004), paper CtuCC.

Zhang, G.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3-17 (1999).
[CrossRef]

C. Hönninger, G. Zhang, U. Keller, and A. Giesen, “Femtosecond Yb:YAG laser using semiconductor saturable absorbers,” Opt. Lett. 20, 2402-2404 (1995).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (1)

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3-17 (1999).
[CrossRef]

Appl. Phys. Express (1)

S. Uemura and K. Torizuka, “Kerr-lens mode-locked diode-pumped Yb:YAG laser with the transverse mode passively stabilized,” Appl. Phys. Express 1, 012007 (2008)
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

J. Lumin. (1)

S. Magne, M. Druetta, J. P. Goure, J. C. Thevenin, P. Ferdinand, and G. Monnom, “An ytterbium-doped monomode fiber laser: amplified spontaneous emission, modeling of the gain and tenability in an external cavity,” J. Lumin. 60-61, 647-650 (1994).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Uemura and K. Torizuka, “Center-wavelength-shifted passively mode-locked diode-pumped ytterbium(Yb):yttrium aluminum garnet(YAG) laser,” Jpn. J. Appl. Phys. 44, L361-L363 (2005).
[CrossRef]

Laser Phys. Lett. (1)

E. Innerhofer, T. Südmeyer, F. Brunner, R. Paschotta, and U. Keller, “Mode-locked high-power lasers and nonlinear optics: a powerful combination,” Laser Phys. Lett. 1, 82-85(2004).
[CrossRef]

Opt. Commun. (1)

R. J. Beach, “CW theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123, 385-393 (1996).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Other (1)

M. Weitz, S. Reuter, R. Knappe, R. Wallenstein, and B. Henrich, “Passive mode-locked 21 W femtosecond Yb:YAG laser with 124 MHz repetition-rate, ” in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, 2004), paper CtuCC.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Energy level diagram of Yb 3 + ion in the Yb:YAG crystal.

Fig. 2
Fig. 2

Optimum length versus reflectivity of the rear mirror for various pump intensities with (a) 5% and (b)  10% doping.

Fig. 3
Fig. 3

Cavities used to study the (a) CW and (b) mode-locked laser performance of a Yb:YAG laser. M1, M2, M4, concave mirrors with a radius of curvature of 100 mm ; M3, plane high reflector; CM1 and CM2, GTI mirrors; OC, output coupler.

Fig. 4
Fig. 4

(a) CW laser output power at 1050 nm versus the pump power and (b) the tuning curve with the 1% output coupler and with an incident pump power of 2 W .

Fig. 5
Fig. 5

(a) Typical intensity autocorrelation trace of picosecond pulses and (b) the laser spectrum of picosecond operation.

Fig. 6
Fig. 6

(a) Typical intensity autocorrelation trace of the femtosecond pulses and (b) the laser spectrum of femtosecond operation.

Tables (1)

Tables Icon

Table 1 Values of the Crystal Parameters

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

d I l ε I l ε = ε g 0 { X u f l } d z ,
d I p ε I p ε = ε α 0 { f p X u } d z ,
g 0 = σ l N Yb ( f l k + f u 1 ) , α 0 = σ p N Yb ( f l 1 + f u j ) ,
f l = f l k f l k + f u 1 , f p = f l 1 f l 1 + f u j ,
τ u d X u d t = I p ( f p X u ) X u I l ( X u f l ) ,
I sat l = h ν l ( f l k + f u 1 ) τ u σ l , I sat p = h ν p ( f l 1 + f u j ) τ u σ p .
I p ( f p X u ) X u I l ( X u f l ) = 0.
X u = f p I p + f l I l 1 + I p + I l , I i = I i + + I i .
X u = f l , I p min = f l f p f l .
I p ( 0 ) Γ = I p min , Γ = β = I p min I p ( 0 ) .
I out ( L ) = ( 1 R s ) R m g 0 ( I p ( 0 ) ( 1 Γ ) α 0 f l L ) + l n R m R s ( 1 R m R s ) ( R m + R s ) ,
Γ = R m R s α 0 g 0 exp { α 0 ( f p f l ) L } .
L opt = 1 f p f l n { R m R s 1 g 0 β 1 α 0 } .

Metrics