Abstract

Some advanced concepts for gated viewing are presented, including spectral diversity illumination techniques, non-line-of-sight imaging, indirect scene illumination, and in particular setups in bistatic configurations. By using a multiple-wavelength illumination source target speckles could be substantially reduced, leading to an improved image quality and enhanced range accuracy. In non-line-of-sight imaging experiments we observed the scenery through the reflections in a window plane. The scene was illuminated indirectly as well by a diffuse reflection of the laser beam at different nearby objects. In this setup several targets could be spotted, which, e.g., offers the capability to look around the corner in urban situations. In the presented measuring campaigns the advantages of bistatic setups in comparison with common monostatic configurations are discussed. The appearance of shadows or local contrast enhancements as well as the mitigation of retroreflections supports the human observer in interpreting the scene. Furthermore a bistatic configuration contributes to a reduced dazzling risk and to observer convertness.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Milton, G. Klager, and T. Bowman, “Low cost sensors for UGVs,” Proc. SPIE 4024, 180-191 (2000).
  2. M. Turner, “Standoff precision ID in 3-D,” www.darpa.mil/ipto/programs/spi3d/spi3d.asp.
  3. A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59-70 (2005).
  4. D. Bonnier, S. Lelièvre, and L. Demers, “On the safe use of long-range laser active imager in the near-infrared for homeland security,” Proc. SPIE 6206, 62060A (2006).
  5. Night vision systems, www.turn.ru/porducts/index.htm
  6. O. Steinvall, P. Andersson, M. Elmqvist, and M. Tulldahl, “Overview of range gated imaging at FOI,” Proc. SPIE 6542, 654216 (2007).
  7. I. Baker, D. Owton, K. Trundle, P. Thorne, K. Storie, P. Oakley, and J. Copley, “Advanced infared detectors for multimode active and passive imaging applications,” Proc. SPIE 6940, 6902L (2008).
  8. J. Fortin, E. Thibeault, and G. Pelletier, “Improving the protection of the Canadian light armored vehicle using a laser based defensive aids suite,” J. Battlefield Technol. 9(3), 13-18 (2006).
  9. D. Bonnier and V. Larochelle, “A range-gated active imaging system for search and rescue, and surveillance operations,” Proc. SPIE 2744, 134-145 (1996).
  10. H. Larsson, O. Steinvall, T. Chevalier, and F. Gustafsson, “Characterizing laser radar snow reflection for the wavelengths 0.9 and 1.5 μm,” Opt. Eng. 45, 116201 (2006).
  11. R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford, and K. J. Barnard, “Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance,” Opt. Eng. 42, 738-746 (2003).
  12. O. Steinvall, P. Andersson, and M. Elmqvist, “Image quality for range-gated systems during different ranges and atmospheric conditions,” Proc. SPIE 6396, 6396-07(2006).
  13. P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45, 034301, 1-10(2006).
  14. M. Laurenzis, F. Christnacher, and D. Monnin, “Long-range three-dimensional active imaging with superresolution depth mapping,” Opt. Lett. 32, 3146 (2007).
    [CrossRef]
  15. Z. Xiuda, Y. Huimin, and J. Yanbing, “Pulse-shape-free method for long-range three-dimensional active imaging with high linear accuracy,” Opt. Lett. 33, 1219-1221 (2008).
    [CrossRef]
  16. O. Steinvall, T. Chevalier, P. Andersson, and M. Elmqvist, “Performance modeling and simulation of range-gated imaging systems,” Proc. SPIE 6542, 6542-18 (2007).
  17. R. L. Espinola, E. L. Jacobs, C. E. Halford, R. Vollmerhausen, and D. H. Tofsted, “Modeling the target acquisition performance of active imaging systems,” Opt. Express 15, 3816-3832 (2007).
    [CrossRef]
  18. M. P. Strand, “Imaging model for underwater range-gated imaging systems,” Proc. SPIE 1537, 151-160 (1991).
  19. R. G. Driggers, J. S. Taylor, and K. Krapels, “Probability of identification cycle criterion (N50/N90) for underwater mine target acquisition,” Opt. Eng. 46, 033201 (2007).
  20. M. P. Strand, “Bistatic underwater optical imaging using AUVs,” Ocean Optics & Biology (OB) FY08 Annual Reports, Office of Naval Research 875 North Randolph Street, Arlington, Va. 22203-1995 (2008).
  21. J. Lin, H. Mishima, T. D. Kawahara, Y. Saito, A. Nomura, K. Yamaguchi, and K. Morikawa, “Bistatic imaging lidar measurements of aerosols, fogs and clouds in the lower atmosphere,” Proc. SPIE 3504, 550-557 (1998).
  22. B. M. Welsh and C. S. Gardner, “Bistatic imaging lidar technique for upper atmospheric studies,” Appl. Opt. 28, 82-88(1989).
    [CrossRef]
  23. W. R. Watkins, D. H. Tofsted, V. G. CuQlock-Knopp, J. B. Jordan, and M. M. Trivedi, “Active imaging applied to navigation through fog,” Proc. SPIE 3749, 750(1999).
  24. O. Steinvall, H. Larsson, F. Gustafsson, D. Letalick, T. Chevalier, Å. Persson, and P. Andersson, “Performance of 3-D laser radar through vegetation and camouflage,” Proc. SPIE 5792, 129-142 (2005).
  25. J. C. Dainty, Laser Speckle and Related Phenomena (Springer Verlag, 1975).
  26. D. A. Orchard, A. J. Turner, L. Michaille, and K. R. Ridley, “White light lasers for remote sensing,” Proc. SPIE 7115, 711506 (2008).
  27. C. E. Halford, A. L. Robinson, R. G. Driggers, and E. L. Jacobs, “Tilted surfaces in shortwave infrared imagery: speckle simulation and a simple contrast model,” Opt. Eng. 46, 1-11 (2007).
  28. B. Göhler, P. Lutzmann, and G. Anstett, “3D imaging with range gated laser systems using speckle reduction techniques to improve the depth accuracy,” Proc. SPIE 7113, 711307 (2008).
  29. J. H. Shapiro, “Correlation scales of laser speckle heterodyne detection,” Appl. Opt. 24, 1883-1888 (1985).
    [CrossRef]

2008

I. Baker, D. Owton, K. Trundle, P. Thorne, K. Storie, P. Oakley, and J. Copley, “Advanced infared detectors for multimode active and passive imaging applications,” Proc. SPIE 6940, 6902L (2008).

Z. Xiuda, Y. Huimin, and J. Yanbing, “Pulse-shape-free method for long-range three-dimensional active imaging with high linear accuracy,” Opt. Lett. 33, 1219-1221 (2008).
[CrossRef]

M. P. Strand, “Bistatic underwater optical imaging using AUVs,” Ocean Optics & Biology (OB) FY08 Annual Reports, Office of Naval Research 875 North Randolph Street, Arlington, Va. 22203-1995 (2008).

B. Göhler, P. Lutzmann, and G. Anstett, “3D imaging with range gated laser systems using speckle reduction techniques to improve the depth accuracy,” Proc. SPIE 7113, 711307 (2008).

2007

C. E. Halford, A. L. Robinson, R. G. Driggers, and E. L. Jacobs, “Tilted surfaces in shortwave infrared imagery: speckle simulation and a simple contrast model,” Opt. Eng. 46, 1-11 (2007).

O. Steinvall, T. Chevalier, P. Andersson, and M. Elmqvist, “Performance modeling and simulation of range-gated imaging systems,” Proc. SPIE 6542, 6542-18 (2007).

R. L. Espinola, E. L. Jacobs, C. E. Halford, R. Vollmerhausen, and D. H. Tofsted, “Modeling the target acquisition performance of active imaging systems,” Opt. Express 15, 3816-3832 (2007).
[CrossRef]

M. Laurenzis, F. Christnacher, and D. Monnin, “Long-range three-dimensional active imaging with superresolution depth mapping,” Opt. Lett. 32, 3146 (2007).
[CrossRef]

R. G. Driggers, J. S. Taylor, and K. Krapels, “Probability of identification cycle criterion (N50/N90) for underwater mine target acquisition,” Opt. Eng. 46, 033201 (2007).

O. Steinvall, P. Andersson, M. Elmqvist, and M. Tulldahl, “Overview of range gated imaging at FOI,” Proc. SPIE 6542, 654216 (2007).

2006

D. Bonnier, S. Lelièvre, and L. Demers, “On the safe use of long-range laser active imager in the near-infrared for homeland security,” Proc. SPIE 6206, 62060A (2006).

J. Fortin, E. Thibeault, and G. Pelletier, “Improving the protection of the Canadian light armored vehicle using a laser based defensive aids suite,” J. Battlefield Technol. 9(3), 13-18 (2006).

H. Larsson, O. Steinvall, T. Chevalier, and F. Gustafsson, “Characterizing laser radar snow reflection for the wavelengths 0.9 and 1.5 μm,” Opt. Eng. 45, 116201 (2006).

O. Steinvall, P. Andersson, and M. Elmqvist, “Image quality for range-gated systems during different ranges and atmospheric conditions,” Proc. SPIE 6396, 6396-07(2006).

P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45, 034301, 1-10(2006).

2005

A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59-70 (2005).

O. Steinvall, H. Larsson, F. Gustafsson, D. Letalick, T. Chevalier, Å. Persson, and P. Andersson, “Performance of 3-D laser radar through vegetation and camouflage,” Proc. SPIE 5792, 129-142 (2005).

2003

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford, and K. J. Barnard, “Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance,” Opt. Eng. 42, 738-746 (2003).

2000

A. F. Milton, G. Klager, and T. Bowman, “Low cost sensors for UGVs,” Proc. SPIE 4024, 180-191 (2000).

1999

W. R. Watkins, D. H. Tofsted, V. G. CuQlock-Knopp, J. B. Jordan, and M. M. Trivedi, “Active imaging applied to navigation through fog,” Proc. SPIE 3749, 750(1999).

1998

J. Lin, H. Mishima, T. D. Kawahara, Y. Saito, A. Nomura, K. Yamaguchi, and K. Morikawa, “Bistatic imaging lidar measurements of aerosols, fogs and clouds in the lower atmosphere,” Proc. SPIE 3504, 550-557 (1998).

1996

D. Bonnier and V. Larochelle, “A range-gated active imaging system for search and rescue, and surveillance operations,” Proc. SPIE 2744, 134-145 (1996).

1991

M. P. Strand, “Imaging model for underwater range-gated imaging systems,” Proc. SPIE 1537, 151-160 (1991).

1989

B. M. Welsh and C. S. Gardner, “Bistatic imaging lidar technique for upper atmospheric studies,” Appl. Opt. 28, 82-88(1989).
[CrossRef]

1985

J. H. Shapiro, “Correlation scales of laser speckle heterodyne detection,” Appl. Opt. 24, 1883-1888 (1985).
[CrossRef]

1975

J. C. Dainty, Laser Speckle and Related Phenomena (Springer Verlag, 1975).

Andersson, P.

O. Steinvall, P. Andersson, M. Elmqvist, and M. Tulldahl, “Overview of range gated imaging at FOI,” Proc. SPIE 6542, 654216 (2007).

O. Steinvall, T. Chevalier, P. Andersson, and M. Elmqvist, “Performance modeling and simulation of range-gated imaging systems,” Proc. SPIE 6542, 6542-18 (2007).

O. Steinvall, P. Andersson, and M. Elmqvist, “Image quality for range-gated systems during different ranges and atmospheric conditions,” Proc. SPIE 6396, 6396-07(2006).

P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45, 034301, 1-10(2006).

O. Steinvall, H. Larsson, F. Gustafsson, D. Letalick, T. Chevalier, Å. Persson, and P. Andersson, “Performance of 3-D laser radar through vegetation and camouflage,” Proc. SPIE 5792, 129-142 (2005).

Anstett, G.

B. Göhler, P. Lutzmann, and G. Anstett, “3D imaging with range gated laser systems using speckle reduction techniques to improve the depth accuracy,” Proc. SPIE 7113, 711307 (2008).

Baker, I.

I. Baker, D. Owton, K. Trundle, P. Thorne, K. Storie, P. Oakley, and J. Copley, “Advanced infared detectors for multimode active and passive imaging applications,” Proc. SPIE 6940, 6902L (2008).

Barnard, K. J.

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford, and K. J. Barnard, “Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance,” Opt. Eng. 42, 738-746 (2003).

Bonnier, D.

D. Bonnier, S. Lelièvre, and L. Demers, “On the safe use of long-range laser active imager in the near-infrared for homeland security,” Proc. SPIE 6206, 62060A (2006).

D. Bonnier and V. Larochelle, “A range-gated active imaging system for search and rescue, and surveillance operations,” Proc. SPIE 2744, 134-145 (1996).

Bowman, T.

A. F. Milton, G. Klager, and T. Bowman, “Low cost sensors for UGVs,” Proc. SPIE 4024, 180-191 (2000).

Chevalier, T.

O. Steinvall, T. Chevalier, P. Andersson, and M. Elmqvist, “Performance modeling and simulation of range-gated imaging systems,” Proc. SPIE 6542, 6542-18 (2007).

H. Larsson, O. Steinvall, T. Chevalier, and F. Gustafsson, “Characterizing laser radar snow reflection for the wavelengths 0.9 and 1.5 μm,” Opt. Eng. 45, 116201 (2006).

O. Steinvall, H. Larsson, F. Gustafsson, D. Letalick, T. Chevalier, Å. Persson, and P. Andersson, “Performance of 3-D laser radar through vegetation and camouflage,” Proc. SPIE 5792, 129-142 (2005).

Christnacher, F.

M. Laurenzis, F. Christnacher, and D. Monnin, “Long-range three-dimensional active imaging with superresolution depth mapping,” Opt. Lett. 32, 3146 (2007).
[CrossRef]

Copley, J.

I. Baker, D. Owton, K. Trundle, P. Thorne, K. Storie, P. Oakley, and J. Copley, “Advanced infared detectors for multimode active and passive imaging applications,” Proc. SPIE 6940, 6902L (2008).

CuQlock-Knopp, V. G.

W. R. Watkins, D. H. Tofsted, V. G. CuQlock-Knopp, J. B. Jordan, and M. M. Trivedi, “Active imaging applied to navigation through fog,” Proc. SPIE 3749, 750(1999).

Dainty, J. C.

J. C. Dainty, Laser Speckle and Related Phenomena (Springer Verlag, 1975).

Demers, L.

D. Bonnier, S. Lelièvre, and L. Demers, “On the safe use of long-range laser active imager in the near-infrared for homeland security,” Proc. SPIE 6206, 62060A (2006).

Devitt, N.

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford, and K. J. Barnard, “Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance,” Opt. Eng. 42, 738-746 (2003).

Driggers, R. G.

R. G. Driggers, J. S. Taylor, and K. Krapels, “Probability of identification cycle criterion (N50/N90) for underwater mine target acquisition,” Opt. Eng. 46, 033201 (2007).

C. E. Halford, A. L. Robinson, R. G. Driggers, and E. L. Jacobs, “Tilted surfaces in shortwave infrared imagery: speckle simulation and a simple contrast model,” Opt. Eng. 46, 1-11 (2007).

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford, and K. J. Barnard, “Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance,” Opt. Eng. 42, 738-746 (2003).

Elmqvist, M.

O. Steinvall, P. Andersson, M. Elmqvist, and M. Tulldahl, “Overview of range gated imaging at FOI,” Proc. SPIE 6542, 654216 (2007).

O. Steinvall, T. Chevalier, P. Andersson, and M. Elmqvist, “Performance modeling and simulation of range-gated imaging systems,” Proc. SPIE 6542, 6542-18 (2007).

O. Steinvall, P. Andersson, and M. Elmqvist, “Image quality for range-gated systems during different ranges and atmospheric conditions,” Proc. SPIE 6396, 6396-07(2006).

Espinola, R. L.

R. L. Espinola, E. L. Jacobs, C. E. Halford, R. Vollmerhausen, and D. H. Tofsted, “Modeling the target acquisition performance of active imaging systems,” Opt. Express 15, 3816-3832 (2007).
[CrossRef]

Forand, L.

A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59-70 (2005).

Fortin, J.

J. Fortin, E. Thibeault, and G. Pelletier, “Improving the protection of the Canadian light armored vehicle using a laser based defensive aids suite,” J. Battlefield Technol. 9(3), 13-18 (2006).

Fournier, G. R.

A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59-70 (2005).

Gardner, C. S.

B. M. Welsh and C. S. Gardner, “Bistatic imaging lidar technique for upper atmospheric studies,” Appl. Opt. 28, 82-88(1989).
[CrossRef]

Göhler, B.

B. Göhler, P. Lutzmann, and G. Anstett, “3D imaging with range gated laser systems using speckle reduction techniques to improve the depth accuracy,” Proc. SPIE 7113, 711307 (2008).

Gustafsson, F.

H. Larsson, O. Steinvall, T. Chevalier, and F. Gustafsson, “Characterizing laser radar snow reflection for the wavelengths 0.9 and 1.5 μm,” Opt. Eng. 45, 116201 (2006).

O. Steinvall, H. Larsson, F. Gustafsson, D. Letalick, T. Chevalier, Å. Persson, and P. Andersson, “Performance of 3-D laser radar through vegetation and camouflage,” Proc. SPIE 5792, 129-142 (2005).

Halford, C.

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford, and K. J. Barnard, “Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance,” Opt. Eng. 42, 738-746 (2003).

Halford, C. E.

R. L. Espinola, E. L. Jacobs, C. E. Halford, R. Vollmerhausen, and D. H. Tofsted, “Modeling the target acquisition performance of active imaging systems,” Opt. Express 15, 3816-3832 (2007).
[CrossRef]

C. E. Halford, A. L. Robinson, R. G. Driggers, and E. L. Jacobs, “Tilted surfaces in shortwave infrared imagery: speckle simulation and a simple contrast model,” Opt. Eng. 46, 1-11 (2007).

Huimin, Y.

Z. Xiuda, Y. Huimin, and J. Yanbing, “Pulse-shape-free method for long-range three-dimensional active imaging with high linear accuracy,” Opt. Lett. 33, 1219-1221 (2008).
[CrossRef]

Jacobs, E. L.

R. L. Espinola, E. L. Jacobs, C. E. Halford, R. Vollmerhausen, and D. H. Tofsted, “Modeling the target acquisition performance of active imaging systems,” Opt. Express 15, 3816-3832 (2007).
[CrossRef]

C. E. Halford, A. L. Robinson, R. G. Driggers, and E. L. Jacobs, “Tilted surfaces in shortwave infrared imagery: speckle simulation and a simple contrast model,” Opt. Eng. 46, 1-11 (2007).

Jordan, J. B.

W. R. Watkins, D. H. Tofsted, V. G. CuQlock-Knopp, J. B. Jordan, and M. M. Trivedi, “Active imaging applied to navigation through fog,” Proc. SPIE 3749, 750(1999).

Kawahara, T. D.

J. Lin, H. Mishima, T. D. Kawahara, Y. Saito, A. Nomura, K. Yamaguchi, and K. Morikawa, “Bistatic imaging lidar measurements of aerosols, fogs and clouds in the lower atmosphere,” Proc. SPIE 3504, 550-557 (1998).

Klager, G.

A. F. Milton, G. Klager, and T. Bowman, “Low cost sensors for UGVs,” Proc. SPIE 4024, 180-191 (2000).

Krapels, K.

R. G. Driggers, J. S. Taylor, and K. Krapels, “Probability of identification cycle criterion (N50/N90) for underwater mine target acquisition,” Opt. Eng. 46, 033201 (2007).

Larochelle, V.

D. Bonnier and V. Larochelle, “A range-gated active imaging system for search and rescue, and surveillance operations,” Proc. SPIE 2744, 134-145 (1996).

Larsson, H.

H. Larsson, O. Steinvall, T. Chevalier, and F. Gustafsson, “Characterizing laser radar snow reflection for the wavelengths 0.9 and 1.5 μm,” Opt. Eng. 45, 116201 (2006).

O. Steinvall, H. Larsson, F. Gustafsson, D. Letalick, T. Chevalier, Å. Persson, and P. Andersson, “Performance of 3-D laser radar through vegetation and camouflage,” Proc. SPIE 5792, 129-142 (2005).

Laurenzis, M.

M. Laurenzis, F. Christnacher, and D. Monnin, “Long-range three-dimensional active imaging with superresolution depth mapping,” Opt. Lett. 32, 3146 (2007).
[CrossRef]

Lelièvre, S.

D. Bonnier, S. Lelièvre, and L. Demers, “On the safe use of long-range laser active imager in the near-infrared for homeland security,” Proc. SPIE 6206, 62060A (2006).

Letalick, D.

O. Steinvall, H. Larsson, F. Gustafsson, D. Letalick, T. Chevalier, Å. Persson, and P. Andersson, “Performance of 3-D laser radar through vegetation and camouflage,” Proc. SPIE 5792, 129-142 (2005).

Lin, J.

J. Lin, H. Mishima, T. D. Kawahara, Y. Saito, A. Nomura, K. Yamaguchi, and K. Morikawa, “Bistatic imaging lidar measurements of aerosols, fogs and clouds in the lower atmosphere,” Proc. SPIE 3504, 550-557 (1998).

Lutzmann, P.

B. Göhler, P. Lutzmann, and G. Anstett, “3D imaging with range gated laser systems using speckle reduction techniques to improve the depth accuracy,” Proc. SPIE 7113, 711307 (2008).

Mathieu, P.

A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59-70 (2005).

Michaille, L.

D. A. Orchard, A. J. Turner, L. Michaille, and K. R. Ridley, “White light lasers for remote sensing,” Proc. SPIE 7115, 711506 (2008).

Milton, A. F.

A. F. Milton, G. Klager, and T. Bowman, “Low cost sensors for UGVs,” Proc. SPIE 4024, 180-191 (2000).

Mishima, H.

J. Lin, H. Mishima, T. D. Kawahara, Y. Saito, A. Nomura, K. Yamaguchi, and K. Morikawa, “Bistatic imaging lidar measurements of aerosols, fogs and clouds in the lower atmosphere,” Proc. SPIE 3504, 550-557 (1998).

Monnin, D.

M. Laurenzis, F. Christnacher, and D. Monnin, “Long-range three-dimensional active imaging with superresolution depth mapping,” Opt. Lett. 32, 3146 (2007).
[CrossRef]

Morikawa, K.

J. Lin, H. Mishima, T. D. Kawahara, Y. Saito, A. Nomura, K. Yamaguchi, and K. Morikawa, “Bistatic imaging lidar measurements of aerosols, fogs and clouds in the lower atmosphere,” Proc. SPIE 3504, 550-557 (1998).

Nomura, A.

J. Lin, H. Mishima, T. D. Kawahara, Y. Saito, A. Nomura, K. Yamaguchi, and K. Morikawa, “Bistatic imaging lidar measurements of aerosols, fogs and clouds in the lower atmosphere,” Proc. SPIE 3504, 550-557 (1998).

Oakley, P.

I. Baker, D. Owton, K. Trundle, P. Thorne, K. Storie, P. Oakley, and J. Copley, “Advanced infared detectors for multimode active and passive imaging applications,” Proc. SPIE 6940, 6902L (2008).

Orchard, D. A.

D. A. Orchard, A. J. Turner, L. Michaille, and K. R. Ridley, “White light lasers for remote sensing,” Proc. SPIE 7115, 711506 (2008).

Owton, D.

I. Baker, D. Owton, K. Trundle, P. Thorne, K. Storie, P. Oakley, and J. Copley, “Advanced infared detectors for multimode active and passive imaging applications,” Proc. SPIE 6940, 6902L (2008).

Pelletier, G.

J. Fortin, E. Thibeault, and G. Pelletier, “Improving the protection of the Canadian light armored vehicle using a laser based defensive aids suite,” J. Battlefield Technol. 9(3), 13-18 (2006).

Persson, Å.

O. Steinvall, H. Larsson, F. Gustafsson, D. Letalick, T. Chevalier, Å. Persson, and P. Andersson, “Performance of 3-D laser radar through vegetation and camouflage,” Proc. SPIE 5792, 129-142 (2005).

Ridley, K. R.

D. A. Orchard, A. J. Turner, L. Michaille, and K. R. Ridley, “White light lasers for remote sensing,” Proc. SPIE 7115, 711506 (2008).

Robinson, A. L.

C. E. Halford, A. L. Robinson, R. G. Driggers, and E. L. Jacobs, “Tilted surfaces in shortwave infrared imagery: speckle simulation and a simple contrast model,” Opt. Eng. 46, 1-11 (2007).

Saito, Y.

J. Lin, H. Mishima, T. D. Kawahara, Y. Saito, A. Nomura, K. Yamaguchi, and K. Morikawa, “Bistatic imaging lidar measurements of aerosols, fogs and clouds in the lower atmosphere,” Proc. SPIE 3504, 550-557 (1998).

Shapiro, J. H.

J. H. Shapiro, “Correlation scales of laser speckle heterodyne detection,” Appl. Opt. 24, 1883-1888 (1985).
[CrossRef]

Steinvall, O.

O. Steinvall, T. Chevalier, P. Andersson, and M. Elmqvist, “Performance modeling and simulation of range-gated imaging systems,” Proc. SPIE 6542, 6542-18 (2007).

O. Steinvall, P. Andersson, M. Elmqvist, and M. Tulldahl, “Overview of range gated imaging at FOI,” Proc. SPIE 6542, 654216 (2007).

H. Larsson, O. Steinvall, T. Chevalier, and F. Gustafsson, “Characterizing laser radar snow reflection for the wavelengths 0.9 and 1.5 μm,” Opt. Eng. 45, 116201 (2006).

O. Steinvall, P. Andersson, and M. Elmqvist, “Image quality for range-gated systems during different ranges and atmospheric conditions,” Proc. SPIE 6396, 6396-07(2006).

O. Steinvall, H. Larsson, F. Gustafsson, D. Letalick, T. Chevalier, Å. Persson, and P. Andersson, “Performance of 3-D laser radar through vegetation and camouflage,” Proc. SPIE 5792, 129-142 (2005).

Storie, K.

I. Baker, D. Owton, K. Trundle, P. Thorne, K. Storie, P. Oakley, and J. Copley, “Advanced infared detectors for multimode active and passive imaging applications,” Proc. SPIE 6940, 6902L (2008).

Strand, M. P.

M. P. Strand, “Bistatic underwater optical imaging using AUVs,” Ocean Optics & Biology (OB) FY08 Annual Reports, Office of Naval Research 875 North Randolph Street, Arlington, Va. 22203-1995 (2008).

M. P. Strand, “Imaging model for underwater range-gated imaging systems,” Proc. SPIE 1537, 151-160 (1991).

Taylor, J. S.

R. G. Driggers, J. S. Taylor, and K. Krapels, “Probability of identification cycle criterion (N50/N90) for underwater mine target acquisition,” Opt. Eng. 46, 033201 (2007).

Thibeault, E.

J. Fortin, E. Thibeault, and G. Pelletier, “Improving the protection of the Canadian light armored vehicle using a laser based defensive aids suite,” J. Battlefield Technol. 9(3), 13-18 (2006).

Thorne, P.

I. Baker, D. Owton, K. Trundle, P. Thorne, K. Storie, P. Oakley, and J. Copley, “Advanced infared detectors for multimode active and passive imaging applications,” Proc. SPIE 6940, 6902L (2008).

Tofsted, D. H.

R. L. Espinola, E. L. Jacobs, C. E. Halford, R. Vollmerhausen, and D. H. Tofsted, “Modeling the target acquisition performance of active imaging systems,” Opt. Express 15, 3816-3832 (2007).
[CrossRef]

W. R. Watkins, D. H. Tofsted, V. G. CuQlock-Knopp, J. B. Jordan, and M. M. Trivedi, “Active imaging applied to navigation through fog,” Proc. SPIE 3749, 750(1999).

Trivedi, M. M.

W. R. Watkins, D. H. Tofsted, V. G. CuQlock-Knopp, J. B. Jordan, and M. M. Trivedi, “Active imaging applied to navigation through fog,” Proc. SPIE 3749, 750(1999).

Trundle, K.

I. Baker, D. Owton, K. Trundle, P. Thorne, K. Storie, P. Oakley, and J. Copley, “Advanced infared detectors for multimode active and passive imaging applications,” Proc. SPIE 6940, 6902L (2008).

Tulldahl, M.

O. Steinvall, P. Andersson, M. Elmqvist, and M. Tulldahl, “Overview of range gated imaging at FOI,” Proc. SPIE 6542, 654216 (2007).

Turner, A. J.

D. A. Orchard, A. J. Turner, L. Michaille, and K. R. Ridley, “White light lasers for remote sensing,” Proc. SPIE 7115, 711506 (2008).

Turner, M.

M. Turner, “Standoff precision ID in 3-D,” www.darpa.mil/ipto/programs/spi3d/spi3d.asp.

Vollmerhausen, R.

R. L. Espinola, E. L. Jacobs, C. E. Halford, R. Vollmerhausen, and D. H. Tofsted, “Modeling the target acquisition performance of active imaging systems,” Opt. Express 15, 3816-3832 (2007).
[CrossRef]

Vollmerhausen, R. H.

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford, and K. J. Barnard, “Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance,” Opt. Eng. 42, 738-746 (2003).

Watkins, W. R.

W. R. Watkins, D. H. Tofsted, V. G. CuQlock-Knopp, J. B. Jordan, and M. M. Trivedi, “Active imaging applied to navigation through fog,” Proc. SPIE 3749, 750(1999).

Weidemann, A.

A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59-70 (2005).

Welsh, B. M.

B. M. Welsh and C. S. Gardner, “Bistatic imaging lidar technique for upper atmospheric studies,” Appl. Opt. 28, 82-88(1989).
[CrossRef]

Xiuda, Z.

Z. Xiuda, Y. Huimin, and J. Yanbing, “Pulse-shape-free method for long-range three-dimensional active imaging with high linear accuracy,” Opt. Lett. 33, 1219-1221 (2008).
[CrossRef]

Yamaguchi, K.

J. Lin, H. Mishima, T. D. Kawahara, Y. Saito, A. Nomura, K. Yamaguchi, and K. Morikawa, “Bistatic imaging lidar measurements of aerosols, fogs and clouds in the lower atmosphere,” Proc. SPIE 3504, 550-557 (1998).

Yanbing, J.

Z. Xiuda, Y. Huimin, and J. Yanbing, “Pulse-shape-free method for long-range three-dimensional active imaging with high linear accuracy,” Opt. Lett. 33, 1219-1221 (2008).
[CrossRef]

Appl. Opt.

B. M. Welsh and C. S. Gardner, “Bistatic imaging lidar technique for upper atmospheric studies,” Appl. Opt. 28, 82-88(1989).
[CrossRef]

J. H. Shapiro, “Correlation scales of laser speckle heterodyne detection,” Appl. Opt. 24, 1883-1888 (1985).
[CrossRef]

J. Battlefield Technol.

J. Fortin, E. Thibeault, and G. Pelletier, “Improving the protection of the Canadian light armored vehicle using a laser based defensive aids suite,” J. Battlefield Technol. 9(3), 13-18 (2006).

Ocean Optics & Biology (OB) FY08 Annual Reports, Office of Naval Research

M. P. Strand, “Bistatic underwater optical imaging using AUVs,” Ocean Optics & Biology (OB) FY08 Annual Reports, Office of Naval Research 875 North Randolph Street, Arlington, Va. 22203-1995 (2008).

Opt. Eng.

R. G. Driggers, J. S. Taylor, and K. Krapels, “Probability of identification cycle criterion (N50/N90) for underwater mine target acquisition,” Opt. Eng. 46, 033201 (2007).

C. E. Halford, A. L. Robinson, R. G. Driggers, and E. L. Jacobs, “Tilted surfaces in shortwave infrared imagery: speckle simulation and a simple contrast model,” Opt. Eng. 46, 1-11 (2007).

P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45, 034301, 1-10(2006).

H. Larsson, O. Steinvall, T. Chevalier, and F. Gustafsson, “Characterizing laser radar snow reflection for the wavelengths 0.9 and 1.5 μm,” Opt. Eng. 45, 116201 (2006).

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford, and K. J. Barnard, “Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance,” Opt. Eng. 42, 738-746 (2003).

Opt. Express

R. L. Espinola, E. L. Jacobs, C. E. Halford, R. Vollmerhausen, and D. H. Tofsted, “Modeling the target acquisition performance of active imaging systems,” Opt. Express 15, 3816-3832 (2007).
[CrossRef]

Opt. Lett.

M. Laurenzis, F. Christnacher, and D. Monnin, “Long-range three-dimensional active imaging with superresolution depth mapping,” Opt. Lett. 32, 3146 (2007).
[CrossRef]

Z. Xiuda, Y. Huimin, and J. Yanbing, “Pulse-shape-free method for long-range three-dimensional active imaging with high linear accuracy,” Opt. Lett. 33, 1219-1221 (2008).
[CrossRef]

Proc. SPIE

O. Steinvall, T. Chevalier, P. Andersson, and M. Elmqvist, “Performance modeling and simulation of range-gated imaging systems,” Proc. SPIE 6542, 6542-18 (2007).

M. P. Strand, “Imaging model for underwater range-gated imaging systems,” Proc. SPIE 1537, 151-160 (1991).

O. Steinvall, P. Andersson, and M. Elmqvist, “Image quality for range-gated systems during different ranges and atmospheric conditions,” Proc. SPIE 6396, 6396-07(2006).

D. Bonnier and V. Larochelle, “A range-gated active imaging system for search and rescue, and surveillance operations,” Proc. SPIE 2744, 134-145 (1996).

O. Steinvall, P. Andersson, M. Elmqvist, and M. Tulldahl, “Overview of range gated imaging at FOI,” Proc. SPIE 6542, 654216 (2007).

I. Baker, D. Owton, K. Trundle, P. Thorne, K. Storie, P. Oakley, and J. Copley, “Advanced infared detectors for multimode active and passive imaging applications,” Proc. SPIE 6940, 6902L (2008).

A. F. Milton, G. Klager, and T. Bowman, “Low cost sensors for UGVs,” Proc. SPIE 4024, 180-191 (2000).

A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59-70 (2005).

D. Bonnier, S. Lelièvre, and L. Demers, “On the safe use of long-range laser active imager in the near-infrared for homeland security,” Proc. SPIE 6206, 62060A (2006).

B. Göhler, P. Lutzmann, and G. Anstett, “3D imaging with range gated laser systems using speckle reduction techniques to improve the depth accuracy,” Proc. SPIE 7113, 711307 (2008).

D. A. Orchard, A. J. Turner, L. Michaille, and K. R. Ridley, “White light lasers for remote sensing,” Proc. SPIE 7115, 711506 (2008).

J. Lin, H. Mishima, T. D. Kawahara, Y. Saito, A. Nomura, K. Yamaguchi, and K. Morikawa, “Bistatic imaging lidar measurements of aerosols, fogs and clouds in the lower atmosphere,” Proc. SPIE 3504, 550-557 (1998).

W. R. Watkins, D. H. Tofsted, V. G. CuQlock-Knopp, J. B. Jordan, and M. M. Trivedi, “Active imaging applied to navigation through fog,” Proc. SPIE 3749, 750(1999).

O. Steinvall, H. Larsson, F. Gustafsson, D. Letalick, T. Chevalier, Å. Persson, and P. Andersson, “Performance of 3-D laser radar through vegetation and camouflage,” Proc. SPIE 5792, 129-142 (2005).

Other

J. C. Dainty, Laser Speckle and Related Phenomena (Springer Verlag, 1975).

Night vision systems, www.turn.ru/porducts/index.htm

M. Turner, “Standoff precision ID in 3-D,” www.darpa.mil/ipto/programs/spi3d/spi3d.asp.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Swedish range-GV system mounted on a trailer (left), and the German GV system (right) as of the Älvdalen trial (October 2006).

Fig. 2
Fig. 2

Reference targets (panels and vehicles).

Fig. 3
Fig. 3

Single frames (left) and 25 averaged, stabilized or processed frames (right) during low (upper row) and medium (second row) turbulence, range 1.9 km . Rows 3 and 4 show the improvement on integrating 1, 3, 5 and 10 frames for a medium turbulence condition. The last row shows men with weapons at 1 km and 2.5 km , respectively. The focal length was 2000 mm except for images in the lowest row, where the focal length was 500 mm.

Fig. 4
Fig. 4

Comparison of the passive (left) and active (right) operating mode of the LIVAR 120 camera. Test panels at a distance of 1000 m were watched through a 500 mm focal length optics. The number of averaged frames in the right-hand image was 10.

Fig. 5
Fig. 5

Illuminated stone wall of a church at a distance of 450 m and spectral composition of the illuminating laser pulses. (a) Target-induced speckle pattern resulting from illumination with a fixed wavelength of 1.54 μm (Raman-shifted Nd:YAG laser) and a spectral bandwidth of 2.5 nm (50 frames averaged). (b) Reduced target-induced speckle pattern resulting from illumination with a fixed wavelength of 1.55 μm (OPO system) and a spectral bandwidth of 9 nm (50 frames averaged). (c) Resulting image from successive illumination with ten different wavelengths (1450–1630 nm, step size 20 nm ). For each wavelength 5 frames were recorded, and the total of 50 frames were averaged.

Fig. 6
Fig. 6

Theoretical contrast function C sp , Eq. (1), against the laser linewidth compared with the estimated values of Fig. 5 for the two different linewidths 2.5 and 9 nm .

Fig. 7
Fig. 7

(a) Target-induced speckle pattern resulting from illumination with a fixed wavelength of 1.54 μm and spectral bandwidth of 2.5 nm (Raman-shifted Nd:YAG laser). 550 frames were averaged. (b) Same scene as in (a) illuminated with 11 different wavelengths (OPO system). Wavelength range 1450–1650 nm, step size 20 nm . For each wavelength 50 frames were recorded, and the resulting 550 frames were averaged.

Fig. 8
Fig. 8

Camera gate position in front of the target (a), on the target (b), and almost behind the target (c). This subsequence results from tuning the wavelength of the OPO system from 1500 nm to 1640 nm with step size 20 nm . For each wavelength 50 frames were taken. The entire 400 frames for each gate position were averaged.

Fig. 9
Fig. 9

(a) Measured intensity distribution of three representative pixels as a function of the gate delay. The solid curves represent the fitted curves. (b) Gray-scale-coded range image of a vehicle at a distance of 2500 m . (c) Top-down view of the point cloud of the vehicle side panel with corresponding error band. The width of this error band with respect to the viewing direction is about 16 cm .

Fig. 10
Fig. 10

Two illustrations showing different applications of time gating for non-line-of-sight imaging in urban situations. An outdoor street situation is shown in the lower sketch, and a situation inside a building is shown in the upper sketch. In the lower sketch the letters A, B, and C are objects of interest, G represents gate widths, and T1–T3 are different illuminated points on walls or windows.

Fig. 11
Fig. 11

Top, experimental configuration for measuring wall and asphalt reflections at 1 m range. Bottom, attenuation from the wall in terms of loss in the link budget relative to direct illumination [30].

Fig. 12
Fig. 12

Left, sketch showing the experimental setup for indirect viewing. Middle, windows, with surrounding white painted metal and concrete, and the surrounding brick. Right, equipment with the 1.5 μm laser and the 9 cm diameter receiver ( f = 500 mm ) with an Intevac tube.

Fig. 13
Fig. 13

Left, a man with a gun seen at 20 m from the illuminated wall. Right, a license plate from a car at a 30 m range from the wall.

Fig. 14
Fig. 14

Left, cooperative target (aluminum foil) for experiments when the laser was reflected from brick, concrete, and metal. Middle and right, image of the target when the laser spot illuminated brick and concrete, respectively. The receiver observed the scene from the reflection in a window pane.

Fig. 15
Fig. 15

A drop side cargo truck (upper left) and a military ambulance emblazoned with the Red Cross (upper right) as seen by a common GV system (colocated laser and camera). Both images in the lower row show the same targets captured by the same camera after the camera was separated from the laser source. The laser location was the same for all four images; only the camera has been displaced a few hundred meters to the right of the laser for the two lower images.

Fig. 16
Fig. 16

Top, geometry for the bistatic experiments. Lower left, Swedish GV system, denoted Camera 1 and Laser 1 in the top sketch, was operated in the usual way. Lower right, German GV system, denoted Camera 2, which acted only as a displaced second camera (laser switched off).

Fig. 17
Fig. 17

Images showing strong reflections in the frontal view (on-axis view; left-hand images) and images showing the remaining reflections from a side view (off-axis view, right-hand images). Only a few parts of the vehicles show glossy reflection characteristics in both viewing directions.

Fig. 18
Fig. 18

Left, images showing two different situations as seen by a conventional GV system. Right, in the side-view (off-axis) images shadows of the targets appear.

Fig. 19
Fig. 19

Same scenario illuminated by the laser source whose divergence was adapted to the FOV of the camera (upper left image) and with decreased divergence (lower left image) in order to increase the reflected laser power. This makes indirect illumination more recognizable in the off-axis images (right-hand images). Sensitive cameras are able to capture secondary reflections from objects being illuminated indirectly. In the lower right-hand image a person can be recognized behind the truck. This person was completely hidden by the truck in the on-axis views. This person cannot be recognized in the on-axis images.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

C sp = σ I I = 1 1 + ( 2 Δ k σ h ) 2 4 ,
Δ λ = λ 2 2 σ h
E target direct = E p η r A r d pix 2 Ω laser f 2 G ( θ ) exp ( 2 σ ext L t ) L t 2 ,

Metrics