Abstract

We investigate hydrometeor habits at the AIDA chamber with a newly developed in-line holographic microscope HOLographic Imager for Microscopic Objects (HOLIMO). Sizes and habits of ice crystals and droplets in a mixed-phase cloud experiment are related to relative humidity with respect to ice (RHice), temperature (T), and experiment time. This experiment is initiated with supercooled water drops. As a result, ice crystals within a maximum particle diameter size range of 2 to 118μm (average size of 19μm) are detected and 63% of them reveal regular habits. The observed particle habits match those predicted for a given RHice and T. Two different growth modes emerge from this cloud. The first one appears during water injection and reveals mainly optical particle sizes in the range of 5 to 250μm. The second mode grows to sizes of 5 to 63μm, just after the particles of the first one fall out. It is found that an increasing aspect ratio χ of maximum length over thickness from 2 to 20 as obtained by HOLIMO corresponds to a decreasing linear depolarization ratio from 0.1 to 0.04, as independently obtained by depolarization measurements.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. J. Schaefer, “The production of ice crystals in a cloud of supercooled water droplets,” Science 104, 457-459(1946).
    [CrossRef]
  2. G. Vali, “Ice nucleation--a review,” in Nucleation and Atmospheric Aerosols 1996 (Pergamon, 1996), pp. 271-279.
  3. U. Lohmann and J. Feichter, “Global indirect aerosol effects: a review,” Atmos. Chem. Phys. 5, 715-737 (2005).
  4. A. Korolev and G. A. Isaac, “Relative humidity in liquid, Mixed-phase, and ice clouds,” J. Atmos. Sci. 63, 2865-2880(2006).
    [CrossRef]
  5. M. Wendisch, P. Pilewskie, J. Pommier, S. Howard, P. Yang, A. J. Heymsfield, C. G. Schmitt, D. Baumgardner and B. Mayer, “Impact of cirrus crystal shape on solar spectral irradiance: a case study for subtropical cirrus,” J. Geophys. Res. 110, D03202 (2005).
    [CrossRef]
  6. W. Cantrell and A. Heymsfield, “Production of ice in tropospheric clouds--a review,” Bull. Am. Meteorol. Soc. 86, 795-807 (2005).
    [CrossRef]
  7. K. G. Libbrecht, “The physics of snow crystals,” Rep. Prog. Phys. 68, 855-895 (2005).
    [CrossRef]
  8. P. Yang, H. Wei, H. L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512-5523 (2005).
    [CrossRef]
  9. H. J. Kreuzer, M. J. Jericho, I. A. Meinertzhagen, and W. B. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 13, 10729-10741 (2001).
    [CrossRef]
  10. J. D. Trolinger, “Particle field holography,” Opt. Eng. 14, 383-392 (1975).
  11. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893-3901 (2006).
    [CrossRef]
  12. P. R. A. Brown, “Use of holography for airborne cloud physics measurements,” J. Atmos. Ocean. Technol. 6, 293-306(1989).
    [CrossRef]
  13. J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, “Airborne digital holographic system for cloud particle measurements,” Appl. Opt. 43, 5987-5995 (2004).
    [CrossRef]
  14. H. J. Vossing, S. Borrmann, and R. Jaenicke, “In-line holography of cloud volumes applied to the measurement of raindrops and snowflakes,” Atmos. Res. 49, 199-212 (1998).
    [CrossRef]
  15. S. M. F. Raupach, H. J. Vossing, J. Curtius, and S. Borrmann, “Digital crossed-beam holography for in situ imaging of atmospheric ice particles,” J. Opt. A Pure Appl. Opt. 8, 796-806(2006).
    [CrossRef]
  16. S. K. Jericho, J. Garcia-Sucerquia, W. B. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
    [CrossRef]
  17. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts, 2005).
  18. C. S. Vikram and M. L. Billet, “In-line Fraunhofer holography at a few far fields,” Appl. Opt. 23, 3091-3094 (1984).
    [CrossRef]
  19. J. Garcia-Sucerquia, W. B. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
    [CrossRef]
  20. C. S. Vikram and M. L. Billet, “Some salient features of in-line Fraunhofer holography with divergent beams,” Optik (Jena) 78, 80-83 (1988).
  21. D. M. Robinson, “A calculation of edge smear in far-field holography using a short-cut edge trace technique,” Appl. Opt. 9, 496-497 (1970).
    [CrossRef]
  22. S. L. Cartwright, P. Dunn, and B. J. Thompson, “Noise and resolution in far-field holography,” J. Opt. Soc. Am. 70(2), 1631(1980).
  23. B. J. Thompson, “Holographic particle sizing techniques,” J. Phys. E 7, 781-788 (1974).
    [CrossRef]
  24. H. Koehler, “On Abbe's theory of image formation in the microscope,” Opt. Acta 28, 1691-1701 (1981).
  25. C. Magono and C. Lee, “Meteorological classification of natural snow crystals,” J. Fac. Sci., Univ. Tokyo, Sect. 1, Ser. VII 2, 321-335 (1966).
  26. A. Korolev, G. A. Isaac, and J. Hallett, “Ice particle habits in stratiform clouds,” Q. J. R. Meteorol. Soc. 126, 2873-2902(2000).
    [CrossRef]
  27. O. Möhler, S. Büttner, C. Linke, M. Schnaiter, H. Saathoff, O. Stetzer, R. Wagner, M. Krämer, A. Mangold, V. Ebert, and U. Schurath, “Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles,” J. Geophys. Res. 110, D11210 (2005).
    [CrossRef]
  28. S. Benz, K. Megahed, O. Möhler, H. Saathoff, R. Wagner, and U. Schurath, “T-dependent rate measurements of homogeneous ice nucleation in cloud droplets using a large atmospheric simulation chamber,” J. Photochem. Photobiol. A 176, 208-217 (2005).
    [CrossRef]
  29. M. Schnaiter, S. Benz, V. Ebert, T. Leisner, O. Möhler, R. W. Saunders, and R. Wagner, “Influence of particle size and shape on the backscattering linear depolarization ratio of small ice crystals,” J. Atmos. Sci. (2009). To be submitted.
  30. H. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  31. J. Hallett, “Faceted snow crystals,” J. Opt. Soc. Am. A 4, 581-588 (1987).
    [CrossRef]
  32. H. R. Puppacher and J. D. Klett, Microphysics of Clouds and Precipitation (Kluwer, 1997).
  33. A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813-2825 (1996).
    [CrossRef]
  34. K. Sassen, Light Scattering by Nonspherical Particles (Academic, 1999).
  35. K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part II: Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58, 2103-2112 (2001).
    [CrossRef]

2006 (5)

A. Korolev and G. A. Isaac, “Relative humidity in liquid, Mixed-phase, and ice clouds,” J. Atmos. Sci. 63, 2865-2880(2006).
[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893-3901 (2006).
[CrossRef]

S. M. F. Raupach, H. J. Vossing, J. Curtius, and S. Borrmann, “Digital crossed-beam holography for in situ imaging of atmospheric ice particles,” J. Opt. A Pure Appl. Opt. 8, 796-806(2006).
[CrossRef]

S. K. Jericho, J. Garcia-Sucerquia, W. B. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

J. Garcia-Sucerquia, W. B. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
[CrossRef]

2005 (7)

U. Lohmann and J. Feichter, “Global indirect aerosol effects: a review,” Atmos. Chem. Phys. 5, 715-737 (2005).

M. Wendisch, P. Pilewskie, J. Pommier, S. Howard, P. Yang, A. J. Heymsfield, C. G. Schmitt, D. Baumgardner and B. Mayer, “Impact of cirrus crystal shape on solar spectral irradiance: a case study for subtropical cirrus,” J. Geophys. Res. 110, D03202 (2005).
[CrossRef]

W. Cantrell and A. Heymsfield, “Production of ice in tropospheric clouds--a review,” Bull. Am. Meteorol. Soc. 86, 795-807 (2005).
[CrossRef]

K. G. Libbrecht, “The physics of snow crystals,” Rep. Prog. Phys. 68, 855-895 (2005).
[CrossRef]

P. Yang, H. Wei, H. L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512-5523 (2005).
[CrossRef]

O. Möhler, S. Büttner, C. Linke, M. Schnaiter, H. Saathoff, O. Stetzer, R. Wagner, M. Krämer, A. Mangold, V. Ebert, and U. Schurath, “Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles,” J. Geophys. Res. 110, D11210 (2005).
[CrossRef]

S. Benz, K. Megahed, O. Möhler, H. Saathoff, R. Wagner, and U. Schurath, “T-dependent rate measurements of homogeneous ice nucleation in cloud droplets using a large atmospheric simulation chamber,” J. Photochem. Photobiol. A 176, 208-217 (2005).
[CrossRef]

2004 (1)

2001 (2)

H. J. Kreuzer, M. J. Jericho, I. A. Meinertzhagen, and W. B. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 13, 10729-10741 (2001).
[CrossRef]

K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part II: Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58, 2103-2112 (2001).
[CrossRef]

2000 (1)

A. Korolev, G. A. Isaac, and J. Hallett, “Ice particle habits in stratiform clouds,” Q. J. R. Meteorol. Soc. 126, 2873-2902(2000).
[CrossRef]

1998 (1)

H. J. Vossing, S. Borrmann, and R. Jaenicke, “In-line holography of cloud volumes applied to the measurement of raindrops and snowflakes,” Atmos. Res. 49, 199-212 (1998).
[CrossRef]

1996 (1)

A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813-2825 (1996).
[CrossRef]

1989 (1)

P. R. A. Brown, “Use of holography for airborne cloud physics measurements,” J. Atmos. Ocean. Technol. 6, 293-306(1989).
[CrossRef]

1988 (1)

C. S. Vikram and M. L. Billet, “Some salient features of in-line Fraunhofer holography with divergent beams,” Optik (Jena) 78, 80-83 (1988).

1987 (1)

1984 (1)

1981 (1)

H. Koehler, “On Abbe's theory of image formation in the microscope,” Opt. Acta 28, 1691-1701 (1981).

1980 (1)

S. L. Cartwright, P. Dunn, and B. J. Thompson, “Noise and resolution in far-field holography,” J. Opt. Soc. Am. 70(2), 1631(1980).

1975 (1)

J. D. Trolinger, “Particle field holography,” Opt. Eng. 14, 383-392 (1975).

1974 (1)

B. J. Thompson, “Holographic particle sizing techniques,” J. Phys. E 7, 781-788 (1974).
[CrossRef]

1970 (1)

1966 (1)

C. Magono and C. Lee, “Meteorological classification of natural snow crystals,” J. Fac. Sci., Univ. Tokyo, Sect. 1, Ser. VII 2, 321-335 (1966).

1946 (1)

V. J. Schaefer, “The production of ice crystals in a cloud of supercooled water droplets,” Science 104, 457-459(1946).
[CrossRef]

Baum, B. A.

Baumgardner, D.

M. Wendisch, P. Pilewskie, J. Pommier, S. Howard, P. Yang, A. J. Heymsfield, C. G. Schmitt, D. Baumgardner and B. Mayer, “Impact of cirrus crystal shape on solar spectral irradiance: a case study for subtropical cirrus,” J. Geophys. Res. 110, D03202 (2005).
[CrossRef]

Benson, S.

K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part II: Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58, 2103-2112 (2001).
[CrossRef]

Benz, S.

S. Benz, K. Megahed, O. Möhler, H. Saathoff, R. Wagner, and U. Schurath, “T-dependent rate measurements of homogeneous ice nucleation in cloud droplets using a large atmospheric simulation chamber,” J. Photochem. Photobiol. A 176, 208-217 (2005).
[CrossRef]

M. Schnaiter, S. Benz, V. Ebert, T. Leisner, O. Möhler, R. W. Saunders, and R. Wagner, “Influence of particle size and shape on the backscattering linear depolarization ratio of small ice crystals,” J. Atmos. Sci. (2009). To be submitted.

Billet, M. L.

C. S. Vikram and M. L. Billet, “Some salient features of in-line Fraunhofer holography with divergent beams,” Optik (Jena) 78, 80-83 (1988).

C. S. Vikram and M. L. Billet, “In-line Fraunhofer holography at a few far fields,” Appl. Opt. 23, 3091-3094 (1984).
[CrossRef]

Borrmann, S.

S. M. F. Raupach, H. J. Vossing, J. Curtius, and S. Borrmann, “Digital crossed-beam holography for in situ imaging of atmospheric ice particles,” J. Opt. A Pure Appl. Opt. 8, 796-806(2006).
[CrossRef]

H. J. Vossing, S. Borrmann, and R. Jaenicke, “In-line holography of cloud volumes applied to the measurement of raindrops and snowflakes,” Atmos. Res. 49, 199-212 (1998).
[CrossRef]

Brown, P. R. A.

P. R. A. Brown, “Use of holography for airborne cloud physics measurements,” J. Atmos. Ocean. Technol. 6, 293-306(1989).
[CrossRef]

Büttner, S.

O. Möhler, S. Büttner, C. Linke, M. Schnaiter, H. Saathoff, O. Stetzer, R. Wagner, M. Krämer, A. Mangold, V. Ebert, and U. Schurath, “Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles,” J. Geophys. Res. 110, D11210 (2005).
[CrossRef]

Cantrell, W.

W. Cantrell and A. Heymsfield, “Production of ice in tropospheric clouds--a review,” Bull. Am. Meteorol. Soc. 86, 795-807 (2005).
[CrossRef]

Cartwright, S. L.

S. L. Cartwright, P. Dunn, and B. J. Thompson, “Noise and resolution in far-field holography,” J. Opt. Soc. Am. 70(2), 1631(1980).

Curtius, J.

S. M. F. Raupach, H. J. Vossing, J. Curtius, and S. Borrmann, “Digital crossed-beam holography for in situ imaging of atmospheric ice particles,” J. Opt. A Pure Appl. Opt. 8, 796-806(2006).
[CrossRef]

Dunn, P.

S. L. Cartwright, P. Dunn, and B. J. Thompson, “Noise and resolution in far-field holography,” J. Opt. Soc. Am. 70(2), 1631(1980).

Ebert, V.

O. Möhler, S. Büttner, C. Linke, M. Schnaiter, H. Saathoff, O. Stetzer, R. Wagner, M. Krämer, A. Mangold, V. Ebert, and U. Schurath, “Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles,” J. Geophys. Res. 110, D11210 (2005).
[CrossRef]

M. Schnaiter, S. Benz, V. Ebert, T. Leisner, O. Möhler, R. W. Saunders, and R. Wagner, “Influence of particle size and shape on the backscattering linear depolarization ratio of small ice crystals,” J. Atmos. Sci. (2009). To be submitted.

Feichter, J.

U. Lohmann and J. Feichter, “Global indirect aerosol effects: a review,” Atmos. Chem. Phys. 5, 715-737 (2005).

Fu, Q.

Fugal, J. P.

Garcia-Sucerquia, J.

J. Garcia-Sucerquia, W. B. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
[CrossRef]

S. K. Jericho, J. Garcia-Sucerquia, W. B. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts, 2005).

Hallett, J.

A. Korolev, G. A. Isaac, and J. Hallett, “Ice particle habits in stratiform clouds,” Q. J. R. Meteorol. Soc. 126, 2873-2902(2000).
[CrossRef]

J. Hallett, “Faceted snow crystals,” J. Opt. Soc. Am. A 4, 581-588 (1987).
[CrossRef]

Heymsfield, A.

W. Cantrell and A. Heymsfield, “Production of ice in tropospheric clouds--a review,” Bull. Am. Meteorol. Soc. 86, 795-807 (2005).
[CrossRef]

Heymsfield, A. J.

M. Wendisch, P. Pilewskie, J. Pommier, S. Howard, P. Yang, A. J. Heymsfield, C. G. Schmitt, D. Baumgardner and B. Mayer, “Impact of cirrus crystal shape on solar spectral irradiance: a case study for subtropical cirrus,” J. Geophys. Res. 110, D03202 (2005).
[CrossRef]

Howard, S.

M. Wendisch, P. Pilewskie, J. Pommier, S. Howard, P. Yang, A. J. Heymsfield, C. G. Schmitt, D. Baumgardner and B. Mayer, “Impact of cirrus crystal shape on solar spectral irradiance: a case study for subtropical cirrus,” J. Geophys. Res. 110, D03202 (2005).
[CrossRef]

Hu, Y. X.

Huang, H. L.

Isaac, G. A.

A. Korolev and G. A. Isaac, “Relative humidity in liquid, Mixed-phase, and ice clouds,” J. Atmos. Sci. 63, 2865-2880(2006).
[CrossRef]

A. Korolev, G. A. Isaac, and J. Hallett, “Ice particle habits in stratiform clouds,” Q. J. R. Meteorol. Soc. 126, 2873-2902(2000).
[CrossRef]

Jaenicke, R.

H. J. Vossing, S. Borrmann, and R. Jaenicke, “In-line holography of cloud volumes applied to the measurement of raindrops and snowflakes,” Atmos. Res. 49, 199-212 (1998).
[CrossRef]

Jericho, M. H.

S. K. Jericho, J. Garcia-Sucerquia, W. B. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

J. Garcia-Sucerquia, W. B. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
[CrossRef]

Jericho, M. J.

H. J. Kreuzer, M. J. Jericho, I. A. Meinertzhagen, and W. B. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 13, 10729-10741 (2001).
[CrossRef]

Jericho, S. K.

S. K. Jericho, J. Garcia-Sucerquia, W. B. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

J. Garcia-Sucerquia, W. B. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
[CrossRef]

Kattawar, G. W.

Katz, J.

Klages, P.

Klett, J. D.

H. R. Puppacher and J. D. Klett, Microphysics of Clouds and Precipitation (Kluwer, 1997).

Koehler, H.

H. Koehler, “On Abbe's theory of image formation in the microscope,” Opt. Acta 28, 1691-1701 (1981).

Korolev, A.

A. Korolev and G. A. Isaac, “Relative humidity in liquid, Mixed-phase, and ice clouds,” J. Atmos. Sci. 63, 2865-2880(2006).
[CrossRef]

A. Korolev, G. A. Isaac, and J. Hallett, “Ice particle habits in stratiform clouds,” Q. J. R. Meteorol. Soc. 126, 2873-2902(2000).
[CrossRef]

Krämer, M.

O. Möhler, S. Büttner, C. Linke, M. Schnaiter, H. Saathoff, O. Stetzer, R. Wagner, M. Krämer, A. Mangold, V. Ebert, and U. Schurath, “Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles,” J. Geophys. Res. 110, D11210 (2005).
[CrossRef]

Kreuzer, H. J.

S. K. Jericho, J. Garcia-Sucerquia, W. B. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

J. Garcia-Sucerquia, W. B. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
[CrossRef]

H. J. Kreuzer, M. J. Jericho, I. A. Meinertzhagen, and W. B. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 13, 10729-10741 (2001).
[CrossRef]

Lee, C.

C. Magono and C. Lee, “Meteorological classification of natural snow crystals,” J. Fac. Sci., Univ. Tokyo, Sect. 1, Ser. VII 2, 321-335 (1966).

Leisner, T.

M. Schnaiter, S. Benz, V. Ebert, T. Leisner, O. Möhler, R. W. Saunders, and R. Wagner, “Influence of particle size and shape on the backscattering linear depolarization ratio of small ice crystals,” J. Atmos. Sci. (2009). To be submitted.

Libbrecht, K. G.

K. G. Libbrecht, “The physics of snow crystals,” Rep. Prog. Phys. 68, 855-895 (2005).
[CrossRef]

Linke, C.

O. Möhler, S. Büttner, C. Linke, M. Schnaiter, H. Saathoff, O. Stetzer, R. Wagner, M. Krämer, A. Mangold, V. Ebert, and U. Schurath, “Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles,” J. Geophys. Res. 110, D11210 (2005).
[CrossRef]

Lohmann, U.

U. Lohmann and J. Feichter, “Global indirect aerosol effects: a review,” Atmos. Chem. Phys. 5, 715-737 (2005).

Macke, A.

A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813-2825 (1996).
[CrossRef]

Magono, C.

C. Magono and C. Lee, “Meteorological classification of natural snow crystals,” J. Fac. Sci., Univ. Tokyo, Sect. 1, Ser. VII 2, 321-335 (1966).

Malkiel, E.

Mangold, A.

O. Möhler, S. Büttner, C. Linke, M. Schnaiter, H. Saathoff, O. Stetzer, R. Wagner, M. Krämer, A. Mangold, V. Ebert, and U. Schurath, “Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles,” J. Geophys. Res. 110, D11210 (2005).
[CrossRef]

Mayer, B.

M. Wendisch, P. Pilewskie, J. Pommier, S. Howard, P. Yang, A. J. Heymsfield, C. G. Schmitt, D. Baumgardner and B. Mayer, “Impact of cirrus crystal shape on solar spectral irradiance: a case study for subtropical cirrus,” J. Geophys. Res. 110, D03202 (2005).
[CrossRef]

Megahed, K.

S. Benz, K. Megahed, O. Möhler, H. Saathoff, R. Wagner, and U. Schurath, “T-dependent rate measurements of homogeneous ice nucleation in cloud droplets using a large atmospheric simulation chamber,” J. Photochem. Photobiol. A 176, 208-217 (2005).
[CrossRef]

Meinertzhagen, I. A.

H. J. Kreuzer, M. J. Jericho, I. A. Meinertzhagen, and W. B. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 13, 10729-10741 (2001).
[CrossRef]

Mishchenko, M. I.

Möhler, O.

S. Benz, K. Megahed, O. Möhler, H. Saathoff, R. Wagner, and U. Schurath, “T-dependent rate measurements of homogeneous ice nucleation in cloud droplets using a large atmospheric simulation chamber,” J. Photochem. Photobiol. A 176, 208-217 (2005).
[CrossRef]

O. Möhler, S. Büttner, C. Linke, M. Schnaiter, H. Saathoff, O. Stetzer, R. Wagner, M. Krämer, A. Mangold, V. Ebert, and U. Schurath, “Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles,” J. Geophys. Res. 110, D11210 (2005).
[CrossRef]

M. Schnaiter, S. Benz, V. Ebert, T. Leisner, O. Möhler, R. W. Saunders, and R. Wagner, “Influence of particle size and shape on the backscattering linear depolarization ratio of small ice crystals,” J. Atmos. Sci. (2009). To be submitted.

Mueller, J.

A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813-2825 (1996).
[CrossRef]

Pilewskie, P.

M. Wendisch, P. Pilewskie, J. Pommier, S. Howard, P. Yang, A. J. Heymsfield, C. G. Schmitt, D. Baumgardner and B. Mayer, “Impact of cirrus crystal shape on solar spectral irradiance: a case study for subtropical cirrus,” J. Geophys. Res. 110, D03202 (2005).
[CrossRef]

Pommier, J.

M. Wendisch, P. Pilewskie, J. Pommier, S. Howard, P. Yang, A. J. Heymsfield, C. G. Schmitt, D. Baumgardner and B. Mayer, “Impact of cirrus crystal shape on solar spectral irradiance: a case study for subtropical cirrus,” J. Geophys. Res. 110, D03202 (2005).
[CrossRef]

Puppacher, H. R.

H. R. Puppacher and J. D. Klett, Microphysics of Clouds and Precipitation (Kluwer, 1997).

Raschke, E.

A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813-2825 (1996).
[CrossRef]

Raupach, S. M. F.

S. M. F. Raupach, H. J. Vossing, J. Curtius, and S. Borrmann, “Digital crossed-beam holography for in situ imaging of atmospheric ice particles,” J. Opt. A Pure Appl. Opt. 8, 796-806(2006).
[CrossRef]

Robinson, D. M.

Saathoff, H.

S. Benz, K. Megahed, O. Möhler, H. Saathoff, R. Wagner, and U. Schurath, “T-dependent rate measurements of homogeneous ice nucleation in cloud droplets using a large atmospheric simulation chamber,” J. Photochem. Photobiol. A 176, 208-217 (2005).
[CrossRef]

O. Möhler, S. Büttner, C. Linke, M. Schnaiter, H. Saathoff, O. Stetzer, R. Wagner, M. Krämer, A. Mangold, V. Ebert, and U. Schurath, “Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles,” J. Geophys. Res. 110, D11210 (2005).
[CrossRef]

Sassen, K.

K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part II: Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58, 2103-2112 (2001).
[CrossRef]

K. Sassen, Light Scattering by Nonspherical Particles (Academic, 1999).

Saunders, R. W.

M. Schnaiter, S. Benz, V. Ebert, T. Leisner, O. Möhler, R. W. Saunders, and R. Wagner, “Influence of particle size and shape on the backscattering linear depolarization ratio of small ice crystals,” J. Atmos. Sci. (2009). To be submitted.

Saw, E. W.

Schaefer, V. J.

V. J. Schaefer, “The production of ice crystals in a cloud of supercooled water droplets,” Science 104, 457-459(1946).
[CrossRef]

Schmitt, C. G.

M. Wendisch, P. Pilewskie, J. Pommier, S. Howard, P. Yang, A. J. Heymsfield, C. G. Schmitt, D. Baumgardner and B. Mayer, “Impact of cirrus crystal shape on solar spectral irradiance: a case study for subtropical cirrus,” J. Geophys. Res. 110, D03202 (2005).
[CrossRef]

Schnaiter, M.

O. Möhler, S. Büttner, C. Linke, M. Schnaiter, H. Saathoff, O. Stetzer, R. Wagner, M. Krämer, A. Mangold, V. Ebert, and U. Schurath, “Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles,” J. Geophys. Res. 110, D11210 (2005).
[CrossRef]

M. Schnaiter, S. Benz, V. Ebert, T. Leisner, O. Möhler, R. W. Saunders, and R. Wagner, “Influence of particle size and shape on the backscattering linear depolarization ratio of small ice crystals,” J. Atmos. Sci. (2009). To be submitted.

Schurath, U.

S. Benz, K. Megahed, O. Möhler, H. Saathoff, R. Wagner, and U. Schurath, “T-dependent rate measurements of homogeneous ice nucleation in cloud droplets using a large atmospheric simulation chamber,” J. Photochem. Photobiol. A 176, 208-217 (2005).
[CrossRef]

O. Möhler, S. Büttner, C. Linke, M. Schnaiter, H. Saathoff, O. Stetzer, R. Wagner, M. Krämer, A. Mangold, V. Ebert, and U. Schurath, “Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles,” J. Geophys. Res. 110, D11210 (2005).
[CrossRef]

Sergeyev, A. V.

Shaw, R. A.

Sheng, J.

Stetzer, O.

O. Möhler, S. Büttner, C. Linke, M. Schnaiter, H. Saathoff, O. Stetzer, R. Wagner, M. Krämer, A. Mangold, V. Ebert, and U. Schurath, “Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles,” J. Geophys. Res. 110, D11210 (2005).
[CrossRef]

Thompson, B. J.

S. L. Cartwright, P. Dunn, and B. J. Thompson, “Noise and resolution in far-field holography,” J. Opt. Soc. Am. 70(2), 1631(1980).

B. J. Thompson, “Holographic particle sizing techniques,” J. Phys. E 7, 781-788 (1974).
[CrossRef]

Trolinger, J. D.

J. D. Trolinger, “Particle field holography,” Opt. Eng. 14, 383-392 (1975).

Vali, G.

G. Vali, “Ice nucleation--a review,” in Nucleation and Atmospheric Aerosols 1996 (Pergamon, 1996), pp. 271-279.

van de Hulst, H.

H. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

Vikram, C. S.

C. S. Vikram and M. L. Billet, “Some salient features of in-line Fraunhofer holography with divergent beams,” Optik (Jena) 78, 80-83 (1988).

C. S. Vikram and M. L. Billet, “In-line Fraunhofer holography at a few far fields,” Appl. Opt. 23, 3091-3094 (1984).
[CrossRef]

Vossing, H. J.

S. M. F. Raupach, H. J. Vossing, J. Curtius, and S. Borrmann, “Digital crossed-beam holography for in situ imaging of atmospheric ice particles,” J. Opt. A Pure Appl. Opt. 8, 796-806(2006).
[CrossRef]

H. J. Vossing, S. Borrmann, and R. Jaenicke, “In-line holography of cloud volumes applied to the measurement of raindrops and snowflakes,” Atmos. Res. 49, 199-212 (1998).
[CrossRef]

Wagner, R.

S. Benz, K. Megahed, O. Möhler, H. Saathoff, R. Wagner, and U. Schurath, “T-dependent rate measurements of homogeneous ice nucleation in cloud droplets using a large atmospheric simulation chamber,” J. Photochem. Photobiol. A 176, 208-217 (2005).
[CrossRef]

O. Möhler, S. Büttner, C. Linke, M. Schnaiter, H. Saathoff, O. Stetzer, R. Wagner, M. Krämer, A. Mangold, V. Ebert, and U. Schurath, “Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles,” J. Geophys. Res. 110, D11210 (2005).
[CrossRef]

M. Schnaiter, S. Benz, V. Ebert, T. Leisner, O. Möhler, R. W. Saunders, and R. Wagner, “Influence of particle size and shape on the backscattering linear depolarization ratio of small ice crystals,” J. Atmos. Sci. (2009). To be submitted.

Wei, H.

Wendisch, M.

M. Wendisch, P. Pilewskie, J. Pommier, S. Howard, P. Yang, A. J. Heymsfield, C. G. Schmitt, D. Baumgardner and B. Mayer, “Impact of cirrus crystal shape on solar spectral irradiance: a case study for subtropical cirrus,” J. Geophys. Res. 110, D03202 (2005).
[CrossRef]

Xu, W. B.

S. K. Jericho, J. Garcia-Sucerquia, W. B. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

J. Garcia-Sucerquia, W. B. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
[CrossRef]

H. J. Kreuzer, M. J. Jericho, I. A. Meinertzhagen, and W. B. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 13, 10729-10741 (2001).
[CrossRef]

Yang, P.

M. Wendisch, P. Pilewskie, J. Pommier, S. Howard, P. Yang, A. J. Heymsfield, C. G. Schmitt, D. Baumgardner and B. Mayer, “Impact of cirrus crystal shape on solar spectral irradiance: a case study for subtropical cirrus,” J. Geophys. Res. 110, D03202 (2005).
[CrossRef]

P. Yang, H. Wei, H. L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512-5523 (2005).
[CrossRef]

Appl. Opt. (6)

Atmos. Chem. Phys. (1)

U. Lohmann and J. Feichter, “Global indirect aerosol effects: a review,” Atmos. Chem. Phys. 5, 715-737 (2005).

Atmos. Res. (1)

H. J. Vossing, S. Borrmann, and R. Jaenicke, “In-line holography of cloud volumes applied to the measurement of raindrops and snowflakes,” Atmos. Res. 49, 199-212 (1998).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

W. Cantrell and A. Heymsfield, “Production of ice in tropospheric clouds--a review,” Bull. Am. Meteorol. Soc. 86, 795-807 (2005).
[CrossRef]

J. Atmos. Ocean. Technol. (1)

P. R. A. Brown, “Use of holography for airborne cloud physics measurements,” J. Atmos. Ocean. Technol. 6, 293-306(1989).
[CrossRef]

J. Atmos. Sci. (3)

A. Korolev and G. A. Isaac, “Relative humidity in liquid, Mixed-phase, and ice clouds,” J. Atmos. Sci. 63, 2865-2880(2006).
[CrossRef]

A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813-2825 (1996).
[CrossRef]

K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part II: Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58, 2103-2112 (2001).
[CrossRef]

J. Fac. Sci., Univ. Tokyo, Sect. 1, Ser. VII (1)

C. Magono and C. Lee, “Meteorological classification of natural snow crystals,” J. Fac. Sci., Univ. Tokyo, Sect. 1, Ser. VII 2, 321-335 (1966).

J. Geophys. Res. (2)

O. Möhler, S. Büttner, C. Linke, M. Schnaiter, H. Saathoff, O. Stetzer, R. Wagner, M. Krämer, A. Mangold, V. Ebert, and U. Schurath, “Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles,” J. Geophys. Res. 110, D11210 (2005).
[CrossRef]

M. Wendisch, P. Pilewskie, J. Pommier, S. Howard, P. Yang, A. J. Heymsfield, C. G. Schmitt, D. Baumgardner and B. Mayer, “Impact of cirrus crystal shape on solar spectral irradiance: a case study for subtropical cirrus,” J. Geophys. Res. 110, D03202 (2005).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

S. M. F. Raupach, H. J. Vossing, J. Curtius, and S. Borrmann, “Digital crossed-beam holography for in situ imaging of atmospheric ice particles,” J. Opt. A Pure Appl. Opt. 8, 796-806(2006).
[CrossRef]

J. Opt. Soc. Am. (1)

S. L. Cartwright, P. Dunn, and B. J. Thompson, “Noise and resolution in far-field holography,” J. Opt. Soc. Am. 70(2), 1631(1980).

J. Opt. Soc. Am. A (1)

J. Photochem. Photobiol. A (1)

S. Benz, K. Megahed, O. Möhler, H. Saathoff, R. Wagner, and U. Schurath, “T-dependent rate measurements of homogeneous ice nucleation in cloud droplets using a large atmospheric simulation chamber,” J. Photochem. Photobiol. A 176, 208-217 (2005).
[CrossRef]

J. Phys. Condens. Matter (1)

H. J. Kreuzer, M. J. Jericho, I. A. Meinertzhagen, and W. B. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 13, 10729-10741 (2001).
[CrossRef]

J. Phys. E (1)

B. J. Thompson, “Holographic particle sizing techniques,” J. Phys. E 7, 781-788 (1974).
[CrossRef]

Opt. Acta (1)

H. Koehler, “On Abbe's theory of image formation in the microscope,” Opt. Acta 28, 1691-1701 (1981).

Opt. Eng. (1)

J. D. Trolinger, “Particle field holography,” Opt. Eng. 14, 383-392 (1975).

Optik (Jena) (1)

C. S. Vikram and M. L. Billet, “Some salient features of in-line Fraunhofer holography with divergent beams,” Optik (Jena) 78, 80-83 (1988).

Q. J. R. Meteorol. Soc. (1)

A. Korolev, G. A. Isaac, and J. Hallett, “Ice particle habits in stratiform clouds,” Q. J. R. Meteorol. Soc. 126, 2873-2902(2000).
[CrossRef]

Rep. Prog. Phys. (1)

K. G. Libbrecht, “The physics of snow crystals,” Rep. Prog. Phys. 68, 855-895 (2005).
[CrossRef]

Rev. Sci. Instrum. (1)

S. K. Jericho, J. Garcia-Sucerquia, W. B. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

Science (1)

V. J. Schaefer, “The production of ice crystals in a cloud of supercooled water droplets,” Science 104, 457-459(1946).
[CrossRef]

Other (6)

G. Vali, “Ice nucleation--a review,” in Nucleation and Atmospheric Aerosols 1996 (Pergamon, 1996), pp. 271-279.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts, 2005).

H. R. Puppacher and J. D. Klett, Microphysics of Clouds and Precipitation (Kluwer, 1997).

K. Sassen, Light Scattering by Nonspherical Particles (Academic, 1999).

M. Schnaiter, S. Benz, V. Ebert, T. Leisner, O. Möhler, R. W. Saunders, and R. Wagner, “Influence of particle size and shape on the backscattering linear depolarization ratio of small ice crystals,” J. Atmos. Sci. (2009). To be submitted.

H. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Sketch of the working principle of HOLIMO. It shows the recording setup. The reconstruction is done numerically. In the main, the setup consists of a laser point source of light and a CCD camera that records the interference pattern of the reference wave with the scattered wave amplitude from an object inside the sample flow tube that is sealed off from the camera and the laser by two windows. The observing volume is indicated by the hatched area. A possible interference pattern on the camera sensor inside the light cone is shown on the right-hand side of the sketch. Objects are sucked through the sample flow tube with the help of a vacuum pump. The mass flow controller (MFC) controls the flow.

Fig. 2
Fig. 2

Illustration of a reconstruction plane inside V obs of HOLIMO. Every pixel ( k , p ) of this reconstruction is calculated at the position l, adding up all contributions of the pixels of the camera at the points ( h , j ) at the position L.

Fig. 3
Fig. 3

Flow chart of the data processing of HOLIMO (left panel). First the hologram will be read in and a predefined routine reconstruction produces the image of maximal brightness at a distance l j . The image needs to be binarized in order to define a boundary box. This makes it possible to classify the objects in a predefined routine and store the important findings. Every hologram is treated in the same manner before the data processing is ended. An example of this process is shown on the right-hand side. Frame A shows the hologram, frame B its reconstruction, and frame C its binary representation. Frame D includes the boundary box with the binary size label d equiv underneath the box, and frame E attributes the object to the class droplikes.

Fig. 4
Fig. 4

Classification scheme for HOLIMO images of hydrometeors inside a sample flow. The measurable parameters D w (parallel to the streamlines), D max (horizontal to the streamlines), A, and the circumference are used for image habit recognition. Examples of the aspect ratio α = D w D max 1 and the roundness β = 4 A ( π D max 2 ) 1 are given for four simple shapes.

Fig. 5
Fig. 5

Sketch of the AIDA facility. AIDA itself is the innermost cylinder. It has a diameter of 4 m and is 7 m high. This corresponds to a volume of approximately 84 m 3 . It is surrounded by a thermal housing and aerosol and trace gas instruments. The wall temperature of AIDA is adjusted via heat exchange controlled by a cryostat in the basement. The temperature can be set between 90 ° C and + 60 ° C . The inner temperature is controlled via adiabatic expansion with a vacuum system in the basement. The pressure can be set between 0.01 and 1000 hPa . The vacuum system is also used for various sampling streams, which are drawn off from the bottom of AIDA and controlled with a MFC. The point where HOLIMO was inserted into the measuring flow is indicated.

Fig. 6
Fig. 6

Temporal evolution of the AIDA mixed-phase cloud experiment 2. (a) Wall temperature of plus gas temperature and pressure inside AIDA. (b) Ice saturation ratio of the total and interstitial water content s i inside AIDA. (c) and (d) WELAS and HOLIMO size distribution, respectively. Data are subsequently divided into three regions (I, II, and III), based on different levels (high, medium, low) of the linear depolarization ratio. (e) Backward-scattered signal of the perpendicular and the parallel channel in blue and red with respect to the total forward-scattered signal in black. (f) Linear depolarization ratio of the two backward channels with respect to time and χ in regions I and III. The vertical lines at the beginning of the experiment throughout all panels indicate the time of droplet injection.

Fig. 7
Fig. 7

Ice crystal habits of experiment 2 during three different time slots, showing three different phases of habits and frequency of occurrences.

Fig. 8
Fig. 8

Example pictures of aspect ratios χ = maximum length / thickness for thin and thick plates. (a)  χ = 24 for the thin plate seen under grazing incident angle. (b)  χ = 15 for the thin plate. Here the contribution of edge blurring is bigger than for the previous example because both the forward and rearward faces add up. The thick plate in (c) has χ = 2 .

Fig. 9
Fig. 9

Linear depolarization ratios versus χ of randomly oriented hexagonal prisms calculated using geometric optics.

Fig. 10
Fig. 10

Ray paths that contribute most to linear depolarization for (a)  χ < 1.5 , (b)  χ > 18 and (c)  2 < χ < 18 . The ray paths were obtained from calculations of randomly orientated particles.

Tables (1)

Tables Icon

Table 1 Frequency of Occurrence of Ice Crystal Habits in Three Different Periods of Experiment IN 11 _ 2 .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ eff = λ m 0 1 = λ s 1 + s 2 + s 3 + s 4 + s 5 n 1 s 1 + n 2 s 2 + n 3 s 3 + n 4 s 4 + n 5 s 5 = 532 nm · 132.5 mm 140.8 mm = 501 nm ,
K ( r ) = A d 2 ξ I ˜ exp ( 2 π i ξ r λ ξ ) , K ( k , p ; l ) = h = n / 2 n / 2 j = n / 2 n / 2 I ˜ ( h , j ; L ) exp ( 2 π i λ ( k ˜ h ˜ + p ˜ j ˜ + l L h ˜ 2 + j ˜ 2 + L 2 ) ) .
δ = I I bs I I bs for parallel polarized incident light , δ = I I bs I I bs for perpendicular polarized incident light .
I I bs = I sca + Q sca 2 , I I bs = I sca Q sca 2 ,
I sca = S 11 + S 12 R 2 , I sca = S 11 S 12 R 2 , Q sca = S 12 + S 22 R 2 , Q sca = S 12 S 22 R 2 .
δ = S 11 S 22 S 11 + 2 S 12 + S 22 = 1 S 22 / S 11 1 + 2 S 12 / S 11 + S 22 / S 11 , δ = S 11 S 12 S 11 2 S 12 + S 22 = 1 S 22 / S 11 1 2 S 12 / S 11 + S 22 / S 11 .

Metrics