Abstract

With the use of diamond cutting processes, namely turning and shaping, followed by soft lithography with polydimethylsiloxane, a liquid tunable double-focusing lens is fabricated. Data from a mechanical profiler verified that the dimensions of the features of the lens device adhere well to designed values. In addition, atomic force microscopy results show that this method of fabrication is able to produce multiple replicas of the lens device with a high-quality surface finish that is suitable for optical purposes. Lastly, the tunability of the lens is demonstrated, with experimental results agreeing well with simulation results.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Liesener, L. Seifert, H. J. Tiziani, and W. Osten, “Active wavefront sensing and wavefront control with SLMs,” Proc. SPIE 5532, 147-158 (2004).
    [CrossRef]
  2. W. M. Trott, R. E. Setchell, J. N. Castaneda, and D. M. Berry, “Evaluation of a diffractive, microlens array beam shaper for use in acceleration of laser-driven flyers,” Proc. SPIE 4443, 166-177 (2001).
  3. L. Wu and H. Xie, “A lateral-shift-free LVD microlens scanner for confocal microscopy,” in 2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (IEEE, 2007), pp. 141-142.
    [CrossRef]
  4. T. Dillon, E. Marchena, C. Caihua, D. Brady, and D. Prather, “Microlens fabrication using HEBS glass for compact high-resolution IR imaging system,” Proc. SPIE 6327, 63270B(2006).
    [CrossRef]
  5. A. Jain and X. Huikai, “Microendoscopic confocal imaging probe based on an LVD microlens scanner,” IEEE J. Sel. Top. Quantum Electron. 13, 228-234 (2007).
    [CrossRef]
  6. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128-1130(2004).
    [CrossRef]
  7. C.-S. Lee and C.-H. Han, “A novel refractive silicon microlens array using bulk micromachining technology,” Sens. Actuators A Phys. 88, 87-90 (2001).
    [CrossRef]
  8. S.-Y. Hung, C.-P. Lin, H. Yang, and Y.-P. Chang, “Optimal design using thermal reflow and caulking for fabrication of gapless microlens array mold inserts,” Opt. Eng. 46, 043401(2007).
    [CrossRef]
  9. W. Moench and H. Zappe, “Fabrication and testing of micro-lens arrays by all-liquid techniques,” J. Opt. A Pure Appl. Opt. 6, 330-337 (2004).
    [CrossRef]
  10. T. Shiono and K. Setsune, “Blazed reflection micro-Fresnel lenses fabricated by electron-beam writing and dry development,” Opt. Lett. 15, 84-86 (1990).
    [CrossRef] [PubMed]
  11. K. Naessens, P. Van Daele, and R. Baets, “Excimer laser ablation based microlens fabrication for optical fiber coupling purposes,” Proc. SPIE 4941, 133-139 (2003).
    [CrossRef]
  12. F. Erlsmann, “Design of a plastic aspheric Fresnel lens with a spherical shape,” Opt. Eng. 36, 988-991 (1997).
    [CrossRef]
  13. N. M. Ganzherli, S. N. Gulyaev, I. A. Maurer, and D. F. Chernykh, “Phase recording for formation of holographic optical elements on silver-halide photographic emulsions,” Proc. SPIE 7358, 735817 (2009).
    [CrossRef]
  14. S. Sato, A. Sugiyama, and R. Sato, “Variable-focus liquid-crystal Fresnel lens,” Jpn. J. Appl. Phys. 24, L626-L628(1985).
    [CrossRef]
  15. F. Krogmann, W. Monch, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A Pure Appl. Opt. 8, S330-S336 (2006).
    [CrossRef]
  16. S.-K. Hsiung and G.-B. Lee, “A controllable micro-lens structure for bio-analytical applications,” in IEEE 20th International Conference on Micro Electro Mechanical Systems (2007), pp. 763-766.
    [CrossRef]
  17. H. Yu, G. Zhou, S. C. Fook, F. Lee, and S. Wang, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech. Microeng. 18, 105017 (2008).
    [CrossRef]
  18. H. B. Yu, G. Y. Zhou, F. K. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express 17, 4782-4790 (2009).
    [CrossRef] [PubMed]
  19. P.-Y. Liu, H. P. D. Shieh, J.-J. Ju, S.-T. Tsai, T.-M. Yang, T.-K. Chang, and J.-S. Liu, “A novel dual focus objective lens for DVD/CD pick-up head,” IEEE Trans. Magn. 34, 462-464(1998).
    [CrossRef]
  20. S. Sanyal and A. Ghosh, “High focal depth with a quasi-bifocus birefringent lens,” Appl. Opt. 39, 2321-2325 (2000).
    [CrossRef]
  21. K. M. Rezaur Rahman, M. Rahman, K. S. Neo, M. Sawa, and M. Maeda, “Microgrooving on electroless nickel plated materials using a single crystal diamond tool,” Int. J. Adv. Manuf. Technol. 27, 911-917 (2006).
    [CrossRef]
  22. T. Kawai, K. Sawada, and Y. Takeuchi, “Ultra-precision micro structuring by means of mechanical machining,” in 14th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2001), pp. 22-5.
  23. L. Lei, A. Y. Yi, H. Chunning, D. A. Grewell, A. Benatar, and C. Yang, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45, 113401 (2006).
    [CrossRef]
  24. J. W. Carr and C. Feger, “Ultraprecision machining of polymers,” Precis. Eng. 15, 221-237 (1993).
    [CrossRef]
  25. F. C. Walsh, C. Ponce de Leon, C. Kerr, S. Court, and B. D. Barker, “Electrochemical characterisation of the porosity and corrosion resistance of electrochemically deposited metal coatings,” Surf. Coat. Technol. 202, 5092-5102 (2008).
    [CrossRef]
  26. C. C. A. Chen, C.-M. Chen, and J.-R. Chen, “Toolpath generation for diamond shaping of aspheric lens array,” J. Mater. Process. Technol. 192-193, 194-199 (2007).
    [CrossRef]
  27. Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28153-184 (1998).
    [CrossRef]
  28. T.-K Shih, C.-F Chen, J.-R Ho, and F.-T Chuang, “Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding,” Microelectron. Eng. 83, 2499-2503 (2006).
    [CrossRef]
  29. C. Thibault, C. Severac, E. Trevisiol, and C. Vieu, “Microtransfer molding of hydrophobic dendrimer,” Microelectron. Eng. 83, 1513-1516 (2006).
    [CrossRef]
  30. K.-S. Chen, I.-K. Lin, and F.-H. Ko, “Fabrication of 3D polymer microstructures using electron beam lithography and nanoimprinting technologies,” J. Micromech. Microeng. 15, 1894-1903 (2005).
    [CrossRef]
  31. D.-Y. Zhang, V. Lien, Y. Berdichevsky, C. Jaehyuck, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171-3172 (2003).
    [CrossRef]
  32. J. Chen, W. Weisong, F. Ji, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675-680 (2004).
    [CrossRef]
  33. M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113-116 (2000).
    [CrossRef]
  34. Y. Hongbin, Z. Guangya, C. F. Siong, W. Shouhua, and L. Feiwen, “Novel polydimethylsiloxane (PDMS) based microchannel fabrication method for lab-on-a-chip application,” Sens. Actuators B Chem. 137, 754-761 (2009).
    [CrossRef]
  35. S. Burgmann, S. Grosse, W. Schröder, J. Roggenkamp, S. Jansen, F. Gräf, and M. Büsen,, “A refractive index-matched facility for fluid-structure interaction studies of pulsatile and oscillating flow in elastic vessels of adjustable compliance,” Exp. Fluids (to be published).
    [CrossRef]
  36. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46, 3811-3820 (2007).
    [CrossRef] [PubMed]
  37. R. Kuwano, T. Tokunaga, Y. Otani, and N. Umeda, “Liquid pressure varifocus lens,” Opt. Rev. 12, 405-408 (2005).
    [CrossRef]
  38. Q. Yang, P. Kobrin, C. Seabury, S. Narayanaswamy, and W. Christian, “Mechanical modeling of fluid-driven polymer lenses,” Appl. Opt. 47, 3658-3668 (2008).
    [CrossRef] [PubMed]
  39. M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82, 1152-1154 (2003).
    [CrossRef]

2009 (3)

Y. Hongbin, Z. Guangya, C. F. Siong, W. Shouhua, and L. Feiwen, “Novel polydimethylsiloxane (PDMS) based microchannel fabrication method for lab-on-a-chip application,” Sens. Actuators B Chem. 137, 754-761 (2009).
[CrossRef]

N. M. Ganzherli, S. N. Gulyaev, I. A. Maurer, and D. F. Chernykh, “Phase recording for formation of holographic optical elements on silver-halide photographic emulsions,” Proc. SPIE 7358, 735817 (2009).
[CrossRef]

H. B. Yu, G. Y. Zhou, F. K. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express 17, 4782-4790 (2009).
[CrossRef] [PubMed]

2008 (3)

Q. Yang, P. Kobrin, C. Seabury, S. Narayanaswamy, and W. Christian, “Mechanical modeling of fluid-driven polymer lenses,” Appl. Opt. 47, 3658-3668 (2008).
[CrossRef] [PubMed]

H. Yu, G. Zhou, S. C. Fook, F. Lee, and S. Wang, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech. Microeng. 18, 105017 (2008).
[CrossRef]

F. C. Walsh, C. Ponce de Leon, C. Kerr, S. Court, and B. D. Barker, “Electrochemical characterisation of the porosity and corrosion resistance of electrochemically deposited metal coatings,” Surf. Coat. Technol. 202, 5092-5102 (2008).
[CrossRef]

2007 (4)

C. C. A. Chen, C.-M. Chen, and J.-R. Chen, “Toolpath generation for diamond shaping of aspheric lens array,” J. Mater. Process. Technol. 192-193, 194-199 (2007).
[CrossRef]

A. Jain and X. Huikai, “Microendoscopic confocal imaging probe based on an LVD microlens scanner,” IEEE J. Sel. Top. Quantum Electron. 13, 228-234 (2007).
[CrossRef]

S.-Y. Hung, C.-P. Lin, H. Yang, and Y.-P. Chang, “Optimal design using thermal reflow and caulking for fabrication of gapless microlens array mold inserts,” Opt. Eng. 46, 043401(2007).
[CrossRef]

M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46, 3811-3820 (2007).
[CrossRef] [PubMed]

2006 (6)

F. Krogmann, W. Monch, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A Pure Appl. Opt. 8, S330-S336 (2006).
[CrossRef]

K. M. Rezaur Rahman, M. Rahman, K. S. Neo, M. Sawa, and M. Maeda, “Microgrooving on electroless nickel plated materials using a single crystal diamond tool,” Int. J. Adv. Manuf. Technol. 27, 911-917 (2006).
[CrossRef]

L. Lei, A. Y. Yi, H. Chunning, D. A. Grewell, A. Benatar, and C. Yang, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45, 113401 (2006).
[CrossRef]

T. Dillon, E. Marchena, C. Caihua, D. Brady, and D. Prather, “Microlens fabrication using HEBS glass for compact high-resolution IR imaging system,” Proc. SPIE 6327, 63270B(2006).
[CrossRef]

T.-K Shih, C.-F Chen, J.-R Ho, and F.-T Chuang, “Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding,” Microelectron. Eng. 83, 2499-2503 (2006).
[CrossRef]

C. Thibault, C. Severac, E. Trevisiol, and C. Vieu, “Microtransfer molding of hydrophobic dendrimer,” Microelectron. Eng. 83, 1513-1516 (2006).
[CrossRef]

2005 (2)

K.-S. Chen, I.-K. Lin, and F.-H. Ko, “Fabrication of 3D polymer microstructures using electron beam lithography and nanoimprinting technologies,” J. Micromech. Microeng. 15, 1894-1903 (2005).
[CrossRef]

R. Kuwano, T. Tokunaga, Y. Otani, and N. Umeda, “Liquid pressure varifocus lens,” Opt. Rev. 12, 405-408 (2005).
[CrossRef]

2004 (4)

J. Chen, W. Weisong, F. Ji, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

J. Liesener, L. Seifert, H. J. Tiziani, and W. Osten, “Active wavefront sensing and wavefront control with SLMs,” Proc. SPIE 5532, 147-158 (2004).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128-1130(2004).
[CrossRef]

W. Moench and H. Zappe, “Fabrication and testing of micro-lens arrays by all-liquid techniques,” J. Opt. A Pure Appl. Opt. 6, 330-337 (2004).
[CrossRef]

2003 (3)

D.-Y. Zhang, V. Lien, Y. Berdichevsky, C. Jaehyuck, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

K. Naessens, P. Van Daele, and R. Baets, “Excimer laser ablation based microlens fabrication for optical fiber coupling purposes,” Proc. SPIE 4941, 133-139 (2003).
[CrossRef]

2001 (1)

C.-S. Lee and C.-H. Han, “A novel refractive silicon microlens array using bulk micromachining technology,” Sens. Actuators A Phys. 88, 87-90 (2001).
[CrossRef]

2000 (2)

M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113-116 (2000).
[CrossRef]

S. Sanyal and A. Ghosh, “High focal depth with a quasi-bifocus birefringent lens,” Appl. Opt. 39, 2321-2325 (2000).
[CrossRef]

1998 (2)

P.-Y. Liu, H. P. D. Shieh, J.-J. Ju, S.-T. Tsai, T.-M. Yang, T.-K. Chang, and J.-S. Liu, “A novel dual focus objective lens for DVD/CD pick-up head,” IEEE Trans. Magn. 34, 462-464(1998).
[CrossRef]

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28153-184 (1998).
[CrossRef]

1997 (1)

F. Erlsmann, “Design of a plastic aspheric Fresnel lens with a spherical shape,” Opt. Eng. 36, 988-991 (1997).
[CrossRef]

1993 (1)

J. W. Carr and C. Feger, “Ultraprecision machining of polymers,” Precis. Eng. 15, 221-237 (1993).
[CrossRef]

1990 (1)

1985 (1)

S. Sato, A. Sugiyama, and R. Sato, “Variable-focus liquid-crystal Fresnel lens,” Jpn. J. Appl. Phys. 24, L626-L628(1985).
[CrossRef]

Baets, R.

K. Naessens, P. Van Daele, and R. Baets, “Excimer laser ablation based microlens fabrication for optical fiber coupling purposes,” Proc. SPIE 4941, 133-139 (2003).
[CrossRef]

Barker, B. D.

F. C. Walsh, C. Ponce de Leon, C. Kerr, S. Court, and B. D. Barker, “Electrochemical characterisation of the porosity and corrosion resistance of electrochemically deposited metal coatings,” Surf. Coat. Technol. 202, 5092-5102 (2008).
[CrossRef]

Benatar, A.

L. Lei, A. Y. Yi, H. Chunning, D. A. Grewell, A. Benatar, and C. Yang, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45, 113401 (2006).
[CrossRef]

Berdichevsky, Y.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, C. Jaehyuck, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

Berry, D. M.

W. M. Trott, R. E. Setchell, J. N. Castaneda, and D. M. Berry, “Evaluation of a diffractive, microlens array beam shaper for use in acceleration of laser-driven flyers,” Proc. SPIE 4443, 166-177 (2001).

Brady, D.

T. Dillon, E. Marchena, C. Caihua, D. Brady, and D. Prather, “Microlens fabrication using HEBS glass for compact high-resolution IR imaging system,” Proc. SPIE 6327, 63270B(2006).
[CrossRef]

Burgmann, S.

S. Burgmann, S. Grosse, W. Schröder, J. Roggenkamp, S. Jansen, F. Gräf, and M. Büsen,, “A refractive index-matched facility for fluid-structure interaction studies of pulsatile and oscillating flow in elastic vessels of adjustable compliance,” Exp. Fluids (to be published).
[CrossRef]

Büsen, M.

S. Burgmann, S. Grosse, W. Schröder, J. Roggenkamp, S. Jansen, F. Gräf, and M. Büsen,, “A refractive index-matched facility for fluid-structure interaction studies of pulsatile and oscillating flow in elastic vessels of adjustable compliance,” Exp. Fluids (to be published).
[CrossRef]

Caihua, C.

T. Dillon, E. Marchena, C. Caihua, D. Brady, and D. Prather, “Microlens fabrication using HEBS glass for compact high-resolution IR imaging system,” Proc. SPIE 6327, 63270B(2006).
[CrossRef]

Carr, J. W.

J. W. Carr and C. Feger, “Ultraprecision machining of polymers,” Precis. Eng. 15, 221-237 (1993).
[CrossRef]

Castaneda, J. N.

W. M. Trott, R. E. Setchell, J. N. Castaneda, and D. M. Berry, “Evaluation of a diffractive, microlens array beam shaper for use in acceleration of laser-driven flyers,” Proc. SPIE 4443, 166-177 (2001).

Chang, T.-K.

P.-Y. Liu, H. P. D. Shieh, J.-J. Ju, S.-T. Tsai, T.-M. Yang, T.-K. Chang, and J.-S. Liu, “A novel dual focus objective lens for DVD/CD pick-up head,” IEEE Trans. Magn. 34, 462-464(1998).
[CrossRef]

Chang, Y.-P.

S.-Y. Hung, C.-P. Lin, H. Yang, and Y.-P. Chang, “Optimal design using thermal reflow and caulking for fabrication of gapless microlens array mold inserts,” Opt. Eng. 46, 043401(2007).
[CrossRef]

Chau, F. K.

Chen, C. C. A.

C. C. A. Chen, C.-M. Chen, and J.-R. Chen, “Toolpath generation for diamond shaping of aspheric lens array,” J. Mater. Process. Technol. 192-193, 194-199 (2007).
[CrossRef]

Chen, C.-F

T.-K Shih, C.-F Chen, J.-R Ho, and F.-T Chuang, “Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding,” Microelectron. Eng. 83, 2499-2503 (2006).
[CrossRef]

Chen, C.-M.

C. C. A. Chen, C.-M. Chen, and J.-R. Chen, “Toolpath generation for diamond shaping of aspheric lens array,” J. Mater. Process. Technol. 192-193, 194-199 (2007).
[CrossRef]

Chen, J.

J. Chen, W. Weisong, F. Ji, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

Chen, J.-R.

C. C. A. Chen, C.-M. Chen, and J.-R. Chen, “Toolpath generation for diamond shaping of aspheric lens array,” J. Mater. Process. Technol. 192-193, 194-199 (2007).
[CrossRef]

Chen, K.-S.

K.-S. Chen, I.-K. Lin, and F.-H. Ko, “Fabrication of 3D polymer microstructures using electron beam lithography and nanoimprinting technologies,” J. Micromech. Microeng. 15, 1894-1903 (2005).
[CrossRef]

Chernykh, D. F.

N. M. Ganzherli, S. N. Gulyaev, I. A. Maurer, and D. F. Chernykh, “Phase recording for formation of holographic optical elements on silver-halide photographic emulsions,” Proc. SPIE 7358, 735817 (2009).
[CrossRef]

Chou, H.-P.

M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113-116 (2000).
[CrossRef]

Christian, W.

Chuang, F.-T

T.-K Shih, C.-F Chen, J.-R Ho, and F.-T Chuang, “Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding,” Microelectron. Eng. 83, 2499-2503 (2006).
[CrossRef]

Chunning, H.

L. Lei, A. Y. Yi, H. Chunning, D. A. Grewell, A. Benatar, and C. Yang, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45, 113401 (2006).
[CrossRef]

Court, S.

F. C. Walsh, C. Ponce de Leon, C. Kerr, S. Court, and B. D. Barker, “Electrochemical characterisation of the porosity and corrosion resistance of electrochemically deposited metal coatings,” Surf. Coat. Technol. 202, 5092-5102 (2008).
[CrossRef]

Daimon, M.

Dillon, T.

T. Dillon, E. Marchena, C. Caihua, D. Brady, and D. Prather, “Microlens fabrication using HEBS glass for compact high-resolution IR imaging system,” Proc. SPIE 6327, 63270B(2006).
[CrossRef]

Erlsmann, F.

F. Erlsmann, “Design of a plastic aspheric Fresnel lens with a spherical shape,” Opt. Eng. 36, 988-991 (1997).
[CrossRef]

Feger, C.

J. W. Carr and C. Feger, “Ultraprecision machining of polymers,” Precis. Eng. 15, 221-237 (1993).
[CrossRef]

Feiwen, L.

Y. Hongbin, Z. Guangya, C. F. Siong, W. Shouhua, and L. Feiwen, “Novel polydimethylsiloxane (PDMS) based microchannel fabrication method for lab-on-a-chip application,” Sens. Actuators B Chem. 137, 754-761 (2009).
[CrossRef]

Fook, S. C.

H. Yu, G. Zhou, S. C. Fook, F. Lee, and S. Wang, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech. Microeng. 18, 105017 (2008).
[CrossRef]

Ganzherli, N. M.

N. M. Ganzherli, S. N. Gulyaev, I. A. Maurer, and D. F. Chernykh, “Phase recording for formation of holographic optical elements on silver-halide photographic emulsions,” Proc. SPIE 7358, 735817 (2009).
[CrossRef]

Ghosh, A.

Gräf, F.

S. Burgmann, S. Grosse, W. Schröder, J. Roggenkamp, S. Jansen, F. Gräf, and M. Büsen,, “A refractive index-matched facility for fluid-structure interaction studies of pulsatile and oscillating flow in elastic vessels of adjustable compliance,” Exp. Fluids (to be published).
[CrossRef]

Grewell, D. A.

L. Lei, A. Y. Yi, H. Chunning, D. A. Grewell, A. Benatar, and C. Yang, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45, 113401 (2006).
[CrossRef]

Grosse, S.

S. Burgmann, S. Grosse, W. Schröder, J. Roggenkamp, S. Jansen, F. Gräf, and M. Büsen,, “A refractive index-matched facility for fluid-structure interaction studies of pulsatile and oscillating flow in elastic vessels of adjustable compliance,” Exp. Fluids (to be published).
[CrossRef]

Guangya, Z.

Y. Hongbin, Z. Guangya, C. F. Siong, W. Shouhua, and L. Feiwen, “Novel polydimethylsiloxane (PDMS) based microchannel fabrication method for lab-on-a-chip application,” Sens. Actuators B Chem. 137, 754-761 (2009).
[CrossRef]

Gulyaev, S. N.

N. M. Ganzherli, S. N. Gulyaev, I. A. Maurer, and D. F. Chernykh, “Phase recording for formation of holographic optical elements on silver-halide photographic emulsions,” Proc. SPIE 7358, 735817 (2009).
[CrossRef]

Han, C.-H.

C.-S. Lee and C.-H. Han, “A novel refractive silicon microlens array using bulk micromachining technology,” Sens. Actuators A Phys. 88, 87-90 (2001).
[CrossRef]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128-1130(2004).
[CrossRef]

Ho, J.-R

T.-K Shih, C.-F Chen, J.-R Ho, and F.-T Chuang, “Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding,” Microelectron. Eng. 83, 2499-2503 (2006).
[CrossRef]

Hongbin, Y.

Y. Hongbin, Z. Guangya, C. F. Siong, W. Shouhua, and L. Feiwen, “Novel polydimethylsiloxane (PDMS) based microchannel fabrication method for lab-on-a-chip application,” Sens. Actuators B Chem. 137, 754-761 (2009).
[CrossRef]

Houlihan, F. M.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Hsiung, S.-K.

S.-K. Hsiung and G.-B. Lee, “A controllable micro-lens structure for bio-analytical applications,” in IEEE 20th International Conference on Micro Electro Mechanical Systems (2007), pp. 763-766.
[CrossRef]

Huikai, X.

A. Jain and X. Huikai, “Microendoscopic confocal imaging probe based on an LVD microlens scanner,” IEEE J. Sel. Top. Quantum Electron. 13, 228-234 (2007).
[CrossRef]

Hung, S.-Y.

S.-Y. Hung, C.-P. Lin, H. Yang, and Y.-P. Chang, “Optimal design using thermal reflow and caulking for fabrication of gapless microlens array mold inserts,” Opt. Eng. 46, 043401(2007).
[CrossRef]

Jaehyuck, C.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, C. Jaehyuck, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

Jain, A.

A. Jain and X. Huikai, “Microendoscopic confocal imaging probe based on an LVD microlens scanner,” IEEE J. Sel. Top. Quantum Electron. 13, 228-234 (2007).
[CrossRef]

Jansen, S.

S. Burgmann, S. Grosse, W. Schröder, J. Roggenkamp, S. Jansen, F. Gräf, and M. Büsen,, “A refractive index-matched facility for fluid-structure interaction studies of pulsatile and oscillating flow in elastic vessels of adjustable compliance,” Exp. Fluids (to be published).
[CrossRef]

Ji, F.

J. Chen, W. Weisong, F. Ji, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

Ju, J.-J.

P.-Y. Liu, H. P. D. Shieh, J.-J. Ju, S.-T. Tsai, T.-M. Yang, T.-K. Chang, and J.-S. Liu, “A novel dual focus objective lens for DVD/CD pick-up head,” IEEE Trans. Magn. 34, 462-464(1998).
[CrossRef]

Kawai, T.

T. Kawai, K. Sawada, and Y. Takeuchi, “Ultra-precision micro structuring by means of mechanical machining,” in 14th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2001), pp. 22-5.

Kerr, C.

F. C. Walsh, C. Ponce de Leon, C. Kerr, S. Court, and B. D. Barker, “Electrochemical characterisation of the porosity and corrosion resistance of electrochemically deposited metal coatings,” Surf. Coat. Technol. 202, 5092-5102 (2008).
[CrossRef]

Ko, F.-H.

K.-S. Chen, I.-K. Lin, and F.-H. Ko, “Fabrication of 3D polymer microstructures using electron beam lithography and nanoimprinting technologies,” J. Micromech. Microeng. 15, 1894-1903 (2005).
[CrossRef]

Kobrin, P.

Kolodner, P.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Krogmann, F.

F. Krogmann, W. Monch, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A Pure Appl. Opt. 8, S330-S336 (2006).
[CrossRef]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128-1130(2004).
[CrossRef]

Kunnavakkam, M. V.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Kuwano, R.

R. Kuwano, T. Tokunaga, Y. Otani, and N. Umeda, “Liquid pressure varifocus lens,” Opt. Rev. 12, 405-408 (2005).
[CrossRef]

Lee, C.-S.

C.-S. Lee and C.-H. Han, “A novel refractive silicon microlens array using bulk micromachining technology,” Sens. Actuators A Phys. 88, 87-90 (2001).
[CrossRef]

Lee, F.

H. Yu, G. Zhou, S. C. Fook, F. Lee, and S. Wang, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech. Microeng. 18, 105017 (2008).
[CrossRef]

Lee, F. W.

Lee, G.-B.

S.-K. Hsiung and G.-B. Lee, “A controllable micro-lens structure for bio-analytical applications,” in IEEE 20th International Conference on Micro Electro Mechanical Systems (2007), pp. 763-766.
[CrossRef]

Lei, L.

L. Lei, A. Y. Yi, H. Chunning, D. A. Grewell, A. Benatar, and C. Yang, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45, 113401 (2006).
[CrossRef]

Leung, H. M.

Liddle, J. A.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Lien, V.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, C. Jaehyuck, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

Liesener, J.

J. Liesener, L. Seifert, H. J. Tiziani, and W. Osten, “Active wavefront sensing and wavefront control with SLMs,” Proc. SPIE 5532, 147-158 (2004).
[CrossRef]

Lin, C.-P.

S.-Y. Hung, C.-P. Lin, H. Yang, and Y.-P. Chang, “Optimal design using thermal reflow and caulking for fabrication of gapless microlens array mold inserts,” Opt. Eng. 46, 043401(2007).
[CrossRef]

Lin, I.-K.

K.-S. Chen, I.-K. Lin, and F.-H. Ko, “Fabrication of 3D polymer microstructures using electron beam lithography and nanoimprinting technologies,” J. Micromech. Microeng. 15, 1894-1903 (2005).
[CrossRef]

Liu, J.-S.

P.-Y. Liu, H. P. D. Shieh, J.-J. Ju, S.-T. Tsai, T.-M. Yang, T.-K. Chang, and J.-S. Liu, “A novel dual focus objective lens for DVD/CD pick-up head,” IEEE Trans. Magn. 34, 462-464(1998).
[CrossRef]

Liu, P.-Y.

P.-Y. Liu, H. P. D. Shieh, J.-J. Ju, S.-T. Tsai, T.-M. Yang, T.-K. Chang, and J.-S. Liu, “A novel dual focus objective lens for DVD/CD pick-up head,” IEEE Trans. Magn. 34, 462-464(1998).
[CrossRef]

Lo, Y.-H.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, C. Jaehyuck, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

Maeda, M.

K. M. Rezaur Rahman, M. Rahman, K. S. Neo, M. Sawa, and M. Maeda, “Microgrooving on electroless nickel plated materials using a single crystal diamond tool,” Int. J. Adv. Manuf. Technol. 27, 911-917 (2006).
[CrossRef]

Marchena, E.

T. Dillon, E. Marchena, C. Caihua, D. Brady, and D. Prather, “Microlens fabrication using HEBS glass for compact high-resolution IR imaging system,” Proc. SPIE 6327, 63270B(2006).
[CrossRef]

Masumura, A.

Maurer, I. A.

N. M. Ganzherli, S. N. Gulyaev, I. A. Maurer, and D. F. Chernykh, “Phase recording for formation of holographic optical elements on silver-halide photographic emulsions,” Proc. SPIE 7358, 735817 (2009).
[CrossRef]

Moench, W.

W. Moench and H. Zappe, “Fabrication and testing of micro-lens arrays by all-liquid techniques,” J. Opt. A Pure Appl. Opt. 6, 330-337 (2004).
[CrossRef]

Monch, W.

F. Krogmann, W. Monch, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A Pure Appl. Opt. 8, S330-S336 (2006).
[CrossRef]

Naessens, K.

K. Naessens, P. Van Daele, and R. Baets, “Excimer laser ablation based microlens fabrication for optical fiber coupling purposes,” Proc. SPIE 4941, 133-139 (2003).
[CrossRef]

Nalamasu, O.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Narayanaswamy, S.

Neo, K. S.

K. M. Rezaur Rahman, M. Rahman, K. S. Neo, M. Sawa, and M. Maeda, “Microgrooving on electroless nickel plated materials using a single crystal diamond tool,” Int. J. Adv. Manuf. Technol. 27, 911-917 (2006).
[CrossRef]

Osten, W.

J. Liesener, L. Seifert, H. J. Tiziani, and W. Osten, “Active wavefront sensing and wavefront control with SLMs,” Proc. SPIE 5532, 147-158 (2004).
[CrossRef]

Otani, Y.

R. Kuwano, T. Tokunaga, Y. Otani, and N. Umeda, “Liquid pressure varifocus lens,” Opt. Rev. 12, 405-408 (2005).
[CrossRef]

Ponce de Leon, C.

F. C. Walsh, C. Ponce de Leon, C. Kerr, S. Court, and B. D. Barker, “Electrochemical characterisation of the porosity and corrosion resistance of electrochemically deposited metal coatings,” Surf. Coat. Technol. 202, 5092-5102 (2008).
[CrossRef]

Prather, D.

T. Dillon, E. Marchena, C. Caihua, D. Brady, and D. Prather, “Microlens fabrication using HEBS glass for compact high-resolution IR imaging system,” Proc. SPIE 6327, 63270B(2006).
[CrossRef]

Quake, S. R.

M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113-116 (2000).
[CrossRef]

Rahman, M.

K. M. Rezaur Rahman, M. Rahman, K. S. Neo, M. Sawa, and M. Maeda, “Microgrooving on electroless nickel plated materials using a single crystal diamond tool,” Int. J. Adv. Manuf. Technol. 27, 911-917 (2006).
[CrossRef]

Rezaur Rahman, K. M.

K. M. Rezaur Rahman, M. Rahman, K. S. Neo, M. Sawa, and M. Maeda, “Microgrooving on electroless nickel plated materials using a single crystal diamond tool,” Int. J. Adv. Manuf. Technol. 27, 911-917 (2006).
[CrossRef]

Rogers, J. A.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Roggenkamp, J.

S. Burgmann, S. Grosse, W. Schröder, J. Roggenkamp, S. Jansen, F. Gräf, and M. Büsen,, “A refractive index-matched facility for fluid-structure interaction studies of pulsatile and oscillating flow in elastic vessels of adjustable compliance,” Exp. Fluids (to be published).
[CrossRef]

Sanyal, S.

Sato, R.

S. Sato, A. Sugiyama, and R. Sato, “Variable-focus liquid-crystal Fresnel lens,” Jpn. J. Appl. Phys. 24, L626-L628(1985).
[CrossRef]

Sato, S.

S. Sato, A. Sugiyama, and R. Sato, “Variable-focus liquid-crystal Fresnel lens,” Jpn. J. Appl. Phys. 24, L626-L628(1985).
[CrossRef]

Sawa, M.

K. M. Rezaur Rahman, M. Rahman, K. S. Neo, M. Sawa, and M. Maeda, “Microgrooving on electroless nickel plated materials using a single crystal diamond tool,” Int. J. Adv. Manuf. Technol. 27, 911-917 (2006).
[CrossRef]

Sawada, K.

T. Kawai, K. Sawada, and Y. Takeuchi, “Ultra-precision micro structuring by means of mechanical machining,” in 14th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2001), pp. 22-5.

Scherer, A.

M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113-116 (2000).
[CrossRef]

Schlax, M.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Schröder, W.

S. Burgmann, S. Grosse, W. Schröder, J. Roggenkamp, S. Jansen, F. Gräf, and M. Büsen,, “A refractive index-matched facility for fluid-structure interaction studies of pulsatile and oscillating flow in elastic vessels of adjustable compliance,” Exp. Fluids (to be published).
[CrossRef]

Seabury, C.

Seifert, L.

J. Liesener, L. Seifert, H. J. Tiziani, and W. Osten, “Active wavefront sensing and wavefront control with SLMs,” Proc. SPIE 5532, 147-158 (2004).
[CrossRef]

Setchell, R. E.

W. M. Trott, R. E. Setchell, J. N. Castaneda, and D. M. Berry, “Evaluation of a diffractive, microlens array beam shaper for use in acceleration of laser-driven flyers,” Proc. SPIE 4443, 166-177 (2001).

Setsune, K.

Severac, C.

C. Thibault, C. Severac, E. Trevisiol, and C. Vieu, “Microtransfer molding of hydrophobic dendrimer,” Microelectron. Eng. 83, 1513-1516 (2006).
[CrossRef]

Shieh, H. P. D.

P.-Y. Liu, H. P. D. Shieh, J.-J. Ju, S.-T. Tsai, T.-M. Yang, T.-K. Chang, and J.-S. Liu, “A novel dual focus objective lens for DVD/CD pick-up head,” IEEE Trans. Magn. 34, 462-464(1998).
[CrossRef]

Shih, T.-K

T.-K Shih, C.-F Chen, J.-R Ho, and F.-T Chuang, “Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding,” Microelectron. Eng. 83, 2499-2503 (2006).
[CrossRef]

Shiono, T.

Shouhua, W.

Y. Hongbin, Z. Guangya, C. F. Siong, W. Shouhua, and L. Feiwen, “Novel polydimethylsiloxane (PDMS) based microchannel fabrication method for lab-on-a-chip application,” Sens. Actuators B Chem. 137, 754-761 (2009).
[CrossRef]

Siong, C. F.

Y. Hongbin, Z. Guangya, C. F. Siong, W. Shouhua, and L. Feiwen, “Novel polydimethylsiloxane (PDMS) based microchannel fabrication method for lab-on-a-chip application,” Sens. Actuators B Chem. 137, 754-761 (2009).
[CrossRef]

Sugiyama, A.

S. Sato, A. Sugiyama, and R. Sato, “Variable-focus liquid-crystal Fresnel lens,” Jpn. J. Appl. Phys. 24, L626-L628(1985).
[CrossRef]

Takeuchi, Y.

T. Kawai, K. Sawada, and Y. Takeuchi, “Ultra-precision micro structuring by means of mechanical machining,” in 14th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2001), pp. 22-5.

Thibault, C.

C. Thibault, C. Severac, E. Trevisiol, and C. Vieu, “Microtransfer molding of hydrophobic dendrimer,” Microelectron. Eng. 83, 1513-1516 (2006).
[CrossRef]

Thorsen, T.

M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113-116 (2000).
[CrossRef]

Tiziani, H. J.

J. Liesener, L. Seifert, H. J. Tiziani, and W. Osten, “Active wavefront sensing and wavefront control with SLMs,” Proc. SPIE 5532, 147-158 (2004).
[CrossRef]

Tokunaga, T.

R. Kuwano, T. Tokunaga, Y. Otani, and N. Umeda, “Liquid pressure varifocus lens,” Opt. Rev. 12, 405-408 (2005).
[CrossRef]

Trevisiol, E.

C. Thibault, C. Severac, E. Trevisiol, and C. Vieu, “Microtransfer molding of hydrophobic dendrimer,” Microelectron. Eng. 83, 1513-1516 (2006).
[CrossRef]

Trott, W. M.

W. M. Trott, R. E. Setchell, J. N. Castaneda, and D. M. Berry, “Evaluation of a diffractive, microlens array beam shaper for use in acceleration of laser-driven flyers,” Proc. SPIE 4443, 166-177 (2001).

Tsai, S.-T.

P.-Y. Liu, H. P. D. Shieh, J.-J. Ju, S.-T. Tsai, T.-M. Yang, T.-K. Chang, and J.-S. Liu, “A novel dual focus objective lens for DVD/CD pick-up head,” IEEE Trans. Magn. 34, 462-464(1998).
[CrossRef]

Umeda, N.

R. Kuwano, T. Tokunaga, Y. Otani, and N. Umeda, “Liquid pressure varifocus lens,” Opt. Rev. 12, 405-408 (2005).
[CrossRef]

Unger, M. A.

M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113-116 (2000).
[CrossRef]

Van Daele, P.

K. Naessens, P. Van Daele, and R. Baets, “Excimer laser ablation based microlens fabrication for optical fiber coupling purposes,” Proc. SPIE 4941, 133-139 (2003).
[CrossRef]

Varahramyan, K.

J. Chen, W. Weisong, F. Ji, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

Vieu, C.

C. Thibault, C. Severac, E. Trevisiol, and C. Vieu, “Microtransfer molding of hydrophobic dendrimer,” Microelectron. Eng. 83, 1513-1516 (2006).
[CrossRef]

Walsh, F. C.

F. C. Walsh, C. Ponce de Leon, C. Kerr, S. Court, and B. D. Barker, “Electrochemical characterisation of the porosity and corrosion resistance of electrochemically deposited metal coatings,” Surf. Coat. Technol. 202, 5092-5102 (2008).
[CrossRef]

Wang, S.

H. Yu, G. Zhou, S. C. Fook, F. Lee, and S. Wang, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech. Microeng. 18, 105017 (2008).
[CrossRef]

Wang, S. H.

Weisong, W.

J. Chen, W. Weisong, F. Ji, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

Whitesides, G. M.

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28153-184 (1998).
[CrossRef]

Wu, L.

L. Wu and H. Xie, “A lateral-shift-free LVD microlens scanner for confocal microscopy,” in 2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (IEEE, 2007), pp. 141-142.
[CrossRef]

Xia, Y.

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28153-184 (1998).
[CrossRef]

Xie, H.

L. Wu and H. Xie, “A lateral-shift-free LVD microlens scanner for confocal microscopy,” in 2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (IEEE, 2007), pp. 141-142.
[CrossRef]

Yang, C.

L. Lei, A. Y. Yi, H. Chunning, D. A. Grewell, A. Benatar, and C. Yang, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45, 113401 (2006).
[CrossRef]

Yang, H.

S.-Y. Hung, C.-P. Lin, H. Yang, and Y.-P. Chang, “Optimal design using thermal reflow and caulking for fabrication of gapless microlens array mold inserts,” Opt. Eng. 46, 043401(2007).
[CrossRef]

Yang, Q.

Yang, T.-M.

P.-Y. Liu, H. P. D. Shieh, J.-J. Ju, S.-T. Tsai, T.-M. Yang, T.-K. Chang, and J.-S. Liu, “A novel dual focus objective lens for DVD/CD pick-up head,” IEEE Trans. Magn. 34, 462-464(1998).
[CrossRef]

Yi, A. Y.

L. Lei, A. Y. Yi, H. Chunning, D. A. Grewell, A. Benatar, and C. Yang, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45, 113401 (2006).
[CrossRef]

Yu, H.

H. Yu, G. Zhou, S. C. Fook, F. Lee, and S. Wang, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech. Microeng. 18, 105017 (2008).
[CrossRef]

Yu, H. B.

Zappe, H.

F. Krogmann, W. Monch, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A Pure Appl. Opt. 8, S330-S336 (2006).
[CrossRef]

W. Moench and H. Zappe, “Fabrication and testing of micro-lens arrays by all-liquid techniques,” J. Opt. A Pure Appl. Opt. 6, 330-337 (2004).
[CrossRef]

Zhang, D.-Y.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, C. Jaehyuck, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

Zhou, G.

H. Yu, G. Zhou, S. C. Fook, F. Lee, and S. Wang, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech. Microeng. 18, 105017 (2008).
[CrossRef]

Zhou, G. Y.

Annu. Rev. Mater. Sci. (1)

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28153-184 (1998).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

D.-Y. Zhang, V. Lien, Y. Berdichevsky, C. Jaehyuck, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128-1130(2004).
[CrossRef]

Exp. Fluids (1)

S. Burgmann, S. Grosse, W. Schröder, J. Roggenkamp, S. Jansen, F. Gräf, and M. Büsen,, “A refractive index-matched facility for fluid-structure interaction studies of pulsatile and oscillating flow in elastic vessels of adjustable compliance,” Exp. Fluids (to be published).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Jain and X. Huikai, “Microendoscopic confocal imaging probe based on an LVD microlens scanner,” IEEE J. Sel. Top. Quantum Electron. 13, 228-234 (2007).
[CrossRef]

IEEE Trans. Magn. (1)

P.-Y. Liu, H. P. D. Shieh, J.-J. Ju, S.-T. Tsai, T.-M. Yang, T.-K. Chang, and J.-S. Liu, “A novel dual focus objective lens for DVD/CD pick-up head,” IEEE Trans. Magn. 34, 462-464(1998).
[CrossRef]

Int. J. Adv. Manuf. Technol. (1)

K. M. Rezaur Rahman, M. Rahman, K. S. Neo, M. Sawa, and M. Maeda, “Microgrooving on electroless nickel plated materials using a single crystal diamond tool,” Int. J. Adv. Manuf. Technol. 27, 911-917 (2006).
[CrossRef]

J. Mater. Process. Technol. (1)

C. C. A. Chen, C.-M. Chen, and J.-R. Chen, “Toolpath generation for diamond shaping of aspheric lens array,” J. Mater. Process. Technol. 192-193, 194-199 (2007).
[CrossRef]

J. Micromech. Microeng. (3)

K.-S. Chen, I.-K. Lin, and F.-H. Ko, “Fabrication of 3D polymer microstructures using electron beam lithography and nanoimprinting technologies,” J. Micromech. Microeng. 15, 1894-1903 (2005).
[CrossRef]

J. Chen, W. Weisong, F. Ji, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

H. Yu, G. Zhou, S. C. Fook, F. Lee, and S. Wang, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech. Microeng. 18, 105017 (2008).
[CrossRef]

J. Opt. A Pure Appl. Opt. (2)

F. Krogmann, W. Monch, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A Pure Appl. Opt. 8, S330-S336 (2006).
[CrossRef]

W. Moench and H. Zappe, “Fabrication and testing of micro-lens arrays by all-liquid techniques,” J. Opt. A Pure Appl. Opt. 6, 330-337 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Sato, A. Sugiyama, and R. Sato, “Variable-focus liquid-crystal Fresnel lens,” Jpn. J. Appl. Phys. 24, L626-L628(1985).
[CrossRef]

Microelectron. Eng. (2)

T.-K Shih, C.-F Chen, J.-R Ho, and F.-T Chuang, “Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding,” Microelectron. Eng. 83, 2499-2503 (2006).
[CrossRef]

C. Thibault, C. Severac, E. Trevisiol, and C. Vieu, “Microtransfer molding of hydrophobic dendrimer,” Microelectron. Eng. 83, 1513-1516 (2006).
[CrossRef]

Opt. Eng. (3)

L. Lei, A. Y. Yi, H. Chunning, D. A. Grewell, A. Benatar, and C. Yang, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45, 113401 (2006).
[CrossRef]

S.-Y. Hung, C.-P. Lin, H. Yang, and Y.-P. Chang, “Optimal design using thermal reflow and caulking for fabrication of gapless microlens array mold inserts,” Opt. Eng. 46, 043401(2007).
[CrossRef]

F. Erlsmann, “Design of a plastic aspheric Fresnel lens with a spherical shape,” Opt. Eng. 36, 988-991 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Rev. (1)

R. Kuwano, T. Tokunaga, Y. Otani, and N. Umeda, “Liquid pressure varifocus lens,” Opt. Rev. 12, 405-408 (2005).
[CrossRef]

Precis. Eng. (1)

J. W. Carr and C. Feger, “Ultraprecision machining of polymers,” Precis. Eng. 15, 221-237 (1993).
[CrossRef]

Proc. SPIE (5)

K. Naessens, P. Van Daele, and R. Baets, “Excimer laser ablation based microlens fabrication for optical fiber coupling purposes,” Proc. SPIE 4941, 133-139 (2003).
[CrossRef]

T. Dillon, E. Marchena, C. Caihua, D. Brady, and D. Prather, “Microlens fabrication using HEBS glass for compact high-resolution IR imaging system,” Proc. SPIE 6327, 63270B(2006).
[CrossRef]

J. Liesener, L. Seifert, H. J. Tiziani, and W. Osten, “Active wavefront sensing and wavefront control with SLMs,” Proc. SPIE 5532, 147-158 (2004).
[CrossRef]

W. M. Trott, R. E. Setchell, J. N. Castaneda, and D. M. Berry, “Evaluation of a diffractive, microlens array beam shaper for use in acceleration of laser-driven flyers,” Proc. SPIE 4443, 166-177 (2001).

N. M. Ganzherli, S. N. Gulyaev, I. A. Maurer, and D. F. Chernykh, “Phase recording for formation of holographic optical elements on silver-halide photographic emulsions,” Proc. SPIE 7358, 735817 (2009).
[CrossRef]

Science (1)

M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113-116 (2000).
[CrossRef]

Sens. Actuators A Phys. (1)

C.-S. Lee and C.-H. Han, “A novel refractive silicon microlens array using bulk micromachining technology,” Sens. Actuators A Phys. 88, 87-90 (2001).
[CrossRef]

Sens. Actuators B Chem. (1)

Y. Hongbin, Z. Guangya, C. F. Siong, W. Shouhua, and L. Feiwen, “Novel polydimethylsiloxane (PDMS) based microchannel fabrication method for lab-on-a-chip application,” Sens. Actuators B Chem. 137, 754-761 (2009).
[CrossRef]

Surf. Coat. Technol. (1)

F. C. Walsh, C. Ponce de Leon, C. Kerr, S. Court, and B. D. Barker, “Electrochemical characterisation of the porosity and corrosion resistance of electrochemically deposited metal coatings,” Surf. Coat. Technol. 202, 5092-5102 (2008).
[CrossRef]

Other (3)

T. Kawai, K. Sawada, and Y. Takeuchi, “Ultra-precision micro structuring by means of mechanical machining,” in 14th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2001), pp. 22-5.

L. Wu and H. Xie, “A lateral-shift-free LVD microlens scanner for confocal microscopy,” in 2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (IEEE, 2007), pp. 141-142.
[CrossRef]

S.-K. Hsiung and G.-B. Lee, “A controllable micro-lens structure for bio-analytical applications,” in IEEE 20th International Conference on Micro Electro Mechanical Systems (2007), pp. 763-766.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Overview of lens when the PDMS film is not deformed. (b) Approximate dimensions of the features of the lens device are shown in this cross-sectional view of the device through the midsection.

Fig. 2
Fig. 2

Ray diagram of the double-focusing lens. The aperture restricts the light to be incident on the spherically deformed part of the membrane, while blocking out the regions affected by the pinned boundary condition.

Fig. 3
Fig. 3

Image of the 0 ° 45 ° facet-cut diamond tool tip under an optical microscope.

Fig. 4
Fig. 4

Summary of the fabrication flow processes.

Fig. 5
Fig. 5

(a) Profile of the diamond-turned PMMA mold is almost identical to the designed profile that is computed into the computer numerical controlled (CNC) machine of the diamond-turning machine. (b) The PDMS lens device obtained after two cycles of soft lithography also show an almost identical profile to that of the PMMA mold within the 8 mm diameter working area that is defined by the aperture used during experiments.

Fig. 6
Fig. 6

AFM images of (a) the surface of diamond-turned PMMA and (b) PDMS surface of final lens device.

Fig. 7
Fig. 7

Schematic of the experimental setup to measure focal lengths of the double lens. The ray paths transmitted through the central and peripheral regions of the lens are depicted by dotted and solid lines, respectively.

Fig. 8
Fig. 8

Experimental and simulation results of the focal lengths of the central and outer lens of the device.

Fig. 9
Fig. 9

(a) Bright focal spot of the central lens is surrounded by a defocused ring of light due to the outer lens. (b) Focal spot of outer lens is clearly visible but the defocused disk of light transmitted through the central lens is too low in intensity to be detected by the CCD.

Fig. 10
Fig. 10

Schematic of the experimental setup. Inset is a picture of a lateral shear interferogram captured when the paraxial focus of the central lens of the double-focus lens is close to that of the collimating lens.

Tables (3)

Tables Icon

Table 1 Machining Parameters Used During the Fabrication of PMMA Mold

Tables Icon

Table 2 Process Parameters for the Preparation of PDMS Structures

Tables Icon

Table 3 Summary of Surface Roughness Obtained from AFM Tests

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( n 1 / S o ) + ( n 2 / S i ) = ( n 2 n 1 ) / R .

Metrics