Abstract

We present a novel shape memory alloy-based optical fiber splicing device that can provide robust, low loss, and high power handling splices between single-mode fibers of identical or entirely different glass compositions. The achieved splice loss was as low as 0.12dB between two SMF-28 fibers with an average value of 0.23dB. To the best of our knowledge, this is the first demonstration of a purely mechanical splicing device that can withstand optical powers in excess of 10W with various combinations of silica and fluoride fibers. The device can be used in moderate to high power all-fiber components, especially those involving junctions unsuitable to fusion splicing, such as fiber lasers and amplifiers based on fluo ride, chalcogenide, or microstructured fibers.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Bourliaguet, C. Paré, F. Émond, A. Croteau, A. Proulx, and R. Vallée, “Microstructured fiber splicing,” Opt. Express 11, 3412-3417 (2003).
    [PubMed]
  2. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett. 32, 454-456 (2007).
    [CrossRef] [PubMed]
  3. G. Androz, D. Faucher, M. Bernier, and R. Vallée, “Monolithic fluoride fiber laser at 1480 nm using fiber Bragg gratings,” Opt. Lett. 32, 1302-1304 (2007).
    [CrossRef] [PubMed]
  4. X. Zhu and R. Jain, “10 W-level diode-pumped compact 2.78 μm ZBLAN fiber laser,” Opt. Lett. 32, 26-28 (2007).
    [CrossRef]
  5. B. B. Harbison, W. I. Roberts, and I. D. Aggarwal, “Fusion splicing of heavy metal fluoride glass optical fibers,” Electron. Lett. 25, 1214-1215 (1989).
    [CrossRef]
  6. B. Srinivasan, M. Erlandsson, G. S. Feller, E. W. Mies, and R. K. Jain, “Reproducible fusion splicing of low melting point (fluoride) optical fibers with the use of a stable heat source,” in Optical Fiber Conference, OSA Technical Digest Series (OSA, 1997), paper TuB1.
  7. L. Rivoallan and J. Y. Guilloux, “Fusion splicing of fluoride glass optical fibre with CO2 laser,” Electron. Lett. 24, 756-757 (1988).
    [CrossRef]
  8. M. M. Kozak, W. Kowalsky, and R. Caspary, “Low-loss glue splicing method to join silica and fluoride fibers,” Electron. Lett. 41, 21-22 (2005).
    [CrossRef]
  9. G. Trouillard, P. Zivojinovic, M. Bergeron, A. Fraser, and E. Weynant, “New connectivity solution for optical fibers using PhasOptx shape memory alloy Optimend,” in Proceedings of the Avionics, Fiber-Optics and Photonics Conference (IEEE, 2008), pp. 89-90.
    [CrossRef]
  10. E. Weynant, P. Zivojinovic, E. Menu, A. Fraser, and M. Bergeron, “Connector for multiple optical fibers and installation apparatus,” International patent application WO 2008/151445 A1 filed 16 June 2008.

2007

2005

M. M. Kozak, W. Kowalsky, and R. Caspary, “Low-loss glue splicing method to join silica and fluoride fibers,” Electron. Lett. 41, 21-22 (2005).
[CrossRef]

2003

1989

B. B. Harbison, W. I. Roberts, and I. D. Aggarwal, “Fusion splicing of heavy metal fluoride glass optical fibers,” Electron. Lett. 25, 1214-1215 (1989).
[CrossRef]

1988

L. Rivoallan and J. Y. Guilloux, “Fusion splicing of fluoride glass optical fibre with CO2 laser,” Electron. Lett. 24, 756-757 (1988).
[CrossRef]

Aggarwal, I. D.

B. B. Harbison, W. I. Roberts, and I. D. Aggarwal, “Fusion splicing of heavy metal fluoride glass optical fibers,” Electron. Lett. 25, 1214-1215 (1989).
[CrossRef]

Androz, G.

Bergeron, M.

E. Weynant, P. Zivojinovic, E. Menu, A. Fraser, and M. Bergeron, “Connector for multiple optical fibers and installation apparatus,” International patent application WO 2008/151445 A1 filed 16 June 2008.

G. Trouillard, P. Zivojinovic, M. Bergeron, A. Fraser, and E. Weynant, “New connectivity solution for optical fibers using PhasOptx shape memory alloy Optimend,” in Proceedings of the Avionics, Fiber-Optics and Photonics Conference (IEEE, 2008), pp. 89-90.
[CrossRef]

Bernier, M.

Bourliaguet, B.

Caspary, R.

M. M. Kozak, W. Kowalsky, and R. Caspary, “Low-loss glue splicing method to join silica and fluoride fibers,” Electron. Lett. 41, 21-22 (2005).
[CrossRef]

Croteau, A.

Émond, F.

Erlandsson, M.

B. Srinivasan, M. Erlandsson, G. S. Feller, E. W. Mies, and R. K. Jain, “Reproducible fusion splicing of low melting point (fluoride) optical fibers with the use of a stable heat source,” in Optical Fiber Conference, OSA Technical Digest Series (OSA, 1997), paper TuB1.

Faucher, D.

Feller, G. S.

B. Srinivasan, M. Erlandsson, G. S. Feller, E. W. Mies, and R. K. Jain, “Reproducible fusion splicing of low melting point (fluoride) optical fibers with the use of a stable heat source,” in Optical Fiber Conference, OSA Technical Digest Series (OSA, 1997), paper TuB1.

Fraser, A.

G. Trouillard, P. Zivojinovic, M. Bergeron, A. Fraser, and E. Weynant, “New connectivity solution for optical fibers using PhasOptx shape memory alloy Optimend,” in Proceedings of the Avionics, Fiber-Optics and Photonics Conference (IEEE, 2008), pp. 89-90.
[CrossRef]

E. Weynant, P. Zivojinovic, E. Menu, A. Fraser, and M. Bergeron, “Connector for multiple optical fibers and installation apparatus,” International patent application WO 2008/151445 A1 filed 16 June 2008.

Guilloux, J. Y.

L. Rivoallan and J. Y. Guilloux, “Fusion splicing of fluoride glass optical fibre with CO2 laser,” Electron. Lett. 24, 756-757 (1988).
[CrossRef]

Harbison, B. B.

B. B. Harbison, W. I. Roberts, and I. D. Aggarwal, “Fusion splicing of heavy metal fluoride glass optical fibers,” Electron. Lett. 25, 1214-1215 (1989).
[CrossRef]

Jain, R.

Jain, R. K.

B. Srinivasan, M. Erlandsson, G. S. Feller, E. W. Mies, and R. K. Jain, “Reproducible fusion splicing of low melting point (fluoride) optical fibers with the use of a stable heat source,” in Optical Fiber Conference, OSA Technical Digest Series (OSA, 1997), paper TuB1.

Kowalsky, W.

M. M. Kozak, W. Kowalsky, and R. Caspary, “Low-loss glue splicing method to join silica and fluoride fibers,” Electron. Lett. 41, 21-22 (2005).
[CrossRef]

Kozak, M. M.

M. M. Kozak, W. Kowalsky, and R. Caspary, “Low-loss glue splicing method to join silica and fluoride fibers,” Electron. Lett. 41, 21-22 (2005).
[CrossRef]

Menu, E.

E. Weynant, P. Zivojinovic, E. Menu, A. Fraser, and M. Bergeron, “Connector for multiple optical fibers and installation apparatus,” International patent application WO 2008/151445 A1 filed 16 June 2008.

Mies, E. W.

B. Srinivasan, M. Erlandsson, G. S. Feller, E. W. Mies, and R. K. Jain, “Reproducible fusion splicing of low melting point (fluoride) optical fibers with the use of a stable heat source,” in Optical Fiber Conference, OSA Technical Digest Series (OSA, 1997), paper TuB1.

Paré, C.

Proulx, A.

Rivoallan, L.

L. Rivoallan and J. Y. Guilloux, “Fusion splicing of fluoride glass optical fibre with CO2 laser,” Electron. Lett. 24, 756-757 (1988).
[CrossRef]

Roberts, W. I.

B. B. Harbison, W. I. Roberts, and I. D. Aggarwal, “Fusion splicing of heavy metal fluoride glass optical fibers,” Electron. Lett. 25, 1214-1215 (1989).
[CrossRef]

Saliminia, A.

Sheng, Y.

Srinivasan, B.

B. Srinivasan, M. Erlandsson, G. S. Feller, E. W. Mies, and R. K. Jain, “Reproducible fusion splicing of low melting point (fluoride) optical fibers with the use of a stable heat source,” in Optical Fiber Conference, OSA Technical Digest Series (OSA, 1997), paper TuB1.

Trouillard, G.

G. Trouillard, P. Zivojinovic, M. Bergeron, A. Fraser, and E. Weynant, “New connectivity solution for optical fibers using PhasOptx shape memory alloy Optimend,” in Proceedings of the Avionics, Fiber-Optics and Photonics Conference (IEEE, 2008), pp. 89-90.
[CrossRef]

Vallée, R.

Weynant, E.

G. Trouillard, P. Zivojinovic, M. Bergeron, A. Fraser, and E. Weynant, “New connectivity solution for optical fibers using PhasOptx shape memory alloy Optimend,” in Proceedings of the Avionics, Fiber-Optics and Photonics Conference (IEEE, 2008), pp. 89-90.
[CrossRef]

E. Weynant, P. Zivojinovic, E. Menu, A. Fraser, and M. Bergeron, “Connector for multiple optical fibers and installation apparatus,” International patent application WO 2008/151445 A1 filed 16 June 2008.

Zhu, X.

Zivojinovic, P.

E. Weynant, P. Zivojinovic, E. Menu, A. Fraser, and M. Bergeron, “Connector for multiple optical fibers and installation apparatus,” International patent application WO 2008/151445 A1 filed 16 June 2008.

G. Trouillard, P. Zivojinovic, M. Bergeron, A. Fraser, and E. Weynant, “New connectivity solution for optical fibers using PhasOptx shape memory alloy Optimend,” in Proceedings of the Avionics, Fiber-Optics and Photonics Conference (IEEE, 2008), pp. 89-90.
[CrossRef]

Electron. Lett.

L. Rivoallan and J. Y. Guilloux, “Fusion splicing of fluoride glass optical fibre with CO2 laser,” Electron. Lett. 24, 756-757 (1988).
[CrossRef]

M. M. Kozak, W. Kowalsky, and R. Caspary, “Low-loss glue splicing method to join silica and fluoride fibers,” Electron. Lett. 41, 21-22 (2005).
[CrossRef]

B. B. Harbison, W. I. Roberts, and I. D. Aggarwal, “Fusion splicing of heavy metal fluoride glass optical fibers,” Electron. Lett. 25, 1214-1215 (1989).
[CrossRef]

Opt. Express

Opt. Lett.

Other

G. Trouillard, P. Zivojinovic, M. Bergeron, A. Fraser, and E. Weynant, “New connectivity solution for optical fibers using PhasOptx shape memory alloy Optimend,” in Proceedings of the Avionics, Fiber-Optics and Photonics Conference (IEEE, 2008), pp. 89-90.
[CrossRef]

E. Weynant, P. Zivojinovic, E. Menu, A. Fraser, and M. Bergeron, “Connector for multiple optical fibers and installation apparatus,” International patent application WO 2008/151445 A1 filed 16 June 2008.

B. Srinivasan, M. Erlandsson, G. S. Feller, E. W. Mies, and R. K. Jain, “Reproducible fusion splicing of low melting point (fluoride) optical fibers with the use of a stable heat source,” in Optical Fiber Conference, OSA Technical Digest Series (OSA, 1997), paper TuB1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Picture showing the shape memory alloy (SMA) connector used in this study with two SMF-28 fibers spliced together.

Fig. 2
Fig. 2

Splice loss statistical distribution using two SMF-28 fibers.

Fig. 3
Fig. 3

Power transmitted by each splice as a function of launched power at 1064 nm using two SMF-28 fibers (▪, fiber A), two identical fluoride fibers (▴, fiber B), a silica and a fluoride fiber (▿, fibers B and D) as well as a doped and an undoped fluoride fiber (□, fibers B and C).

Tables (1)

Tables Icon

Table 1 Properties of the Fibers Used: Core Diameter (a), Cladding Diameter (b), Numerical Aperture (NA), L P 11 Cutoff Wavelength ( λ c ), and Core–Cladding Eccentricity (ε)

Metrics