Abstract

We propose the application of a thermally tunable grating as a spatial light modulator. The grooves of a square-well grating are filled with a liquid whose refractive index depends on temperature. The variation of optical characteristics of such a grating with respect to temperature is investigated theoretically and also by simulation and experiment. A thin-film heater is then used as a heat source. The relation between intensity of the first order of diffraction versus power consumption of the thin-film heater is investigated. Finally, a thin-film heater with a desired pattern is placed at the surface of the grating to fabricate spatial light modulator. By applying electrical current to different elements of the thin-film heater, the fabricated device can project a desired pattern on a screen using a 4f imaging system. The restrictions of such a device are discussed and another structure is proposed and discussed by numerical calculations to increase the ability of the device.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription