Abstract

We propose a simple analysis of a single-multimode-single-mode fiber (SMSMF) filter by observing the excited modes in multimode fiber (MMF). The method is used to design a SMSMF filter demodu lator for fiber Bragg grating sensors, and a corresponding demodulation system is created. The static and dynamic measurements based on the system are given to prove the feasibility of the intensity demodulator.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
    [CrossRef]
  2. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9, 57 (2003).
    [CrossRef]
  3. Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355-375 (1997).
    [CrossRef]
  4. A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter,” Opt. Lett. 18, 1370-1372 (1993).
    [CrossRef] [PubMed]
  5. M. A. Davis and A. D. Kersey, “All-fiber Bragg grating strain-sensor demodulation technique using a wavelength-division coupler,” Electron. Lett. 30, 75-77 (1994).
    [CrossRef]
  6. S. Kim, S. Kim, J. Kwon, and B. Lee, “Fiber Bragg grating strain sensor demodulator using a chirped fiber grating,” IEEE Photon. Technol. Lett. 13, 839-841 (2001).
    [CrossRef]
  7. R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, “All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969-1973 (1998).
    [CrossRef]
  8. A. Kumar, R. K. Varshney, S. Antony, and C. P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215-219 (2003).
    [CrossRef]
  9. A. Kumar, R. K. Varshney, and R. Kumar, “SMS fiber optic microbend sensor structures: effect of the modal interference,” Opt. Commun. 232, 239-244 (2004).
    [CrossRef]
  10. W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31, 2547-2549(2006).
    [CrossRef] [PubMed]
  11. Q. Wang, G. Farrell, and W. Yan, “Investigation on single-mode-multimode-single-mode fiber structure,” J. Lightwave Technol. 26, 512-519 (2008).
    [CrossRef]
  12. W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22, 469-477 (2004).
    [CrossRef]
  13. A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
    [CrossRef]
  14. E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes.,” Appl. Phys. Lett. 89, 091119 (2006).
    [CrossRef]
  15. E. Li, “Temperature compensation of multimode interference-based fiber devices,” Opt. Lett. 32, 2064-2066 (2007).
    [CrossRef] [PubMed]
  16. J. Zhang, G. D. Peng, L. Yuan, and W. Sun, “Composite-cavity-based Fabry-Perot interferometric strain sensors,” Opt. Lett. 32, 1833-1835 (2007).
    [CrossRef] [PubMed]
  17. B. Yu, “Development of tunable optical filters for interrogation of white-light interferometric sensors,” Ph.D. dissertation (Virginia Polytechnic Institute and State University, 2005), Chap. 2.
  18. Y. J. Rao, X. J. Wang, T. Zhu, and C. X. Zhou, “Demodulation algorithm for spatial-frequency division-multiplexed fiber-optic Fizeau strain sensor networks,” Opt. Lett. 31, 700-703(2006).
    [CrossRef] [PubMed]
  19. J. N. Kutz, J. A. Cox, and D. Smith, “Mode mixing and power diffusion in multimode optical fibers,” J. Lightwave Technol. 16, 1195-1202 (1998).
    [CrossRef]

2008

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

Q. Wang, G. Farrell, and W. Yan, “Investigation on single-mode-multimode-single-mode fiber structure,” J. Lightwave Technol. 26, 512-519 (2008).
[CrossRef]

2007

2006

2004

A. Kumar, R. K. Varshney, and R. Kumar, “SMS fiber optic microbend sensor structures: effect of the modal interference,” Opt. Commun. 232, 239-244 (2004).
[CrossRef]

W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22, 469-477 (2004).
[CrossRef]

2003

A. Kumar, R. K. Varshney, S. Antony, and C. P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215-219 (2003).
[CrossRef]

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9, 57 (2003).
[CrossRef]

2001

S. Kim, S. Kim, J. Kwon, and B. Lee, “Fiber Bragg grating strain sensor demodulator using a chirped fiber grating,” IEEE Photon. Technol. Lett. 13, 839-841 (2001).
[CrossRef]

1998

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, “All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969-1973 (1998).
[CrossRef]

J. N. Kutz, J. A. Cox, and D. Smith, “Mode mixing and power diffusion in multimode optical fibers,” J. Lightwave Technol. 16, 1195-1202 (1998).
[CrossRef]

1997

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355-375 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

1994

M. A. Davis and A. D. Kersey, “All-fiber Bragg grating strain-sensor demodulation technique using a wavelength-division coupler,” Electron. Lett. 30, 75-77 (1994).
[CrossRef]

1993

Antony, S.

A. Kumar, R. K. Varshney, S. Antony, and C. P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215-219 (2003).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Bennion, I.

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, “All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969-1973 (1998).
[CrossRef]

Berkoff, T. A.

Cox, J. A.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

M. A. Davis and A. D. Kersey, “All-fiber Bragg grating strain-sensor demodulation technique using a wavelength-division coupler,” Electron. Lett. 30, 75-77 (1994).
[CrossRef]

Everall, L. A.

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, “All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969-1973 (1998).
[CrossRef]

Fallon, R. W.

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, “All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969-1973 (1998).
[CrossRef]

Farrell, G.

Q. Wang, G. Farrell, and W. Yan, “Investigation on single-mode-multimode-single-mode fiber structure,” J. Lightwave Technol. 26, 512-519 (2008).
[CrossRef]

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Gu, X.

Hatta, A. M.

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

Johnson, E. G.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

M. A. Davis and A. D. Kersey, “All-fiber Bragg grating strain-sensor demodulation technique using a wavelength-division coupler,” Electron. Lett. 30, 75-77 (1994).
[CrossRef]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter,” Opt. Lett. 18, 1370-1372 (1993).
[CrossRef] [PubMed]

Kim, S.

S. Kim, S. Kim, J. Kwon, and B. Lee, “Fiber Bragg grating strain sensor demodulator using a chirped fiber grating,” IEEE Photon. Technol. Lett. 13, 839-841 (2001).
[CrossRef]

S. Kim, S. Kim, J. Kwon, and B. Lee, “Fiber Bragg grating strain sensor demodulator using a chirped fiber grating,” IEEE Photon. Technol. Lett. 13, 839-841 (2001).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Kumar, A.

A. Kumar, R. K. Varshney, and R. Kumar, “SMS fiber optic microbend sensor structures: effect of the modal interference,” Opt. Commun. 232, 239-244 (2004).
[CrossRef]

A. Kumar, R. K. Varshney, S. Antony, and C. P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215-219 (2003).
[CrossRef]

Kumar, R.

A. Kumar, R. K. Varshney, and R. Kumar, “SMS fiber optic microbend sensor structures: effect of the modal interference,” Opt. Commun. 232, 239-244 (2004).
[CrossRef]

Kutz, J. N.

Kwon, J.

S. Kim, S. Kim, J. Kwon, and B. Lee, “Fiber Bragg grating strain sensor demodulator using a chirped fiber grating,” IEEE Photon. Technol. Lett. 13, 839-841 (2001).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Lee, B.

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9, 57 (2003).
[CrossRef]

S. Kim, S. Kim, J. Kwon, and B. Lee, “Fiber Bragg grating strain sensor demodulator using a chirped fiber grating,” IEEE Photon. Technol. Lett. 13, 839-841 (2001).
[CrossRef]

Li, E.

E. Li, “Temperature compensation of multimode interference-based fiber devices,” Opt. Lett. 32, 2064-2066 (2007).
[CrossRef] [PubMed]

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes.,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Mehta, A.

Mohammed, W. S.

Morey, W. W.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Peng, G. D.

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Rajan, G.

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

Rao, Y. J.

Semenova, Y.

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

Sharma, C. P.

A. Kumar, R. K. Varshney, S. Antony, and C. P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215-219 (2003).
[CrossRef]

Smith, D.

Smith, P. W. E.

Sun, W.

Varshney, R. K.

A. Kumar, R. K. Varshney, and R. Kumar, “SMS fiber optic microbend sensor structures: effect of the modal interference,” Opt. Commun. 232, 239-244 (2004).
[CrossRef]

A. Kumar, R. K. Varshney, S. Antony, and C. P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215-219 (2003).
[CrossRef]

Wang, P.

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

Wang, Q.

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

Q. Wang, G. Farrell, and W. Yan, “Investigation on single-mode-multimode-single-mode fiber structure,” J. Lightwave Technol. 26, 512-519 (2008).
[CrossRef]

Wang, X.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes.,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Wang, X. J.

Williams, J. A. R.

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, “All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969-1973 (1998).
[CrossRef]

Yan, W.

Yu, B.

B. Yu, “Development of tunable optical filters for interrogation of white-light interferometric sensors,” Ph.D. dissertation (Virginia Polytechnic Institute and State University, 2005), Chap. 2.

Yuan, L.

Zhang, C.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes.,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Zhang, J.

Zhang, L.

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, “All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969-1973 (1998).
[CrossRef]

Zhou, C. X.

Zhu, T.

Appl. Phys. Lett.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes.,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Electron. Lett.

M. A. Davis and A. D. Kersey, “All-fiber Bragg grating strain-sensor demodulation technique using a wavelength-division coupler,” Electron. Lett. 30, 75-77 (1994).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Kim, S. Kim, J. Kwon, and B. Lee, “Fiber Bragg grating strain sensor demodulator using a chirped fiber grating,” IEEE Photon. Technol. Lett. 13, 839-841 (2001).
[CrossRef]

J. Lightwave Technol.

Meas. Sci. Technol.

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355-375 (1997).
[CrossRef]

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, “All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969-1973 (1998).
[CrossRef]

Microwave Opt. Technol. Lett.

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

Opt. Commun.

A. Kumar, R. K. Varshney, S. Antony, and C. P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215-219 (2003).
[CrossRef]

A. Kumar, R. K. Varshney, and R. Kumar, “SMS fiber optic microbend sensor structures: effect of the modal interference,” Opt. Commun. 232, 239-244 (2004).
[CrossRef]

Opt. Fiber Technol.

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9, 57 (2003).
[CrossRef]

Opt. Lett.

Other

B. Yu, “Development of tunable optical filters for interrogation of white-light interferometric sensors,” Ph.D. dissertation (Virginia Polytechnic Institute and State University, 2005), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) SMSMF structure and (b) the measurement setup of the excited mode in SMSMF.

Fig. 2
Fig. 2

(a) Interference spectrum s ( λ ) , (b)  FFT spectrum of interference spectrum of S1 and S2 in k space, (c)  enlarged FFT spectrum at the S2 position.

Fig. 3
Fig. 3

(a) Experimental transmission spectra of SMSMF in MMF of (a) 4.2 and (b) 5.8 cm lengths. Simulated transmission spectra of SMSMF in MMF of (c) 4.26 and (d) 5.83 cm lengths.

Fig. 4
Fig. 4

Demodulation scheme of a FBG sensor based on SMSMF.

Fig. 5
Fig. 5

(a) Transmission spectrum of SMSMF demodulator in MMF of 5.8 cm length, (b)  SMSMF filter conversion between the Bragg wavelength shift and the reflection intensity of a FBG, (c)  vibration measurement of the SMSMF demodulator FBG sensor, (d)  FFT spectrum of (c).

Tables (1)

Tables Icon

Table 1 Simulation Parameters of SMSMF Transmission Spectra from Fig. 2c

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

s ( λ ) = { i = 1 N η i 2 s 0 ( λ ) + i j = 1 N η i η j s 0 ( λ ) cos ( Δ φ i j ) + s 0 s ( λ ) + i = 1 N 2 η i s 0 ( λ ) cos ( Δ φ i -ref ) } / 4 ,
Δ φ i j = ( β i β j ) L 0 = 2 π λ ( n i n j ) L 0 = k OPD i - j ,
Δ φ i -ref = 2 π λ ( n i L 0 n ref L ref ) = k OPD i - ref ,
Γ ( f ) = I { s ( k ) } = ( i = 1 N η i 2 + 1 ) G ( f ) / 4 + { i j = 1 N η i η j 1 2 [ G ( f OPD i j 2 π ) + G ( f + OPD i j 2 π ) ] + i = 1 N η i [ G ( f OPD i ref 2 π ) + G ( f + OPD i ref 2 π ) ] } / 4 = D C ( f ) + S 1 ( f ) + S 2 ( f ) ,
D C ( f ) = ( i = 1 N η i 2 + 1 ) G ( f ) / 4 ,
S 1 ( f ) = i j = 1 N η i η j 1 8 [ G ( f OPD i j 2 π ) + G ( f + OPD i j 2 π ) ] ,
S 2 ( f ) = i = 1 N 1 4 η i [ G ( f OPD i -ref 2 π ) + G ( f + OPD i -ref 2 π ) ] ,
s 0 ( k ) = exp { 4 ( k k 0 ) 2 Δ k 2 } .
G ( f ) = exp { 4 ( k k 0 ) 2 Δ k 2 } exp ( i 2 π f k ) d k = π Δ k 2 exp { π ( f π Δ k 2 ) 2 exp ( i 2 π f k 0 ) .
Γ ( f ) = η i π Δ k 8 + δ
s 1 ( λ ) = i = 1 N η i 2 s 0 ( λ ) + i j = 1 N η i η j s 0 ( λ ) cos ( Δ φ i j ) .
d ( OPD i -ref ) OPD i -ref d ( Δ λ ) Δ λ 0.03 % ,

Metrics