Abstract

We undertook a new approach to investigate the aerosol indirect effect of the first kind on ice cloud formation by using available data products from the Moderate-Resolution Imaging Spectrometer (MODIS) and obtained physical understanding about the interaction between aerosols and ice clouds. Our analysis focused on the examination of the variability in the correlation between ice cloud parameters (optical depth, effective particle size, cloud water path, and cloud particle number concentration) and aerosol optical depth and number concentration that were inferred from available satellite cloud and aerosol data products. Correlation results for a number of selected scenes containing dust and ice clouds are presented, and dust aerosol indirect effects on ice clouds are directly demonstrated from satellite observations.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. N. Liou, S. C. Ou, and G. Koenig, “An investigation on the climatic effect of contrail cirrus,” in Air Traffic and the Environment Background, Tendencies and Potential Global Atmospheric Effects, U. Schumann, ed., Lecture Notes in Engineering (Springer-Verlag, 1990), pp. 154-169.
  2. D. Frankel, K. N. Liou, S. C. Ou, D. P. Wylie, and P. Menzel, “Observations of cirrus cloud extent and their impacts to climate,,” in Proceedings for the Ninth Conference on Atmospheric Radiation (American Meteorological Society, 1997), pp. 414-417.
  3. D. Wylie, D. L. Jackson, W. P. Menzel, and J. J. Bates, “Trends in global cloud cover in two decades of HIRS observations,” J. Climate 18, 3021-3031 (2005).
    [CrossRef]
  4. S. C. Ou and K. N. Liou, “Contrail/cirrus optics and radiation,” a subject specific white paper written under the support of the Federal Aviation Agency's Aviation-Climate Change Research Initiative (ACCRI) Project (2008), p. 77.
  5. P. Forster, V. Ramaswamy, and P. Artaxo, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, ed. (Cambridge University Press, 2007).
    [PubMed]
  6. P. Minnis, U. Schumann, D. R. Doelling, K. Gierens, and D. Fahey, “Global distribution of contrail radiative forcing,” Geophys. Res. Lett. 26, 1853-1856 (1999).
    [CrossRef]
  7. U. Lohmann and J. Feichter, “Global indirect aerosol effects: a review,” Atmos. Chem. Phys. 5, 715-737 (2005).
    [CrossRef]
  8. S. Twomey, “The influence of pollution on the shortwave albedo of clouds,” J. Atmos. Sci. 34, 1149-1152 (1977).
    [CrossRef]
  9. K. N. Liou and S. C. Ou, “The role of cloud microphysical processes in climate: an assessment from a one-dimensional perspective,” J. Geophys. Res. 94, 8599-8607 (1989).
    [CrossRef]
  10. B. A. Albrecht, “Aerosols, cloud microphysics, and fractional cloudiness,” Science 245, 1227-1230 (1989).
    [CrossRef] [PubMed]
  11. H. Grassl, “Possible changes of planetary albedo due to aerosol particles,” in Man's Impact on Climate, W. Bach, J. Pankrath, and W. Kellogg, eds. (Elsevier, 1979).
  12. J. Hansen, M. Sato, and R. Ruedy, “Radiative forcing and climate response,” J. Geophys. Res. 102, 6831-6864(1997).
    [CrossRef]
  13. J. A. Coakley Jr., J. R. Bernstein, and P. A. Durkee, “Effect of ship track effluents on cloud reflectivity,” Science 237, 1020-1021 (1987).
    [CrossRef] [PubMed]
  14. Y. J. Kaufman, I. Koren, L. A. Remer, D. Rosenfeld, and Y. Rudich, “The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean,” Proc. Natl. Acad. Sci. USA 102, 11207-11212 (2005).
    [CrossRef] [PubMed]
  15. W. Cantrell and A. Heymsfield, “Production of ice in tropospheric clouds: a review,” Bull. Am. Meteorol. Soc. 86, 795-807(2005).
    [CrossRef]
  16. Y. S. Chung and M. A. Yoon, “On the occurrence of yellow sand and atmospheric loadings,” Atmos. Environ. 30, 2387-2397(1996).
    [CrossRef]
  17. I. Chiapello, J. M. Prospero, J. R. Herman, and N. C. Hsu, “Detection of mineral dust over the North Atlantic Ocean and Africa with the Nimbus 7 TOMS,” J. Geophys. Res. 104, 9277-9291 (1999).
    [CrossRef]
  18. J. M. Prospero, “Long-term measurements of the transport of African mineral dust to the southeastern United States: implications for regional air quality,” J. Geophys. Res. 104, 15917-15927 (1999).
    [CrossRef]
  19. K. Sassen, P. J. DeMott, J. M. Prospero, and M. R. Poellot, “Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results,” Geophys. Res. Lett. 30, 35-1-35-4(2003).
    [CrossRef]
  20. C. M. Archuleta, P. J. DeMott, and S. M. Kreidenweis, “Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures,” Atmos. Chem. Phys. 5, 2617-2634 (2005).
    [CrossRef]
  21. L. A. Remer, D. Tanré, and Y. J. Kaufman, “Algorithm for remote sensing of tropospheric aerosol from MODIS: Collection 005,” MODIS Algorithm Theoretical Basis Document ATBDMOD-04 (NASA Goddard Space Flight Center, 2006), available at http://modis-atmos.gsfc.nasa.gov/_docs/ MOD04:MYD04_ATBD_C005_rev1.pdf.
  22. K. N. Liou, An Introduction to Atmospheric Radiation, 2nd ed. (Academic, 2002), p. 583.
  23. C. M. R. Platt, J. C. Scott, and A. C. Dilley, “Remote sounding of high clouds. Part IV: Optical properties of mid-latitude and tropical cirrus,” J. Atmos. Sci. 44, 729-747 (1987).
    [CrossRef]
  24. A. J. Heymsfield, C. Schmitt, A. Bansemer, G.-J. van Zadelhoff, M. J. McGill, C. Twohy, and D. Baumgardner, “Effective radius of ice particle populations derived from aircraft probes,” J. Atmos. Oceanic Technol. 23, 361-380 (2006).
    [CrossRef]
  25. I. N. Sokolik and O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths,” J. Geophys. Res. 104, 9423-9444 (1999).
    [CrossRef]
  26. G. A. d'Almeida, P. Koepke, and E. P. Shettle, Atmospheric Aerosols, Global Climatology and Radiative Characteristics (A. Deepak Publishing, 1991), p. 561.
  27. Y. J. Kaufman, L. A. Remer, D. Tanré, R.-R. Li, R. Kleidman, S. Mattoo, R. C. Levy, T. F. Eck, B. N. Holben, C. Ichoku, J. V. Martins, and I. Koren, “A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean,” IEEE Trans. Geosci. Remote Sensing 43, 2886-2897 (2005).
    [CrossRef]
  28. B.-C. Gao, Y. J. Kaufman, D. Tanre, and R.-.R. Li, “Distinguishing tropospheric aerosols from thin cirrus clouds for improved aerosol retrievals using the ratio of 1.38 μm and 1.24 μm channels,” Geophys. Res. Lett. 29, 1890-1892 (2002).
    [CrossRef]
  29. Y. Takano and K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3-19 (1989).
    [CrossRef]
  30. P. Yang and K. N. Liou, “Light scattering by hexagonal ice crystals: comparison of finite difference time domain and geometric optics models,” J. Opt. Soc. Am. A 12, 162-176 (1995).
    [CrossRef]
  31. M. D. King, S.-C. Tsay, S. E. Platnick, M. Wang, and K. N. Liou, “Cloud retrieval algorithms for MODIS: optical thickness, effective particle radius, and thermodynamic phase,” MODIS Algorithm Theoretical Basis Document ATBDMOD-05 (NASA Goddard Space Flight Center, 1997), version 5, available at http://modis-atmos.gsfc.nasa.gov/_docs/atbd_mod05.pdf.
  32. P. J. DeMott, K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. Brooks, A. J. Prenni, and S. M. Kreidenweis, “African dust aerosols as atmospheric ice nuclei,” Geophys. Res. Lett. 30, ASC 1-1-1-4 (2003).
    [CrossRef]
  33. G. Feingold, W. L. Eberhard, D. E. Veron, and M. Previdi, “First measurements of the Twomey indirect effect using ground-based remote sensors,” Geophys. Res. Lett. 30, 1287-1289 (2003).
    [CrossRef]

2006

A. J. Heymsfield, C. Schmitt, A. Bansemer, G.-J. van Zadelhoff, M. J. McGill, C. Twohy, and D. Baumgardner, “Effective radius of ice particle populations derived from aircraft probes,” J. Atmos. Oceanic Technol. 23, 361-380 (2006).
[CrossRef]

2005

C. M. Archuleta, P. J. DeMott, and S. M. Kreidenweis, “Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures,” Atmos. Chem. Phys. 5, 2617-2634 (2005).
[CrossRef]

Y. J. Kaufman, I. Koren, L. A. Remer, D. Rosenfeld, and Y. Rudich, “The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean,” Proc. Natl. Acad. Sci. USA 102, 11207-11212 (2005).
[CrossRef] [PubMed]

W. Cantrell and A. Heymsfield, “Production of ice in tropospheric clouds: a review,” Bull. Am. Meteorol. Soc. 86, 795-807(2005).
[CrossRef]

D. Wylie, D. L. Jackson, W. P. Menzel, and J. J. Bates, “Trends in global cloud cover in two decades of HIRS observations,” J. Climate 18, 3021-3031 (2005).
[CrossRef]

U. Lohmann and J. Feichter, “Global indirect aerosol effects: a review,” Atmos. Chem. Phys. 5, 715-737 (2005).
[CrossRef]

Y. J. Kaufman, L. A. Remer, D. Tanré, R.-R. Li, R. Kleidman, S. Mattoo, R. C. Levy, T. F. Eck, B. N. Holben, C. Ichoku, J. V. Martins, and I. Koren, “A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean,” IEEE Trans. Geosci. Remote Sensing 43, 2886-2897 (2005).
[CrossRef]

2003

K. Sassen, P. J. DeMott, J. M. Prospero, and M. R. Poellot, “Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results,” Geophys. Res. Lett. 30, 35-1-35-4(2003).
[CrossRef]

P. J. DeMott, K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. Brooks, A. J. Prenni, and S. M. Kreidenweis, “African dust aerosols as atmospheric ice nuclei,” Geophys. Res. Lett. 30, ASC 1-1-1-4 (2003).
[CrossRef]

G. Feingold, W. L. Eberhard, D. E. Veron, and M. Previdi, “First measurements of the Twomey indirect effect using ground-based remote sensors,” Geophys. Res. Lett. 30, 1287-1289 (2003).
[CrossRef]

2002

B.-C. Gao, Y. J. Kaufman, D. Tanre, and R.-.R. Li, “Distinguishing tropospheric aerosols from thin cirrus clouds for improved aerosol retrievals using the ratio of 1.38 μm and 1.24 μm channels,” Geophys. Res. Lett. 29, 1890-1892 (2002).
[CrossRef]

1999

P. Minnis, U. Schumann, D. R. Doelling, K. Gierens, and D. Fahey, “Global distribution of contrail radiative forcing,” Geophys. Res. Lett. 26, 1853-1856 (1999).
[CrossRef]

I. Chiapello, J. M. Prospero, J. R. Herman, and N. C. Hsu, “Detection of mineral dust over the North Atlantic Ocean and Africa with the Nimbus 7 TOMS,” J. Geophys. Res. 104, 9277-9291 (1999).
[CrossRef]

J. M. Prospero, “Long-term measurements of the transport of African mineral dust to the southeastern United States: implications for regional air quality,” J. Geophys. Res. 104, 15917-15927 (1999).
[CrossRef]

I. N. Sokolik and O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths,” J. Geophys. Res. 104, 9423-9444 (1999).
[CrossRef]

1997

J. Hansen, M. Sato, and R. Ruedy, “Radiative forcing and climate response,” J. Geophys. Res. 102, 6831-6864(1997).
[CrossRef]

1996

Y. S. Chung and M. A. Yoon, “On the occurrence of yellow sand and atmospheric loadings,” Atmos. Environ. 30, 2387-2397(1996).
[CrossRef]

1995

1989

Y. Takano and K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3-19 (1989).
[CrossRef]

K. N. Liou and S. C. Ou, “The role of cloud microphysical processes in climate: an assessment from a one-dimensional perspective,” J. Geophys. Res. 94, 8599-8607 (1989).
[CrossRef]

B. A. Albrecht, “Aerosols, cloud microphysics, and fractional cloudiness,” Science 245, 1227-1230 (1989).
[CrossRef] [PubMed]

1987

J. A. Coakley Jr., J. R. Bernstein, and P. A. Durkee, “Effect of ship track effluents on cloud reflectivity,” Science 237, 1020-1021 (1987).
[CrossRef] [PubMed]

C. M. R. Platt, J. C. Scott, and A. C. Dilley, “Remote sounding of high clouds. Part IV: Optical properties of mid-latitude and tropical cirrus,” J. Atmos. Sci. 44, 729-747 (1987).
[CrossRef]

1977

S. Twomey, “The influence of pollution on the shortwave albedo of clouds,” J. Atmos. Sci. 34, 1149-1152 (1977).
[CrossRef]

Albrecht, B. A.

B. A. Albrecht, “Aerosols, cloud microphysics, and fractional cloudiness,” Science 245, 1227-1230 (1989).
[CrossRef] [PubMed]

Archuleta, C. M.

C. M. Archuleta, P. J. DeMott, and S. M. Kreidenweis, “Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures,” Atmos. Chem. Phys. 5, 2617-2634 (2005).
[CrossRef]

Artaxo, P.

P. Forster, V. Ramaswamy, and P. Artaxo, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, ed. (Cambridge University Press, 2007).
[PubMed]

Bansemer, A.

A. J. Heymsfield, C. Schmitt, A. Bansemer, G.-J. van Zadelhoff, M. J. McGill, C. Twohy, and D. Baumgardner, “Effective radius of ice particle populations derived from aircraft probes,” J. Atmos. Oceanic Technol. 23, 361-380 (2006).
[CrossRef]

Bates, J. J.

D. Wylie, D. L. Jackson, W. P. Menzel, and J. J. Bates, “Trends in global cloud cover in two decades of HIRS observations,” J. Climate 18, 3021-3031 (2005).
[CrossRef]

Baumgardner, D.

A. J. Heymsfield, C. Schmitt, A. Bansemer, G.-J. van Zadelhoff, M. J. McGill, C. Twohy, and D. Baumgardner, “Effective radius of ice particle populations derived from aircraft probes,” J. Atmos. Oceanic Technol. 23, 361-380 (2006).
[CrossRef]

P. J. DeMott, K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. Brooks, A. J. Prenni, and S. M. Kreidenweis, “African dust aerosols as atmospheric ice nuclei,” Geophys. Res. Lett. 30, ASC 1-1-1-4 (2003).
[CrossRef]

Bernstein, J. R.

J. A. Coakley Jr., J. R. Bernstein, and P. A. Durkee, “Effect of ship track effluents on cloud reflectivity,” Science 237, 1020-1021 (1987).
[CrossRef] [PubMed]

Brooks, S.

P. J. DeMott, K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. Brooks, A. J. Prenni, and S. M. Kreidenweis, “African dust aerosols as atmospheric ice nuclei,” Geophys. Res. Lett. 30, ASC 1-1-1-4 (2003).
[CrossRef]

Cantrell, W.

W. Cantrell and A. Heymsfield, “Production of ice in tropospheric clouds: a review,” Bull. Am. Meteorol. Soc. 86, 795-807(2005).
[CrossRef]

Chiapello, I.

I. Chiapello, J. M. Prospero, J. R. Herman, and N. C. Hsu, “Detection of mineral dust over the North Atlantic Ocean and Africa with the Nimbus 7 TOMS,” J. Geophys. Res. 104, 9277-9291 (1999).
[CrossRef]

Chung, Y. S.

Y. S. Chung and M. A. Yoon, “On the occurrence of yellow sand and atmospheric loadings,” Atmos. Environ. 30, 2387-2397(1996).
[CrossRef]

Coakley, J. A.

J. A. Coakley Jr., J. R. Bernstein, and P. A. Durkee, “Effect of ship track effluents on cloud reflectivity,” Science 237, 1020-1021 (1987).
[CrossRef] [PubMed]

d'Almeida, G. A.

G. A. d'Almeida, P. Koepke, and E. P. Shettle, Atmospheric Aerosols, Global Climatology and Radiative Characteristics (A. Deepak Publishing, 1991), p. 561.

DeMott, P. J.

C. M. Archuleta, P. J. DeMott, and S. M. Kreidenweis, “Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures,” Atmos. Chem. Phys. 5, 2617-2634 (2005).
[CrossRef]

K. Sassen, P. J. DeMott, J. M. Prospero, and M. R. Poellot, “Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results,” Geophys. Res. Lett. 30, 35-1-35-4(2003).
[CrossRef]

P. J. DeMott, K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. Brooks, A. J. Prenni, and S. M. Kreidenweis, “African dust aerosols as atmospheric ice nuclei,” Geophys. Res. Lett. 30, ASC 1-1-1-4 (2003).
[CrossRef]

Dilley, A. C.

C. M. R. Platt, J. C. Scott, and A. C. Dilley, “Remote sounding of high clouds. Part IV: Optical properties of mid-latitude and tropical cirrus,” J. Atmos. Sci. 44, 729-747 (1987).
[CrossRef]

Doelling, D. R.

P. Minnis, U. Schumann, D. R. Doelling, K. Gierens, and D. Fahey, “Global distribution of contrail radiative forcing,” Geophys. Res. Lett. 26, 1853-1856 (1999).
[CrossRef]

Durkee, P. A.

J. A. Coakley Jr., J. R. Bernstein, and P. A. Durkee, “Effect of ship track effluents on cloud reflectivity,” Science 237, 1020-1021 (1987).
[CrossRef] [PubMed]

Eberhard, W. L.

G. Feingold, W. L. Eberhard, D. E. Veron, and M. Previdi, “First measurements of the Twomey indirect effect using ground-based remote sensors,” Geophys. Res. Lett. 30, 1287-1289 (2003).
[CrossRef]

Eck, T. F.

Y. J. Kaufman, L. A. Remer, D. Tanré, R.-R. Li, R. Kleidman, S. Mattoo, R. C. Levy, T. F. Eck, B. N. Holben, C. Ichoku, J. V. Martins, and I. Koren, “A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean,” IEEE Trans. Geosci. Remote Sensing 43, 2886-2897 (2005).
[CrossRef]

Fahey, D.

P. Minnis, U. Schumann, D. R. Doelling, K. Gierens, and D. Fahey, “Global distribution of contrail radiative forcing,” Geophys. Res. Lett. 26, 1853-1856 (1999).
[CrossRef]

Feichter, J.

U. Lohmann and J. Feichter, “Global indirect aerosol effects: a review,” Atmos. Chem. Phys. 5, 715-737 (2005).
[CrossRef]

Feingold, G.

G. Feingold, W. L. Eberhard, D. E. Veron, and M. Previdi, “First measurements of the Twomey indirect effect using ground-based remote sensors,” Geophys. Res. Lett. 30, 1287-1289 (2003).
[CrossRef]

Forster, P.

P. Forster, V. Ramaswamy, and P. Artaxo, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, ed. (Cambridge University Press, 2007).
[PubMed]

Frankel, D.

D. Frankel, K. N. Liou, S. C. Ou, D. P. Wylie, and P. Menzel, “Observations of cirrus cloud extent and their impacts to climate,,” in Proceedings for the Ninth Conference on Atmospheric Radiation (American Meteorological Society, 1997), pp. 414-417.

Gao, B.-C.

B.-C. Gao, Y. J. Kaufman, D. Tanre, and R.-.R. Li, “Distinguishing tropospheric aerosols from thin cirrus clouds for improved aerosol retrievals using the ratio of 1.38 μm and 1.24 μm channels,” Geophys. Res. Lett. 29, 1890-1892 (2002).
[CrossRef]

Gierens, K.

P. Minnis, U. Schumann, D. R. Doelling, K. Gierens, and D. Fahey, “Global distribution of contrail radiative forcing,” Geophys. Res. Lett. 26, 1853-1856 (1999).
[CrossRef]

Grassl, H.

H. Grassl, “Possible changes of planetary albedo due to aerosol particles,” in Man's Impact on Climate, W. Bach, J. Pankrath, and W. Kellogg, eds. (Elsevier, 1979).

Hansen, J.

J. Hansen, M. Sato, and R. Ruedy, “Radiative forcing and climate response,” J. Geophys. Res. 102, 6831-6864(1997).
[CrossRef]

Herman, J. R.

I. Chiapello, J. M. Prospero, J. R. Herman, and N. C. Hsu, “Detection of mineral dust over the North Atlantic Ocean and Africa with the Nimbus 7 TOMS,” J. Geophys. Res. 104, 9277-9291 (1999).
[CrossRef]

Heymsfield, A.

W. Cantrell and A. Heymsfield, “Production of ice in tropospheric clouds: a review,” Bull. Am. Meteorol. Soc. 86, 795-807(2005).
[CrossRef]

Heymsfield, A. J.

A. J. Heymsfield, C. Schmitt, A. Bansemer, G.-J. van Zadelhoff, M. J. McGill, C. Twohy, and D. Baumgardner, “Effective radius of ice particle populations derived from aircraft probes,” J. Atmos. Oceanic Technol. 23, 361-380 (2006).
[CrossRef]

Holben, B. N.

Y. J. Kaufman, L. A. Remer, D. Tanré, R.-R. Li, R. Kleidman, S. Mattoo, R. C. Levy, T. F. Eck, B. N. Holben, C. Ichoku, J. V. Martins, and I. Koren, “A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean,” IEEE Trans. Geosci. Remote Sensing 43, 2886-2897 (2005).
[CrossRef]

Hsu, N. C.

I. Chiapello, J. M. Prospero, J. R. Herman, and N. C. Hsu, “Detection of mineral dust over the North Atlantic Ocean and Africa with the Nimbus 7 TOMS,” J. Geophys. Res. 104, 9277-9291 (1999).
[CrossRef]

Ichoku, C.

Y. J. Kaufman, L. A. Remer, D. Tanré, R.-R. Li, R. Kleidman, S. Mattoo, R. C. Levy, T. F. Eck, B. N. Holben, C. Ichoku, J. V. Martins, and I. Koren, “A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean,” IEEE Trans. Geosci. Remote Sensing 43, 2886-2897 (2005).
[CrossRef]

Jackson, D. L.

D. Wylie, D. L. Jackson, W. P. Menzel, and J. J. Bates, “Trends in global cloud cover in two decades of HIRS observations,” J. Climate 18, 3021-3031 (2005).
[CrossRef]

Kaufman, Y. J.

Y. J. Kaufman, I. Koren, L. A. Remer, D. Rosenfeld, and Y. Rudich, “The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean,” Proc. Natl. Acad. Sci. USA 102, 11207-11212 (2005).
[CrossRef] [PubMed]

Y. J. Kaufman, L. A. Remer, D. Tanré, R.-R. Li, R. Kleidman, S. Mattoo, R. C. Levy, T. F. Eck, B. N. Holben, C. Ichoku, J. V. Martins, and I. Koren, “A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean,” IEEE Trans. Geosci. Remote Sensing 43, 2886-2897 (2005).
[CrossRef]

B.-C. Gao, Y. J. Kaufman, D. Tanre, and R.-.R. Li, “Distinguishing tropospheric aerosols from thin cirrus clouds for improved aerosol retrievals using the ratio of 1.38 μm and 1.24 μm channels,” Geophys. Res. Lett. 29, 1890-1892 (2002).
[CrossRef]

L. A. Remer, D. Tanré, and Y. J. Kaufman, “Algorithm for remote sensing of tropospheric aerosol from MODIS: Collection 005,” MODIS Algorithm Theoretical Basis Document ATBDMOD-04 (NASA Goddard Space Flight Center, 2006), available at http://modis-atmos.gsfc.nasa.gov/_docs/ MOD04:MYD04_ATBD_C005_rev1.pdf.

King, M. D.

M. D. King, S.-C. Tsay, S. E. Platnick, M. Wang, and K. N. Liou, “Cloud retrieval algorithms for MODIS: optical thickness, effective particle radius, and thermodynamic phase,” MODIS Algorithm Theoretical Basis Document ATBDMOD-05 (NASA Goddard Space Flight Center, 1997), version 5, available at http://modis-atmos.gsfc.nasa.gov/_docs/atbd_mod05.pdf.

Kleidman, R.

Y. J. Kaufman, L. A. Remer, D. Tanré, R.-R. Li, R. Kleidman, S. Mattoo, R. C. Levy, T. F. Eck, B. N. Holben, C. Ichoku, J. V. Martins, and I. Koren, “A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean,” IEEE Trans. Geosci. Remote Sensing 43, 2886-2897 (2005).
[CrossRef]

Koenig, G.

K. N. Liou, S. C. Ou, and G. Koenig, “An investigation on the climatic effect of contrail cirrus,” in Air Traffic and the Environment Background, Tendencies and Potential Global Atmospheric Effects, U. Schumann, ed., Lecture Notes in Engineering (Springer-Verlag, 1990), pp. 154-169.

Koepke, P.

G. A. d'Almeida, P. Koepke, and E. P. Shettle, Atmospheric Aerosols, Global Climatology and Radiative Characteristics (A. Deepak Publishing, 1991), p. 561.

Koren, I.

Y. J. Kaufman, L. A. Remer, D. Tanré, R.-R. Li, R. Kleidman, S. Mattoo, R. C. Levy, T. F. Eck, B. N. Holben, C. Ichoku, J. V. Martins, and I. Koren, “A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean,” IEEE Trans. Geosci. Remote Sensing 43, 2886-2897 (2005).
[CrossRef]

Y. J. Kaufman, I. Koren, L. A. Remer, D. Rosenfeld, and Y. Rudich, “The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean,” Proc. Natl. Acad. Sci. USA 102, 11207-11212 (2005).
[CrossRef] [PubMed]

Kreidenweis, S. M.

C. M. Archuleta, P. J. DeMott, and S. M. Kreidenweis, “Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures,” Atmos. Chem. Phys. 5, 2617-2634 (2005).
[CrossRef]

P. J. DeMott, K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. Brooks, A. J. Prenni, and S. M. Kreidenweis, “African dust aerosols as atmospheric ice nuclei,” Geophys. Res. Lett. 30, ASC 1-1-1-4 (2003).
[CrossRef]

Levy, R. C.

Y. J. Kaufman, L. A. Remer, D. Tanré, R.-R. Li, R. Kleidman, S. Mattoo, R. C. Levy, T. F. Eck, B. N. Holben, C. Ichoku, J. V. Martins, and I. Koren, “A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean,” IEEE Trans. Geosci. Remote Sensing 43, 2886-2897 (2005).
[CrossRef]

Li, R.-.R.

B.-C. Gao, Y. J. Kaufman, D. Tanre, and R.-.R. Li, “Distinguishing tropospheric aerosols from thin cirrus clouds for improved aerosol retrievals using the ratio of 1.38 μm and 1.24 μm channels,” Geophys. Res. Lett. 29, 1890-1892 (2002).
[CrossRef]

Li, R.-R.

Y. J. Kaufman, L. A. Remer, D. Tanré, R.-R. Li, R. Kleidman, S. Mattoo, R. C. Levy, T. F. Eck, B. N. Holben, C. Ichoku, J. V. Martins, and I. Koren, “A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean,” IEEE Trans. Geosci. Remote Sensing 43, 2886-2897 (2005).
[CrossRef]

Liou, K. N.

P. Yang and K. N. Liou, “Light scattering by hexagonal ice crystals: comparison of finite difference time domain and geometric optics models,” J. Opt. Soc. Am. A 12, 162-176 (1995).
[CrossRef]

Y. Takano and K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3-19 (1989).
[CrossRef]

K. N. Liou and S. C. Ou, “The role of cloud microphysical processes in climate: an assessment from a one-dimensional perspective,” J. Geophys. Res. 94, 8599-8607 (1989).
[CrossRef]

S. C. Ou and K. N. Liou, “Contrail/cirrus optics and radiation,” a subject specific white paper written under the support of the Federal Aviation Agency's Aviation-Climate Change Research Initiative (ACCRI) Project (2008), p. 77.

D. Frankel, K. N. Liou, S. C. Ou, D. P. Wylie, and P. Menzel, “Observations of cirrus cloud extent and their impacts to climate,,” in Proceedings for the Ninth Conference on Atmospheric Radiation (American Meteorological Society, 1997), pp. 414-417.

K. N. Liou, S. C. Ou, and G. Koenig, “An investigation on the climatic effect of contrail cirrus,” in Air Traffic and the Environment Background, Tendencies and Potential Global Atmospheric Effects, U. Schumann, ed., Lecture Notes in Engineering (Springer-Verlag, 1990), pp. 154-169.

K. N. Liou, An Introduction to Atmospheric Radiation, 2nd ed. (Academic, 2002), p. 583.

M. D. King, S.-C. Tsay, S. E. Platnick, M. Wang, and K. N. Liou, “Cloud retrieval algorithms for MODIS: optical thickness, effective particle radius, and thermodynamic phase,” MODIS Algorithm Theoretical Basis Document ATBDMOD-05 (NASA Goddard Space Flight Center, 1997), version 5, available at http://modis-atmos.gsfc.nasa.gov/_docs/atbd_mod05.pdf.

Lohmann, U.

U. Lohmann and J. Feichter, “Global indirect aerosol effects: a review,” Atmos. Chem. Phys. 5, 715-737 (2005).
[CrossRef]

Martins, J. V.

Y. J. Kaufman, L. A. Remer, D. Tanré, R.-R. Li, R. Kleidman, S. Mattoo, R. C. Levy, T. F. Eck, B. N. Holben, C. Ichoku, J. V. Martins, and I. Koren, “A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean,” IEEE Trans. Geosci. Remote Sensing 43, 2886-2897 (2005).
[CrossRef]

Mattoo, S.

Y. J. Kaufman, L. A. Remer, D. Tanré, R.-R. Li, R. Kleidman, S. Mattoo, R. C. Levy, T. F. Eck, B. N. Holben, C. Ichoku, J. V. Martins, and I. Koren, “A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean,” IEEE Trans. Geosci. Remote Sensing 43, 2886-2897 (2005).
[CrossRef]

McGill, M. J.

A. J. Heymsfield, C. Schmitt, A. Bansemer, G.-J. van Zadelhoff, M. J. McGill, C. Twohy, and D. Baumgardner, “Effective radius of ice particle populations derived from aircraft probes,” J. Atmos. Oceanic Technol. 23, 361-380 (2006).
[CrossRef]

Menzel, P.

D. Frankel, K. N. Liou, S. C. Ou, D. P. Wylie, and P. Menzel, “Observations of cirrus cloud extent and their impacts to climate,,” in Proceedings for the Ninth Conference on Atmospheric Radiation (American Meteorological Society, 1997), pp. 414-417.

Menzel, W. P.

D. Wylie, D. L. Jackson, W. P. Menzel, and J. J. Bates, “Trends in global cloud cover in two decades of HIRS observations,” J. Climate 18, 3021-3031 (2005).
[CrossRef]

Minnis, P.

P. Minnis, U. Schumann, D. R. Doelling, K. Gierens, and D. Fahey, “Global distribution of contrail radiative forcing,” Geophys. Res. Lett. 26, 1853-1856 (1999).
[CrossRef]

Ou, S. C.

K. N. Liou and S. C. Ou, “The role of cloud microphysical processes in climate: an assessment from a one-dimensional perspective,” J. Geophys. Res. 94, 8599-8607 (1989).
[CrossRef]

S. C. Ou and K. N. Liou, “Contrail/cirrus optics and radiation,” a subject specific white paper written under the support of the Federal Aviation Agency's Aviation-Climate Change Research Initiative (ACCRI) Project (2008), p. 77.

K. N. Liou, S. C. Ou, and G. Koenig, “An investigation on the climatic effect of contrail cirrus,” in Air Traffic and the Environment Background, Tendencies and Potential Global Atmospheric Effects, U. Schumann, ed., Lecture Notes in Engineering (Springer-Verlag, 1990), pp. 154-169.

D. Frankel, K. N. Liou, S. C. Ou, D. P. Wylie, and P. Menzel, “Observations of cirrus cloud extent and their impacts to climate,,” in Proceedings for the Ninth Conference on Atmospheric Radiation (American Meteorological Society, 1997), pp. 414-417.

Platnick, S. E.

M. D. King, S.-C. Tsay, S. E. Platnick, M. Wang, and K. N. Liou, “Cloud retrieval algorithms for MODIS: optical thickness, effective particle radius, and thermodynamic phase,” MODIS Algorithm Theoretical Basis Document ATBDMOD-05 (NASA Goddard Space Flight Center, 1997), version 5, available at http://modis-atmos.gsfc.nasa.gov/_docs/atbd_mod05.pdf.

Platt, C. M. R.

C. M. R. Platt, J. C. Scott, and A. C. Dilley, “Remote sounding of high clouds. Part IV: Optical properties of mid-latitude and tropical cirrus,” J. Atmos. Sci. 44, 729-747 (1987).
[CrossRef]

Poellot, M. R.

K. Sassen, P. J. DeMott, J. M. Prospero, and M. R. Poellot, “Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results,” Geophys. Res. Lett. 30, 35-1-35-4(2003).
[CrossRef]

P. J. DeMott, K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. Brooks, A. J. Prenni, and S. M. Kreidenweis, “African dust aerosols as atmospheric ice nuclei,” Geophys. Res. Lett. 30, ASC 1-1-1-4 (2003).
[CrossRef]

Prenni, A. J.

P. J. DeMott, K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. Brooks, A. J. Prenni, and S. M. Kreidenweis, “African dust aerosols as atmospheric ice nuclei,” Geophys. Res. Lett. 30, ASC 1-1-1-4 (2003).
[CrossRef]

Previdi, M.

G. Feingold, W. L. Eberhard, D. E. Veron, and M. Previdi, “First measurements of the Twomey indirect effect using ground-based remote sensors,” Geophys. Res. Lett. 30, 1287-1289 (2003).
[CrossRef]

Prospero, J. M.

K. Sassen, P. J. DeMott, J. M. Prospero, and M. R. Poellot, “Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results,” Geophys. Res. Lett. 30, 35-1-35-4(2003).
[CrossRef]

I. Chiapello, J. M. Prospero, J. R. Herman, and N. C. Hsu, “Detection of mineral dust over the North Atlantic Ocean and Africa with the Nimbus 7 TOMS,” J. Geophys. Res. 104, 9277-9291 (1999).
[CrossRef]

J. M. Prospero, “Long-term measurements of the transport of African mineral dust to the southeastern United States: implications for regional air quality,” J. Geophys. Res. 104, 15917-15927 (1999).
[CrossRef]

Ramaswamy, V.

P. Forster, V. Ramaswamy, and P. Artaxo, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, ed. (Cambridge University Press, 2007).
[PubMed]

Remer, L. A.

Y. J. Kaufman, I. Koren, L. A. Remer, D. Rosenfeld, and Y. Rudich, “The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean,” Proc. Natl. Acad. Sci. USA 102, 11207-11212 (2005).
[CrossRef] [PubMed]

Y. J. Kaufman, L. A. Remer, D. Tanré, R.-R. Li, R. Kleidman, S. Mattoo, R. C. Levy, T. F. Eck, B. N. Holben, C. Ichoku, J. V. Martins, and I. Koren, “A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean,” IEEE Trans. Geosci. Remote Sensing 43, 2886-2897 (2005).
[CrossRef]

L. A. Remer, D. Tanré, and Y. J. Kaufman, “Algorithm for remote sensing of tropospheric aerosol from MODIS: Collection 005,” MODIS Algorithm Theoretical Basis Document ATBDMOD-04 (NASA Goddard Space Flight Center, 2006), available at http://modis-atmos.gsfc.nasa.gov/_docs/ MOD04:MYD04_ATBD_C005_rev1.pdf.

Rogers, D. C.

P. J. DeMott, K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. Brooks, A. J. Prenni, and S. M. Kreidenweis, “African dust aerosols as atmospheric ice nuclei,” Geophys. Res. Lett. 30, ASC 1-1-1-4 (2003).
[CrossRef]

Rosenfeld, D.

Y. J. Kaufman, I. Koren, L. A. Remer, D. Rosenfeld, and Y. Rudich, “The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean,” Proc. Natl. Acad. Sci. USA 102, 11207-11212 (2005).
[CrossRef] [PubMed]

Rudich, Y.

Y. J. Kaufman, I. Koren, L. A. Remer, D. Rosenfeld, and Y. Rudich, “The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean,” Proc. Natl. Acad. Sci. USA 102, 11207-11212 (2005).
[CrossRef] [PubMed]

Ruedy, R.

J. Hansen, M. Sato, and R. Ruedy, “Radiative forcing and climate response,” J. Geophys. Res. 102, 6831-6864(1997).
[CrossRef]

Sassen, K.

K. Sassen, P. J. DeMott, J. M. Prospero, and M. R. Poellot, “Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results,” Geophys. Res. Lett. 30, 35-1-35-4(2003).
[CrossRef]

P. J. DeMott, K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. Brooks, A. J. Prenni, and S. M. Kreidenweis, “African dust aerosols as atmospheric ice nuclei,” Geophys. Res. Lett. 30, ASC 1-1-1-4 (2003).
[CrossRef]

Sato, M.

J. Hansen, M. Sato, and R. Ruedy, “Radiative forcing and climate response,” J. Geophys. Res. 102, 6831-6864(1997).
[CrossRef]

Schmitt, C.

A. J. Heymsfield, C. Schmitt, A. Bansemer, G.-J. van Zadelhoff, M. J. McGill, C. Twohy, and D. Baumgardner, “Effective radius of ice particle populations derived from aircraft probes,” J. Atmos. Oceanic Technol. 23, 361-380 (2006).
[CrossRef]

Schumann, U.

P. Minnis, U. Schumann, D. R. Doelling, K. Gierens, and D. Fahey, “Global distribution of contrail radiative forcing,” Geophys. Res. Lett. 26, 1853-1856 (1999).
[CrossRef]

Scott, J. C.

C. M. R. Platt, J. C. Scott, and A. C. Dilley, “Remote sounding of high clouds. Part IV: Optical properties of mid-latitude and tropical cirrus,” J. Atmos. Sci. 44, 729-747 (1987).
[CrossRef]

Shettle, E. P.

G. A. d'Almeida, P. Koepke, and E. P. Shettle, Atmospheric Aerosols, Global Climatology and Radiative Characteristics (A. Deepak Publishing, 1991), p. 561.

Sokolik, I. N.

I. N. Sokolik and O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths,” J. Geophys. Res. 104, 9423-9444 (1999).
[CrossRef]

Takano, Y.

Y. Takano and K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3-19 (1989).
[CrossRef]

Tanre, D.

B.-C. Gao, Y. J. Kaufman, D. Tanre, and R.-.R. Li, “Distinguishing tropospheric aerosols from thin cirrus clouds for improved aerosol retrievals using the ratio of 1.38 μm and 1.24 μm channels,” Geophys. Res. Lett. 29, 1890-1892 (2002).
[CrossRef]

Tanré, D.

Y. J. Kaufman, L. A. Remer, D. Tanré, R.-R. Li, R. Kleidman, S. Mattoo, R. C. Levy, T. F. Eck, B. N. Holben, C. Ichoku, J. V. Martins, and I. Koren, “A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean,” IEEE Trans. Geosci. Remote Sensing 43, 2886-2897 (2005).
[CrossRef]

L. A. Remer, D. Tanré, and Y. J. Kaufman, “Algorithm for remote sensing of tropospheric aerosol from MODIS: Collection 005,” MODIS Algorithm Theoretical Basis Document ATBDMOD-04 (NASA Goddard Space Flight Center, 2006), available at http://modis-atmos.gsfc.nasa.gov/_docs/ MOD04:MYD04_ATBD_C005_rev1.pdf.

Toon, O. B.

I. N. Sokolik and O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths,” J. Geophys. Res. 104, 9423-9444 (1999).
[CrossRef]

Tsay, S.-C.

M. D. King, S.-C. Tsay, S. E. Platnick, M. Wang, and K. N. Liou, “Cloud retrieval algorithms for MODIS: optical thickness, effective particle radius, and thermodynamic phase,” MODIS Algorithm Theoretical Basis Document ATBDMOD-05 (NASA Goddard Space Flight Center, 1997), version 5, available at http://modis-atmos.gsfc.nasa.gov/_docs/atbd_mod05.pdf.

Twohy, C.

A. J. Heymsfield, C. Schmitt, A. Bansemer, G.-J. van Zadelhoff, M. J. McGill, C. Twohy, and D. Baumgardner, “Effective radius of ice particle populations derived from aircraft probes,” J. Atmos. Oceanic Technol. 23, 361-380 (2006).
[CrossRef]

Twomey, S.

S. Twomey, “The influence of pollution on the shortwave albedo of clouds,” J. Atmos. Sci. 34, 1149-1152 (1977).
[CrossRef]

van Zadelhoff, G.-J.

A. J. Heymsfield, C. Schmitt, A. Bansemer, G.-J. van Zadelhoff, M. J. McGill, C. Twohy, and D. Baumgardner, “Effective radius of ice particle populations derived from aircraft probes,” J. Atmos. Oceanic Technol. 23, 361-380 (2006).
[CrossRef]

Veron, D. E.

G. Feingold, W. L. Eberhard, D. E. Veron, and M. Previdi, “First measurements of the Twomey indirect effect using ground-based remote sensors,” Geophys. Res. Lett. 30, 1287-1289 (2003).
[CrossRef]

Wang, M.

M. D. King, S.-C. Tsay, S. E. Platnick, M. Wang, and K. N. Liou, “Cloud retrieval algorithms for MODIS: optical thickness, effective particle radius, and thermodynamic phase,” MODIS Algorithm Theoretical Basis Document ATBDMOD-05 (NASA Goddard Space Flight Center, 1997), version 5, available at http://modis-atmos.gsfc.nasa.gov/_docs/atbd_mod05.pdf.

Wylie, D.

D. Wylie, D. L. Jackson, W. P. Menzel, and J. J. Bates, “Trends in global cloud cover in two decades of HIRS observations,” J. Climate 18, 3021-3031 (2005).
[CrossRef]

Wylie, D. P.

D. Frankel, K. N. Liou, S. C. Ou, D. P. Wylie, and P. Menzel, “Observations of cirrus cloud extent and their impacts to climate,,” in Proceedings for the Ninth Conference on Atmospheric Radiation (American Meteorological Society, 1997), pp. 414-417.

Yang, P.

Yoon, M. A.

Y. S. Chung and M. A. Yoon, “On the occurrence of yellow sand and atmospheric loadings,” Atmos. Environ. 30, 2387-2397(1996).
[CrossRef]

Atmos. Chem. Phys.

U. Lohmann and J. Feichter, “Global indirect aerosol effects: a review,” Atmos. Chem. Phys. 5, 715-737 (2005).
[CrossRef]

C. M. Archuleta, P. J. DeMott, and S. M. Kreidenweis, “Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures,” Atmos. Chem. Phys. 5, 2617-2634 (2005).
[CrossRef]

Atmos. Environ.

Y. S. Chung and M. A. Yoon, “On the occurrence of yellow sand and atmospheric loadings,” Atmos. Environ. 30, 2387-2397(1996).
[CrossRef]

Bull. Am. Meteorol. Soc.

W. Cantrell and A. Heymsfield, “Production of ice in tropospheric clouds: a review,” Bull. Am. Meteorol. Soc. 86, 795-807(2005).
[CrossRef]

Geophys. Res. Lett.

K. Sassen, P. J. DeMott, J. M. Prospero, and M. R. Poellot, “Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results,” Geophys. Res. Lett. 30, 35-1-35-4(2003).
[CrossRef]

P. Minnis, U. Schumann, D. R. Doelling, K. Gierens, and D. Fahey, “Global distribution of contrail radiative forcing,” Geophys. Res. Lett. 26, 1853-1856 (1999).
[CrossRef]

B.-C. Gao, Y. J. Kaufman, D. Tanre, and R.-.R. Li, “Distinguishing tropospheric aerosols from thin cirrus clouds for improved aerosol retrievals using the ratio of 1.38 μm and 1.24 μm channels,” Geophys. Res. Lett. 29, 1890-1892 (2002).
[CrossRef]

P. J. DeMott, K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. Brooks, A. J. Prenni, and S. M. Kreidenweis, “African dust aerosols as atmospheric ice nuclei,” Geophys. Res. Lett. 30, ASC 1-1-1-4 (2003).
[CrossRef]

G. Feingold, W. L. Eberhard, D. E. Veron, and M. Previdi, “First measurements of the Twomey indirect effect using ground-based remote sensors,” Geophys. Res. Lett. 30, 1287-1289 (2003).
[CrossRef]

IEEE Trans. Geosci. Remote Sensing

Y. J. Kaufman, L. A. Remer, D. Tanré, R.-R. Li, R. Kleidman, S. Mattoo, R. C. Levy, T. F. Eck, B. N. Holben, C. Ichoku, J. V. Martins, and I. Koren, “A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean,” IEEE Trans. Geosci. Remote Sensing 43, 2886-2897 (2005).
[CrossRef]

J. Atmos. Oceanic Technol.

A. J. Heymsfield, C. Schmitt, A. Bansemer, G.-J. van Zadelhoff, M. J. McGill, C. Twohy, and D. Baumgardner, “Effective radius of ice particle populations derived from aircraft probes,” J. Atmos. Oceanic Technol. 23, 361-380 (2006).
[CrossRef]

J. Atmos. Sci.

Y. Takano and K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3-19 (1989).
[CrossRef]

C. M. R. Platt, J. C. Scott, and A. C. Dilley, “Remote sounding of high clouds. Part IV: Optical properties of mid-latitude and tropical cirrus,” J. Atmos. Sci. 44, 729-747 (1987).
[CrossRef]

S. Twomey, “The influence of pollution on the shortwave albedo of clouds,” J. Atmos. Sci. 34, 1149-1152 (1977).
[CrossRef]

J. Climate

D. Wylie, D. L. Jackson, W. P. Menzel, and J. J. Bates, “Trends in global cloud cover in two decades of HIRS observations,” J. Climate 18, 3021-3031 (2005).
[CrossRef]

J. Geophys. Res.

K. N. Liou and S. C. Ou, “The role of cloud microphysical processes in climate: an assessment from a one-dimensional perspective,” J. Geophys. Res. 94, 8599-8607 (1989).
[CrossRef]

J. Hansen, M. Sato, and R. Ruedy, “Radiative forcing and climate response,” J. Geophys. Res. 102, 6831-6864(1997).
[CrossRef]

I. Chiapello, J. M. Prospero, J. R. Herman, and N. C. Hsu, “Detection of mineral dust over the North Atlantic Ocean and Africa with the Nimbus 7 TOMS,” J. Geophys. Res. 104, 9277-9291 (1999).
[CrossRef]

J. M. Prospero, “Long-term measurements of the transport of African mineral dust to the southeastern United States: implications for regional air quality,” J. Geophys. Res. 104, 15917-15927 (1999).
[CrossRef]

I. N. Sokolik and O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths,” J. Geophys. Res. 104, 9423-9444 (1999).
[CrossRef]

J. Opt. Soc. Am. A

Proc. Natl. Acad. Sci. USA

Y. J. Kaufman, I. Koren, L. A. Remer, D. Rosenfeld, and Y. Rudich, “The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean,” Proc. Natl. Acad. Sci. USA 102, 11207-11212 (2005).
[CrossRef] [PubMed]

Science

J. A. Coakley Jr., J. R. Bernstein, and P. A. Durkee, “Effect of ship track effluents on cloud reflectivity,” Science 237, 1020-1021 (1987).
[CrossRef] [PubMed]

B. A. Albrecht, “Aerosols, cloud microphysics, and fractional cloudiness,” Science 245, 1227-1230 (1989).
[CrossRef] [PubMed]

Other

H. Grassl, “Possible changes of planetary albedo due to aerosol particles,” in Man's Impact on Climate, W. Bach, J. Pankrath, and W. Kellogg, eds. (Elsevier, 1979).

S. C. Ou and K. N. Liou, “Contrail/cirrus optics and radiation,” a subject specific white paper written under the support of the Federal Aviation Agency's Aviation-Climate Change Research Initiative (ACCRI) Project (2008), p. 77.

P. Forster, V. Ramaswamy, and P. Artaxo, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, ed. (Cambridge University Press, 2007).
[PubMed]

K. N. Liou, S. C. Ou, and G. Koenig, “An investigation on the climatic effect of contrail cirrus,” in Air Traffic and the Environment Background, Tendencies and Potential Global Atmospheric Effects, U. Schumann, ed., Lecture Notes in Engineering (Springer-Verlag, 1990), pp. 154-169.

D. Frankel, K. N. Liou, S. C. Ou, D. P. Wylie, and P. Menzel, “Observations of cirrus cloud extent and their impacts to climate,,” in Proceedings for the Ninth Conference on Atmospheric Radiation (American Meteorological Society, 1997), pp. 414-417.

M. D. King, S.-C. Tsay, S. E. Platnick, M. Wang, and K. N. Liou, “Cloud retrieval algorithms for MODIS: optical thickness, effective particle radius, and thermodynamic phase,” MODIS Algorithm Theoretical Basis Document ATBDMOD-05 (NASA Goddard Space Flight Center, 1997), version 5, available at http://modis-atmos.gsfc.nasa.gov/_docs/atbd_mod05.pdf.

G. A. d'Almeida, P. Koepke, and E. P. Shettle, Atmospheric Aerosols, Global Climatology and Radiative Characteristics (A. Deepak Publishing, 1991), p. 561.

L. A. Remer, D. Tanré, and Y. J. Kaufman, “Algorithm for remote sensing of tropospheric aerosol from MODIS: Collection 005,” MODIS Algorithm Theoretical Basis Document ATBDMOD-04 (NASA Goddard Space Flight Center, 2006), available at http://modis-atmos.gsfc.nasa.gov/_docs/ MOD04:MYD04_ATBD_C005_rev1.pdf.

K. N. Liou, An Introduction to Atmospheric Radiation, 2nd ed. (Academic, 2002), p. 583.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

PDL linear depolarization ratio (see color scale at top) and relative returned power (in a logarithmic gray scale) height-versus-time displays on the morning of 29 July 2002, from the Ochopee field site of the CRYSTAL—FACE program. Depicted are strongly depolarizing ( δ = 0.2 to 0.4) upper tropospheric cirrus clouds, aerosols ( δ = 0.10 to 0.15) extending up to 5.5 km , and at far right a supercooled liquid altocumulus cloud ( δ = 0 at cloud base). Note the temporary glaciation of this cloud as it descended into the top of the dust layer.

Fig. 2
Fig. 2

MODIS retrieval products for 29 July 29 2002 at 1600 UTC over southern Florida: (a) cloud optical depth ( τ c ), (b) effective particle size ( r e ), (c) cloud-top temperature ( T c ), and (d) aerosol optical depth ( τ a ). The orange-circled areas display aerosol and cloudy regions that correspond to the glaciated altocumulus observed by the PDL. The selected domain was divided into a number of subgrids, and statistical correlations between the subgrid mean cirrus cloud and dust parameters were developed and are shown in (e)–(h): (e)  τ c versus τ a , (f)  r e versus τ a (g) IWP versus τ a , and (h)  N i versus N a . The straight lines denote linear fittings of the data points, with the fitting equation, coefficient of correlation (R) and standard deviation (σ) given at the top of each frame.

Fig. 3
Fig. 3

MODIS scenes with simultaneous presence of cirrus cloud and dust layers. Images for MODIS overpass on 23 September 2006 at 1210 UTC over western Africa: (a) RGB, (b) aerosol optical depth, and (c) cloud effective particle size. Images for MODIS overpass on 20 March 2001 at 1210 UTC over Korea: (d) RGB, (e) aerosol optical depth, and (f) cloud effective particle size.

Fig. 4
Fig. 4

(a)–(d) Same as Figs. 2e, 2f, 2g, 2h, except for domain A of MODIS scene over Korea and Japan for the date 20 March 2001 at 0255 UTC. (e)–(h) Same as Figs. 2e, 2f, 2g, 2h, except for domain B.

Tables (2)

Tables Icon

Table 1 Parameter Ranges and Their Mean Values for Domains A and B of the MODIS Scene for 23 September 2006 at 1210 UTC over Eastern Tropical Atlantic Ocean and Western Africa

Tables Icon

Table 2 Parameter Ranges and Their Mean Values for Domains A and B of the MODIS Scene for 20 March 2001 at 0255 UTC over Korea and Japan

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

IWC = ρ i v i ( L ) n i ( L ) d L ,
v ¯ i = v i n i ( L ) d L n i ( L ) d L = v i n i ( L ) d L N i .
IWC = τ c / [ ( a + b / r e ) Δ z c ] ,
AMC = ρ a v a ( r ) n a ( r ) d r ,
v ¯ a = v a n a ( r ) d r n a ( r ) d r = v a n a ( r ) d r N a = AMC ρ a N a .
r a = r 3 n a ( r ) d r r 2 n a ( r ) d r , τ a = 2 π Δ z a r 2 n a ( r ) d r ,
AMC = 2 3 ρ a r a τ a / Δ z a .
AIE = ( d l n r e ) / ( d l n α ) ,

Metrics