Abstract

A new technique for measuring the insertion loss and the polarization-dependent loss (PDL) of optical components is proposed. The technique is based on continuous polarization modulation of the stimulus optical field as opposed to sequential polarization state switching as in the traditional Jones matrix analysis or Mueller matrix methods. This new method relies on the simultaneous observation of multiple harmonics of the transmitted optical signal in the frequency domain. The physical theory of this method is presented along with PDL measurements performed on a polarization modulator, a polarizer, a PDL standard, and on an acetylene absorption cell exhibiting spectrally sharp insertion loss features.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Opt. Commun. 142, 119-125 (1997).
    [CrossRef]
  2. B. L. Heffner, “Deterministic, analytically complete measurement of polarization-dependent transmission through optical devices,” IEEE Photon. Technol. Lett. 4, 451-454 (1992).
    [CrossRef]
  3. C. Hentschel and D. Derickson, “Insertion loss measurements,” in Fiber Optic Test and Measurement, D. Derickson, ed. (Prentice-Hall, 1998), pp. 356-358.
  4. F. Heismann, “Compact electro-optic polarization scramblers for optically amplified lightwave systems,” J. Lightwave Technol. 14, 1801-1813 (1996).
    [CrossRef]
  5. S. Thaniyavarn, “Wavelength-independent, optical-damage-immune LiNbO3 TE-TM mode converter,” Opt. Lett. 11, 39-41 (1986).
    [CrossRef] [PubMed]
  6. A. J. P. van Haasteren, J. J. G. M. van der Tol, M. O. van Deventer, and H. J. Frankena, “Modeling and characterization of an electrooptic polarization controller on LiNb03,” J. Lightwave Technol. 11, 1151-1157 (1993).
    [CrossRef]

1997

N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Opt. Commun. 142, 119-125 (1997).
[CrossRef]

1996

F. Heismann, “Compact electro-optic polarization scramblers for optically amplified lightwave systems,” J. Lightwave Technol. 14, 1801-1813 (1996).
[CrossRef]

1993

A. J. P. van Haasteren, J. J. G. M. van der Tol, M. O. van Deventer, and H. J. Frankena, “Modeling and characterization of an electrooptic polarization controller on LiNb03,” J. Lightwave Technol. 11, 1151-1157 (1993).
[CrossRef]

1992

B. L. Heffner, “Deterministic, analytically complete measurement of polarization-dependent transmission through optical devices,” IEEE Photon. Technol. Lett. 4, 451-454 (1992).
[CrossRef]

1986

Derickson, D.

C. Hentschel and D. Derickson, “Insertion loss measurements,” in Fiber Optic Test and Measurement, D. Derickson, ed. (Prentice-Hall, 1998), pp. 356-358.

Frankena, H. J.

A. J. P. van Haasteren, J. J. G. M. van der Tol, M. O. van Deventer, and H. J. Frankena, “Modeling and characterization of an electrooptic polarization controller on LiNb03,” J. Lightwave Technol. 11, 1151-1157 (1993).
[CrossRef]

Gisin, N.

N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Opt. Commun. 142, 119-125 (1997).
[CrossRef]

Heffner, B. L.

B. L. Heffner, “Deterministic, analytically complete measurement of polarization-dependent transmission through optical devices,” IEEE Photon. Technol. Lett. 4, 451-454 (1992).
[CrossRef]

Heismann, F.

F. Heismann, “Compact electro-optic polarization scramblers for optically amplified lightwave systems,” J. Lightwave Technol. 14, 1801-1813 (1996).
[CrossRef]

Hentschel, C.

C. Hentschel and D. Derickson, “Insertion loss measurements,” in Fiber Optic Test and Measurement, D. Derickson, ed. (Prentice-Hall, 1998), pp. 356-358.

Huttner, B.

N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Opt. Commun. 142, 119-125 (1997).
[CrossRef]

Thaniyavarn, S.

van der Tol, J. J. G. M.

A. J. P. van Haasteren, J. J. G. M. van der Tol, M. O. van Deventer, and H. J. Frankena, “Modeling and characterization of an electrooptic polarization controller on LiNb03,” J. Lightwave Technol. 11, 1151-1157 (1993).
[CrossRef]

van Deventer, M. O.

A. J. P. van Haasteren, J. J. G. M. van der Tol, M. O. van Deventer, and H. J. Frankena, “Modeling and characterization of an electrooptic polarization controller on LiNb03,” J. Lightwave Technol. 11, 1151-1157 (1993).
[CrossRef]

van Haasteren, A. J. P.

A. J. P. van Haasteren, J. J. G. M. van der Tol, M. O. van Deventer, and H. J. Frankena, “Modeling and characterization of an electrooptic polarization controller on LiNb03,” J. Lightwave Technol. 11, 1151-1157 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

B. L. Heffner, “Deterministic, analytically complete measurement of polarization-dependent transmission through optical devices,” IEEE Photon. Technol. Lett. 4, 451-454 (1992).
[CrossRef]

J. Lightwave Technol.

F. Heismann, “Compact electro-optic polarization scramblers for optically amplified lightwave systems,” J. Lightwave Technol. 14, 1801-1813 (1996).
[CrossRef]

A. J. P. van Haasteren, J. J. G. M. van der Tol, M. O. van Deventer, and H. J. Frankena, “Modeling and characterization of an electrooptic polarization controller on LiNb03,” J. Lightwave Technol. 11, 1151-1157 (1993).
[CrossRef]

Opt. Commun.

N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Opt. Commun. 142, 119-125 (1997).
[CrossRef]

Opt. Lett.

Other

C. Hentschel and D. Derickson, “Insertion loss measurements,” in Fiber Optic Test and Measurement, D. Derickson, ed. (Prentice-Hall, 1998), pp. 356-358.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Conceptual illustration of PDL test methods. (a) Sequential polarization state switching. (b) Continuous polarization modulation with simultaneous observation of multiple harmonics.

Fig. 2
Fig. 2

Three-tone polarization modulation trajectory.

Fig. 3
Fig. 3

Modulation of the Stokes components in the three-tone technique.

Fig. 4
Fig. 4

Simplified diagram of the experimental setup.

Fig. 5
Fig. 5

PDL of the 8169A polarization controller.

Fig. 6
Fig. 6

Residual system PDL before and after calibration.

Fig. 7
Fig. 7

PDL of Taliescent PDL standard: (a)  20 nm / s sweep rate, 2.5 nm resolution; (b)  5 nm / s sweep rate, 0.625 nm resolution.

Fig. 8
Fig. 8

Acetylene absorption cell. (a) Insertion loss. (b) PDL.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

f p = m 11 + m 12 q + m 13 u + m 14 v ,
h max , min = m 11 ± m 12 2 + m 13 2 + m 14 2 .
( 1 q ( t ) u ( t ) v ( t ) ) = ( 1 q 0 + q 1 + q 2 + q 3 + u 0 + u 1 + u 2 + u 3 + v 0 + v 1 + v 2 + v 3 + ) .
( h 1 h 2 h 3 ) = ( q 1 u 1 v 1 q 2 u 2 v 2 q 3 u 3 v 3 ) ( m 12 m 13 m 14 ) ,
h 0 = m 11 .
S = ( 1 cos ( 2 α ) sin ( 2 α ) cos ( φ ) sin ( 2 α ) sin ( φ ) ) ,
S = ( 1 cos ( 2 ω t ) 1 2 sin ( ω t ) + 1 2 sin ( 3 ω t ) 1 2 cos ( ω t ) + 1 2 cos ( 3 ω t ) ) .
M = ( 0 1 0 j / 2 0 j / 2 1 / 2 0 1 / 2 ) ,

Metrics