Abstract

The infrared reflectance of iron was studied using high-pressure synchrotron radiation methods up to 50GPa at room temperature in a diamond anvil cell of 10008000cm1 (1.2510μm). The magnitude of the reflectivity shows a weak pressure dependence up to the transition from the body centered cubic (α) to hexagonal close packed (ε) phase transition, where a discontinuous change in both the slope and magnitude of the reflectivity was observed. Reflectance spectra were corrected for diamond absorption and treated with a Kramers–Kronig analysis to extract the optical constants; the emissivity of iron was derived from Kirchoff’s law. The pressure and wavelength dependence of the emissivity is characterized by an empirical function for 1.51.9μm; this wavelength range is useful for spectroradiometric temperature measurements from 1000K up to 2500K. α-Fe is a nonideal emitter; however, ε-Fe behaves as an almost perfect greybody in the infrared up to the highest pressures of the measurements. Temperature measurements based on the spectroradiometry of iron samples should take into account the wavelength dependent emissivity below the α-ε phase transition at 13GPa.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Ordal, P. M. Bell, R. W. Alexander, L. A. Newquist, and M. R. Querry, “Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths,” Appl. Opt. 27, 1203-1209 (1988).
    [CrossRef] [PubMed]
  2. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. J. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493-4499 (1985).
    [CrossRef] [PubMed]
  3. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander Jr., and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099-1119 (1983).
    [CrossRef] [PubMed]
  4. J. Fischera, “On the thermal behaviour of small iron grains,” Astron. Astrophys. 428, 99-108 (2004).
    [CrossRef]
  5. P. B. Johnson and R. W. Christy, “Optical constants of transition metals--Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phy. Rev. B 9, 5056-5070 (1974).
    [CrossRef]
  6. S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55, 8201-8206 (1997).
    [CrossRef]
  7. J. E. Nestell and R. W. Christy, “Optical conductivity of bcc transition metals--V, Nb, Ta, Cr, Mo, W,” Phys. Rev. B 21, 3173-3179 (1980).
    [CrossRef]
  8. M. T. Ratajack, C. R. Kannewurf, J. F. Revelli, and J. B. Wagner, “Infrared reflectance spectra and dispersion studies of iron-intercalated zirconium diselenide,” Phys. Rev. B 17, 4674-4679 (1978).
    [CrossRef]
  9. M. Tokumoto and H. D. Drew, “Optical absorption of Mo-based alloys,” Phys. Rev. B 30, 4322-4328 (1984).
    [CrossRef]
  10. J. H. Weaver, E. Colavita, D. W. Lynch, and R. Rosei, “Low energy interband absorption in bcc Fe and hcp Co,” Phys. Rev. B 19, 3850-3856 (1979).
    [CrossRef]
  11. M. Hanfland, M. Alouani, K. Syassen, and N. E. Christensen, “Optical properties of metallic silicon,” Phys. Rev. B 38, 12864-12867 (1988).
    [CrossRef]
  12. N. Nissim, S. Eliezer, L. Bakshi, L. Perelmutter, D. Moreno, E. Kot, G. K. Rozenberg, and M. P. Pasternak, “High-pressure phase transition detection in diamond anvil cell using the method of ellipsometry,” J. Appl. Phys. 102, 106104 (2007).
    [CrossRef]
  13. A. T. Holmes, D. Jaccard, G. Behr, Y. Inada, and Y. Onuki, “Unconventional superconductivity and non-Fermi liquid behavior of epsilon-iron at high pressure,” J. Phys. Condens. Matter 16, S1121-S1127 (2004).
    [CrossRef]
  14. D. Jaccard, A. T. Holmes, G. Behr, Y. Inada, and Y. Onuki, “Superconductivity of epsilon-Fe: complete resistive transition,” Phys. Lett. A 299, 282-286 (2002).
    [CrossRef]
  15. D. L. Heinz and R. Jeanloz, “Measurement of the melting curve of Mg0.9Fe0.1SiO3 at lower mantle conditions and its geophysical implications,” J. Geophys. Res. 92, 11437-11444 (1987).
    [CrossRef]
  16. W. A. Bassett, T. Takahash, and P. W. Stook, “X-ray diffraction and optical observations on crystalline solids up to 300 Kbar,” Rev. Sci. Instrum. 38, 37-42 (1967).
    [CrossRef]
  17. S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55, 8201-8206 (1997).
    [CrossRef]
  18. J. E. Taylor, “The variation with wavelength of the spectral emissivity of iron and molybdenum,” J. Opt. Soc. Am. 42, 33-36 (1952).
    [CrossRef]
  19. A. D. Chijioke, W. J. Nellis, A. Soldatov, and I. F. Silvera, “The ruby pressure standard to 150 GPa,” J. Appl. Phys. 98, 114905 (2005).
    [CrossRef]
  20. D. M. Roessler, “Kramers-Kronig Analysis of Reflection Data,” Br. J. Appl. Phys. 16, 1119-1123 (1965).
    [CrossRef]
  21. S. Merkel, H. R. Wenk, P. Gillet, H. K. Mao, and R. J. Hemley, “Deformation of polycrystalline iron up to 30 GPa and 1000 K,” Phys. Earth Planet. Inter. 145, 239-251 (2004).
    [CrossRef]
  22. K. Pedersen and O. Keller, “Photoelastic properties of metals measured by off-null ellipsometry,” Appl. Opt. 25, 226-234(1986).
    [CrossRef] [PubMed]
  23. R. J. Hemley, H. K. Mao, G. Y. Shen, J. Badro, P. Gillet, M. Hanfland, and D. Hausermann, “X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures,” Science 276, 1242-1245 (1997).
    [CrossRef]
  24. D. W. Berreman, “Kramers-Kronig analysis of reflectance measured at oblique incidence,” Appl. Opt. 6, 1519-1521(1967).
    [CrossRef] [PubMed]
  25. F. M. Wang and R. Ingalls, “Iron bcc-hcp transition: local structure from x-ray-absorption fine structure,” Phys. Rev. B 57, 5647-5654 (1998).
    [CrossRef]

2007 (1)

N. Nissim, S. Eliezer, L. Bakshi, L. Perelmutter, D. Moreno, E. Kot, G. K. Rozenberg, and M. P. Pasternak, “High-pressure phase transition detection in diamond anvil cell using the method of ellipsometry,” J. Appl. Phys. 102, 106104 (2007).
[CrossRef]

2005 (1)

A. D. Chijioke, W. J. Nellis, A. Soldatov, and I. F. Silvera, “The ruby pressure standard to 150 GPa,” J. Appl. Phys. 98, 114905 (2005).
[CrossRef]

2004 (3)

S. Merkel, H. R. Wenk, P. Gillet, H. K. Mao, and R. J. Hemley, “Deformation of polycrystalline iron up to 30 GPa and 1000 K,” Phys. Earth Planet. Inter. 145, 239-251 (2004).
[CrossRef]

A. T. Holmes, D. Jaccard, G. Behr, Y. Inada, and Y. Onuki, “Unconventional superconductivity and non-Fermi liquid behavior of epsilon-iron at high pressure,” J. Phys. Condens. Matter 16, S1121-S1127 (2004).
[CrossRef]

J. Fischera, “On the thermal behaviour of small iron grains,” Astron. Astrophys. 428, 99-108 (2004).
[CrossRef]

2002 (1)

D. Jaccard, A. T. Holmes, G. Behr, Y. Inada, and Y. Onuki, “Superconductivity of epsilon-Fe: complete resistive transition,” Phys. Lett. A 299, 282-286 (2002).
[CrossRef]

1998 (1)

F. M. Wang and R. Ingalls, “Iron bcc-hcp transition: local structure from x-ray-absorption fine structure,” Phys. Rev. B 57, 5647-5654 (1998).
[CrossRef]

1997 (3)

S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55, 8201-8206 (1997).
[CrossRef]

R. J. Hemley, H. K. Mao, G. Y. Shen, J. Badro, P. Gillet, M. Hanfland, and D. Hausermann, “X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures,” Science 276, 1242-1245 (1997).
[CrossRef]

S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55, 8201-8206 (1997).
[CrossRef]

1988 (2)

1987 (1)

D. L. Heinz and R. Jeanloz, “Measurement of the melting curve of Mg0.9Fe0.1SiO3 at lower mantle conditions and its geophysical implications,” J. Geophys. Res. 92, 11437-11444 (1987).
[CrossRef]

1986 (1)

1985 (1)

1984 (1)

M. Tokumoto and H. D. Drew, “Optical absorption of Mo-based alloys,” Phys. Rev. B 30, 4322-4328 (1984).
[CrossRef]

1983 (1)

1980 (1)

J. E. Nestell and R. W. Christy, “Optical conductivity of bcc transition metals--V, Nb, Ta, Cr, Mo, W,” Phys. Rev. B 21, 3173-3179 (1980).
[CrossRef]

1979 (1)

J. H. Weaver, E. Colavita, D. W. Lynch, and R. Rosei, “Low energy interband absorption in bcc Fe and hcp Co,” Phys. Rev. B 19, 3850-3856 (1979).
[CrossRef]

1978 (1)

M. T. Ratajack, C. R. Kannewurf, J. F. Revelli, and J. B. Wagner, “Infrared reflectance spectra and dispersion studies of iron-intercalated zirconium diselenide,” Phys. Rev. B 17, 4674-4679 (1978).
[CrossRef]

1974 (1)

P. B. Johnson and R. W. Christy, “Optical constants of transition metals--Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phy. Rev. B 9, 5056-5070 (1974).
[CrossRef]

1967 (2)

W. A. Bassett, T. Takahash, and P. W. Stook, “X-ray diffraction and optical observations on crystalline solids up to 300 Kbar,” Rev. Sci. Instrum. 38, 37-42 (1967).
[CrossRef]

D. W. Berreman, “Kramers-Kronig analysis of reflectance measured at oblique incidence,” Appl. Opt. 6, 1519-1521(1967).
[CrossRef] [PubMed]

1965 (1)

D. M. Roessler, “Kramers-Kronig Analysis of Reflection Data,” Br. J. Appl. Phys. 16, 1119-1123 (1965).
[CrossRef]

1952 (1)

Alexander, R. W.

Alouani, M.

M. Hanfland, M. Alouani, K. Syassen, and N. E. Christensen, “Optical properties of metallic silicon,” Phys. Rev. B 38, 12864-12867 (1988).
[CrossRef]

Badro, J.

R. J. Hemley, H. K. Mao, G. Y. Shen, J. Badro, P. Gillet, M. Hanfland, and D. Hausermann, “X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures,” Science 276, 1242-1245 (1997).
[CrossRef]

Bakshi, L.

N. Nissim, S. Eliezer, L. Bakshi, L. Perelmutter, D. Moreno, E. Kot, G. K. Rozenberg, and M. P. Pasternak, “High-pressure phase transition detection in diamond anvil cell using the method of ellipsometry,” J. Appl. Phys. 102, 106104 (2007).
[CrossRef]

Bassett, W. A.

W. A. Bassett, T. Takahash, and P. W. Stook, “X-ray diffraction and optical observations on crystalline solids up to 300 Kbar,” Rev. Sci. Instrum. 38, 37-42 (1967).
[CrossRef]

Behr, G.

A. T. Holmes, D. Jaccard, G. Behr, Y. Inada, and Y. Onuki, “Unconventional superconductivity and non-Fermi liquid behavior of epsilon-iron at high pressure,” J. Phys. Condens. Matter 16, S1121-S1127 (2004).
[CrossRef]

D. Jaccard, A. T. Holmes, G. Behr, Y. Inada, and Y. Onuki, “Superconductivity of epsilon-Fe: complete resistive transition,” Phys. Lett. A 299, 282-286 (2002).
[CrossRef]

Bell, P. M.

Bell, R. J.

Bell, R. R.

Bell, S. E.

Berreman, D. W.

Chijioke, A. D.

A. D. Chijioke, W. J. Nellis, A. Soldatov, and I. F. Silvera, “The ruby pressure standard to 150 GPa,” J. Appl. Phys. 98, 114905 (2005).
[CrossRef]

Christensen, N. E.

M. Hanfland, M. Alouani, K. Syassen, and N. E. Christensen, “Optical properties of metallic silicon,” Phys. Rev. B 38, 12864-12867 (1988).
[CrossRef]

Christy, R. W.

J. E. Nestell and R. W. Christy, “Optical conductivity of bcc transition metals--V, Nb, Ta, Cr, Mo, W,” Phys. Rev. B 21, 3173-3179 (1980).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of transition metals--Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phy. Rev. B 9, 5056-5070 (1974).
[CrossRef]

Colavita, E.

J. H. Weaver, E. Colavita, D. W. Lynch, and R. Rosei, “Low energy interband absorption in bcc Fe and hcp Co,” Phys. Rev. B 19, 3850-3856 (1979).
[CrossRef]

Drew, H. D.

M. Tokumoto and H. D. Drew, “Optical absorption of Mo-based alloys,” Phys. Rev. B 30, 4322-4328 (1984).
[CrossRef]

Eliezer, S.

N. Nissim, S. Eliezer, L. Bakshi, L. Perelmutter, D. Moreno, E. Kot, G. K. Rozenberg, and M. P. Pasternak, “High-pressure phase transition detection in diamond anvil cell using the method of ellipsometry,” J. Appl. Phys. 102, 106104 (2007).
[CrossRef]

Fischera, J.

J. Fischera, “On the thermal behaviour of small iron grains,” Astron. Astrophys. 428, 99-108 (2004).
[CrossRef]

Gillet, P.

S. Merkel, H. R. Wenk, P. Gillet, H. K. Mao, and R. J. Hemley, “Deformation of polycrystalline iron up to 30 GPa and 1000 K,” Phys. Earth Planet. Inter. 145, 239-251 (2004).
[CrossRef]

R. J. Hemley, H. K. Mao, G. Y. Shen, J. Badro, P. Gillet, M. Hanfland, and D. Hausermann, “X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures,” Science 276, 1242-1245 (1997).
[CrossRef]

Hanfland, M.

R. J. Hemley, H. K. Mao, G. Y. Shen, J. Badro, P. Gillet, M. Hanfland, and D. Hausermann, “X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures,” Science 276, 1242-1245 (1997).
[CrossRef]

M. Hanfland, M. Alouani, K. Syassen, and N. E. Christensen, “Optical properties of metallic silicon,” Phys. Rev. B 38, 12864-12867 (1988).
[CrossRef]

Hausermann, D.

R. J. Hemley, H. K. Mao, G. Y. Shen, J. Badro, P. Gillet, M. Hanfland, and D. Hausermann, “X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures,” Science 276, 1242-1245 (1997).
[CrossRef]

Heinz, D. L.

D. L. Heinz and R. Jeanloz, “Measurement of the melting curve of Mg0.9Fe0.1SiO3 at lower mantle conditions and its geophysical implications,” J. Geophys. Res. 92, 11437-11444 (1987).
[CrossRef]

Hemley, R. J.

S. Merkel, H. R. Wenk, P. Gillet, H. K. Mao, and R. J. Hemley, “Deformation of polycrystalline iron up to 30 GPa and 1000 K,” Phys. Earth Planet. Inter. 145, 239-251 (2004).
[CrossRef]

R. J. Hemley, H. K. Mao, G. Y. Shen, J. Badro, P. Gillet, M. Hanfland, and D. Hausermann, “X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures,” Science 276, 1242-1245 (1997).
[CrossRef]

Holmes, A. T.

A. T. Holmes, D. Jaccard, G. Behr, Y. Inada, and Y. Onuki, “Unconventional superconductivity and non-Fermi liquid behavior of epsilon-iron at high pressure,” J. Phys. Condens. Matter 16, S1121-S1127 (2004).
[CrossRef]

D. Jaccard, A. T. Holmes, G. Behr, Y. Inada, and Y. Onuki, “Superconductivity of epsilon-Fe: complete resistive transition,” Phys. Lett. A 299, 282-286 (2002).
[CrossRef]

Inada, Y.

A. T. Holmes, D. Jaccard, G. Behr, Y. Inada, and Y. Onuki, “Unconventional superconductivity and non-Fermi liquid behavior of epsilon-iron at high pressure,” J. Phys. Condens. Matter 16, S1121-S1127 (2004).
[CrossRef]

D. Jaccard, A. T. Holmes, G. Behr, Y. Inada, and Y. Onuki, “Superconductivity of epsilon-Fe: complete resistive transition,” Phys. Lett. A 299, 282-286 (2002).
[CrossRef]

Ingalls, R.

F. M. Wang and R. Ingalls, “Iron bcc-hcp transition: local structure from x-ray-absorption fine structure,” Phys. Rev. B 57, 5647-5654 (1998).
[CrossRef]

Jaccard, D.

A. T. Holmes, D. Jaccard, G. Behr, Y. Inada, and Y. Onuki, “Unconventional superconductivity and non-Fermi liquid behavior of epsilon-iron at high pressure,” J. Phys. Condens. Matter 16, S1121-S1127 (2004).
[CrossRef]

D. Jaccard, A. T. Holmes, G. Behr, Y. Inada, and Y. Onuki, “Superconductivity of epsilon-Fe: complete resistive transition,” Phys. Lett. A 299, 282-286 (2002).
[CrossRef]

Jeanloz, R.

D. L. Heinz and R. Jeanloz, “Measurement of the melting curve of Mg0.9Fe0.1SiO3 at lower mantle conditions and its geophysical implications,” J. Geophys. Res. 92, 11437-11444 (1987).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals--Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phy. Rev. B 9, 5056-5070 (1974).
[CrossRef]

Kannewurf, C. R.

M. T. Ratajack, C. R. Kannewurf, J. F. Revelli, and J. B. Wagner, “Infrared reflectance spectra and dispersion studies of iron-intercalated zirconium diselenide,” Phys. Rev. B 17, 4674-4679 (1978).
[CrossRef]

Keller, O.

Kot, E.

N. Nissim, S. Eliezer, L. Bakshi, L. Perelmutter, D. Moreno, E. Kot, G. K. Rozenberg, and M. P. Pasternak, “High-pressure phase transition detection in diamond anvil cell using the method of ellipsometry,” J. Appl. Phys. 102, 106104 (2007).
[CrossRef]

Krishnan, S.

S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55, 8201-8206 (1997).
[CrossRef]

S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55, 8201-8206 (1997).
[CrossRef]

Long, L. L.

Long, L. L. J.

Lynch, D. W.

J. H. Weaver, E. Colavita, D. W. Lynch, and R. Rosei, “Low energy interband absorption in bcc Fe and hcp Co,” Phys. Rev. B 19, 3850-3856 (1979).
[CrossRef]

Mao, H. K.

S. Merkel, H. R. Wenk, P. Gillet, H. K. Mao, and R. J. Hemley, “Deformation of polycrystalline iron up to 30 GPa and 1000 K,” Phys. Earth Planet. Inter. 145, 239-251 (2004).
[CrossRef]

R. J. Hemley, H. K. Mao, G. Y. Shen, J. Badro, P. Gillet, M. Hanfland, and D. Hausermann, “X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures,” Science 276, 1242-1245 (1997).
[CrossRef]

Merkel, S.

S. Merkel, H. R. Wenk, P. Gillet, H. K. Mao, and R. J. Hemley, “Deformation of polycrystalline iron up to 30 GPa and 1000 K,” Phys. Earth Planet. Inter. 145, 239-251 (2004).
[CrossRef]

Moreno, D.

N. Nissim, S. Eliezer, L. Bakshi, L. Perelmutter, D. Moreno, E. Kot, G. K. Rozenberg, and M. P. Pasternak, “High-pressure phase transition detection in diamond anvil cell using the method of ellipsometry,” J. Appl. Phys. 102, 106104 (2007).
[CrossRef]

Nellis, W. J.

A. D. Chijioke, W. J. Nellis, A. Soldatov, and I. F. Silvera, “The ruby pressure standard to 150 GPa,” J. Appl. Phys. 98, 114905 (2005).
[CrossRef]

Nestell, J. E.

J. E. Nestell and R. W. Christy, “Optical conductivity of bcc transition metals--V, Nb, Ta, Cr, Mo, W,” Phys. Rev. B 21, 3173-3179 (1980).
[CrossRef]

Newquist, L. A.

Nissim, N.

N. Nissim, S. Eliezer, L. Bakshi, L. Perelmutter, D. Moreno, E. Kot, G. K. Rozenberg, and M. P. Pasternak, “High-pressure phase transition detection in diamond anvil cell using the method of ellipsometry,” J. Appl. Phys. 102, 106104 (2007).
[CrossRef]

Nordine, P. C.

S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55, 8201-8206 (1997).
[CrossRef]

S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55, 8201-8206 (1997).
[CrossRef]

Onuki, Y.

A. T. Holmes, D. Jaccard, G. Behr, Y. Inada, and Y. Onuki, “Unconventional superconductivity and non-Fermi liquid behavior of epsilon-iron at high pressure,” J. Phys. Condens. Matter 16, S1121-S1127 (2004).
[CrossRef]

D. Jaccard, A. T. Holmes, G. Behr, Y. Inada, and Y. Onuki, “Superconductivity of epsilon-Fe: complete resistive transition,” Phys. Lett. A 299, 282-286 (2002).
[CrossRef]

Ordal, M. A.

Pasternak, M. P.

N. Nissim, S. Eliezer, L. Bakshi, L. Perelmutter, D. Moreno, E. Kot, G. K. Rozenberg, and M. P. Pasternak, “High-pressure phase transition detection in diamond anvil cell using the method of ellipsometry,” J. Appl. Phys. 102, 106104 (2007).
[CrossRef]

Pedersen, K.

Perelmutter, L.

N. Nissim, S. Eliezer, L. Bakshi, L. Perelmutter, D. Moreno, E. Kot, G. K. Rozenberg, and M. P. Pasternak, “High-pressure phase transition detection in diamond anvil cell using the method of ellipsometry,” J. Appl. Phys. 102, 106104 (2007).
[CrossRef]

Querry, M. R.

Ratajack, M. T.

M. T. Ratajack, C. R. Kannewurf, J. F. Revelli, and J. B. Wagner, “Infrared reflectance spectra and dispersion studies of iron-intercalated zirconium diselenide,” Phys. Rev. B 17, 4674-4679 (1978).
[CrossRef]

Revelli, J. F.

M. T. Ratajack, C. R. Kannewurf, J. F. Revelli, and J. B. Wagner, “Infrared reflectance spectra and dispersion studies of iron-intercalated zirconium diselenide,” Phys. Rev. B 17, 4674-4679 (1978).
[CrossRef]

Roessler, D. M.

D. M. Roessler, “Kramers-Kronig Analysis of Reflection Data,” Br. J. Appl. Phys. 16, 1119-1123 (1965).
[CrossRef]

Rosei, R.

J. H. Weaver, E. Colavita, D. W. Lynch, and R. Rosei, “Low energy interband absorption in bcc Fe and hcp Co,” Phys. Rev. B 19, 3850-3856 (1979).
[CrossRef]

Rozenberg, G. K.

N. Nissim, S. Eliezer, L. Bakshi, L. Perelmutter, D. Moreno, E. Kot, G. K. Rozenberg, and M. P. Pasternak, “High-pressure phase transition detection in diamond anvil cell using the method of ellipsometry,” J. Appl. Phys. 102, 106104 (2007).
[CrossRef]

Shen, G. Y.

R. J. Hemley, H. K. Mao, G. Y. Shen, J. Badro, P. Gillet, M. Hanfland, and D. Hausermann, “X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures,” Science 276, 1242-1245 (1997).
[CrossRef]

Silvera, I. F.

A. D. Chijioke, W. J. Nellis, A. Soldatov, and I. F. Silvera, “The ruby pressure standard to 150 GPa,” J. Appl. Phys. 98, 114905 (2005).
[CrossRef]

Soldatov, A.

A. D. Chijioke, W. J. Nellis, A. Soldatov, and I. F. Silvera, “The ruby pressure standard to 150 GPa,” J. Appl. Phys. 98, 114905 (2005).
[CrossRef]

Stook, P. W.

W. A. Bassett, T. Takahash, and P. W. Stook, “X-ray diffraction and optical observations on crystalline solids up to 300 Kbar,” Rev. Sci. Instrum. 38, 37-42 (1967).
[CrossRef]

Syassen, K.

M. Hanfland, M. Alouani, K. Syassen, and N. E. Christensen, “Optical properties of metallic silicon,” Phys. Rev. B 38, 12864-12867 (1988).
[CrossRef]

Takahash, T.

W. A. Bassett, T. Takahash, and P. W. Stook, “X-ray diffraction and optical observations on crystalline solids up to 300 Kbar,” Rev. Sci. Instrum. 38, 37-42 (1967).
[CrossRef]

Taylor, J. E.

Tokumoto, M.

M. Tokumoto and H. D. Drew, “Optical absorption of Mo-based alloys,” Phys. Rev. B 30, 4322-4328 (1984).
[CrossRef]

Wagner, J. B.

M. T. Ratajack, C. R. Kannewurf, J. F. Revelli, and J. B. Wagner, “Infrared reflectance spectra and dispersion studies of iron-intercalated zirconium diselenide,” Phys. Rev. B 17, 4674-4679 (1978).
[CrossRef]

Wang, F. M.

F. M. Wang and R. Ingalls, “Iron bcc-hcp transition: local structure from x-ray-absorption fine structure,” Phys. Rev. B 57, 5647-5654 (1998).
[CrossRef]

Ward, C. A.

Weaver, J. H.

J. H. Weaver, E. Colavita, D. W. Lynch, and R. Rosei, “Low energy interband absorption in bcc Fe and hcp Co,” Phys. Rev. B 19, 3850-3856 (1979).
[CrossRef]

Wenk, H. R.

S. Merkel, H. R. Wenk, P. Gillet, H. K. Mao, and R. J. Hemley, “Deformation of polycrystalline iron up to 30 GPa and 1000 K,” Phys. Earth Planet. Inter. 145, 239-251 (2004).
[CrossRef]

Yugawa, K. J.

S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55, 8201-8206 (1997).
[CrossRef]

S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55, 8201-8206 (1997).
[CrossRef]

Appl. Opt. (5)

Astron. Astrophys. (1)

J. Fischera, “On the thermal behaviour of small iron grains,” Astron. Astrophys. 428, 99-108 (2004).
[CrossRef]

Br. J. Appl. Phys. (1)

D. M. Roessler, “Kramers-Kronig Analysis of Reflection Data,” Br. J. Appl. Phys. 16, 1119-1123 (1965).
[CrossRef]

J. Appl. Phys. (2)

A. D. Chijioke, W. J. Nellis, A. Soldatov, and I. F. Silvera, “The ruby pressure standard to 150 GPa,” J. Appl. Phys. 98, 114905 (2005).
[CrossRef]

N. Nissim, S. Eliezer, L. Bakshi, L. Perelmutter, D. Moreno, E. Kot, G. K. Rozenberg, and M. P. Pasternak, “High-pressure phase transition detection in diamond anvil cell using the method of ellipsometry,” J. Appl. Phys. 102, 106104 (2007).
[CrossRef]

J. Geophys. Res. (1)

D. L. Heinz and R. Jeanloz, “Measurement of the melting curve of Mg0.9Fe0.1SiO3 at lower mantle conditions and its geophysical implications,” J. Geophys. Res. 92, 11437-11444 (1987).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Condens. Matter (1)

A. T. Holmes, D. Jaccard, G. Behr, Y. Inada, and Y. Onuki, “Unconventional superconductivity and non-Fermi liquid behavior of epsilon-iron at high pressure,” J. Phys. Condens. Matter 16, S1121-S1127 (2004).
[CrossRef]

Phy. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of transition metals--Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phy. Rev. B 9, 5056-5070 (1974).
[CrossRef]

Phys. Earth Planet. Inter. (1)

S. Merkel, H. R. Wenk, P. Gillet, H. K. Mao, and R. J. Hemley, “Deformation of polycrystalline iron up to 30 GPa and 1000 K,” Phys. Earth Planet. Inter. 145, 239-251 (2004).
[CrossRef]

Phys. Lett. A (1)

D. Jaccard, A. T. Holmes, G. Behr, Y. Inada, and Y. Onuki, “Superconductivity of epsilon-Fe: complete resistive transition,” Phys. Lett. A 299, 282-286 (2002).
[CrossRef]

Phys. Rev. B (8)

S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55, 8201-8206 (1997).
[CrossRef]

S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55, 8201-8206 (1997).
[CrossRef]

J. E. Nestell and R. W. Christy, “Optical conductivity of bcc transition metals--V, Nb, Ta, Cr, Mo, W,” Phys. Rev. B 21, 3173-3179 (1980).
[CrossRef]

M. T. Ratajack, C. R. Kannewurf, J. F. Revelli, and J. B. Wagner, “Infrared reflectance spectra and dispersion studies of iron-intercalated zirconium diselenide,” Phys. Rev. B 17, 4674-4679 (1978).
[CrossRef]

M. Tokumoto and H. D. Drew, “Optical absorption of Mo-based alloys,” Phys. Rev. B 30, 4322-4328 (1984).
[CrossRef]

J. H. Weaver, E. Colavita, D. W. Lynch, and R. Rosei, “Low energy interband absorption in bcc Fe and hcp Co,” Phys. Rev. B 19, 3850-3856 (1979).
[CrossRef]

M. Hanfland, M. Alouani, K. Syassen, and N. E. Christensen, “Optical properties of metallic silicon,” Phys. Rev. B 38, 12864-12867 (1988).
[CrossRef]

F. M. Wang and R. Ingalls, “Iron bcc-hcp transition: local structure from x-ray-absorption fine structure,” Phys. Rev. B 57, 5647-5654 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

W. A. Bassett, T. Takahash, and P. W. Stook, “X-ray diffraction and optical observations on crystalline solids up to 300 Kbar,” Rev. Sci. Instrum. 38, 37-42 (1967).
[CrossRef]

Science (1)

R. J. Hemley, H. K. Mao, G. Y. Shen, J. Badro, P. Gillet, M. Hanfland, and D. Hausermann, “X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures,” Science 276, 1242-1245 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Optical image of the sample with the IR window. The window is 50 × 50 μm and is centered on the sample chamber. The diameter is 300 μm (culet of the diamond). The outline of the iron foil sample can be seen near the culet edge.

Fig. 2
Fig. 2

Reflectivity of iron at 1 bar measured in this study compared to the results of Ordal et al. [1]. Differences in the preferred orientations of the grains in the two samples are the likely cause of the discrepancy.

Fig. 3
Fig. 3

Reflectivity of the iron–diamond interface. The numbers in the legend refer to the pressures in GPa. The bcc to hcp phase transition is observed to occur around 16 GPa . Selected data points are marked for clarity.

Fig. 4
Fig. 4

Real (n) and imaginary (k) parts of the refractive index of iron as a function of pressure at 2.0 μm ( 5000 cm 1 ).

Fig. 5
Fig. 5

(a) Data, fit, and result of the Kramers– Kronig analysis for the reflectivity of iron at 35.5 GPa . The inset shows the same data on a linear scale. The estimated uncertainty on the vacuum reflectivity is 27%. (b) Real and imaginary parts of the complex index of refraction derived from the Kramers–Kronig analysis at 35.5 GPa . The estimated uncertainties on n and k are 25% and 10%, respectively.

Fig. 6
Fig. 6

(a) Real and imaginary parts of the optical conductivity of iron at 35.5 GPa . The estimated uncertainties on σ 1 and σ 2 are 27% and 19%, respectively. (b) Real and imaginary parts of the dielectric constant of iron at 35.5 GPa . The estimated uncertainties on ϵ 1 and ϵ 2 are 29% and 27%, respectively.

Fig. 7
Fig. 7

Emissivity of iron. The values of pressure are omitted for clarity; pressure increases from bottom to top. The lowest values for emissivity are for α - Fe at 1 GPa , and the highest are for α - Fe at 50 GPa .

Fig. 8
Fig. 8

Slope of the emissivity of iron in the 1.5 19 μm range as a function of pressure. A slope of zero corresponds to an ideal greybody.

Fig. 9
Fig. 9

Errors associated with the greybody assumption for spectroradiometric temperature measurements of α and ϵ - Fe . See text for details.

Tables (1)

Tables Icon

Table 1 Coefficients for the Fit to the Emissivity Data (See Eq. (8)) a

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I d = I 0 R d ,
I e = I 0 R d ( 1 - R d ) 2 ( 1 - A ) 2 ,
I s d = I 0 R s d ( 1 - R d ) 2 ( 1 - A ) 2 ,
R s d = I s d I e I d I 0 .
ϕ r ( ω ) = ω π 0 ln { R ( ω ) } - ln { R ( ω ) } ω 2 ω 2 d ω .
R s d = ( n d - n ) 2 + k 2 ( n d + n ) 2 + k 2 ,
tan ( ϕ r ) = 2 k n d n d 2 n 2 k 2 ,
ε ( λ , P ) = m λ + b 1 P 2 + b 2 P + b 3 ,

Metrics