Abstract

We infiltrate photonic crystal fibers with a negative dielectric anisotropy liquid crystal. A 396nm bandgap shift is obtained in the temperature range of 2280°C, and a 67nm shift of long-wavelength bandgap edge is achieved by applying a voltage of 200Vrms. The polarization sensitivity and corresponding activation loss are measured using polarized light and a full broadband polarization control setup. The electrically induced phase shift on the Poincaré sphere and corresponding birefringence change are also measured. According to the results, tunable wave plates working in the wavelength range of 15201580nm and a potential for realizing a polarimeter working at the 1310nm region are experimentally demonstrated.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  2. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698-713 (2001).
    [CrossRef] [PubMed]
  3. C. Kerbage and B. J. Eggleton, “Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,” Opt. Express 10, 246-255 (2002).
    [PubMed]
  4. F. Du, Y. Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181-2183(2004).
    [CrossRef]
  5. R. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, and B. J. Eggleton, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, A. Sawchuk, ed., (Optical Society of America, 2002), Vol. 70 of OSA Trends in Optics and Photonics, paper ThK3.
    [CrossRef]
  6. T. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibers,” Opt. Express 11, 2589-2596 (2003).
    [CrossRef] [PubMed]
  7. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S.-T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12, 5857-5871 (2004).
    [CrossRef] [PubMed]
  8. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 819-821 (2005).
    [CrossRef]
  9. L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483-7496 (2005).
    [CrossRef] [PubMed]
  10. T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985-991 (2006).
    [CrossRef]
  11. D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, “Tunable highly birefringent bandgap-guiding liquid-crystal microstructured fibers,” J. Lightwave Technol. 24, 3427-3432(2006).
    [CrossRef]
  12. D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15, 7901-7912 (2007).
    [CrossRef] [PubMed]
  13. T. T. Alkeskjold and A. Bjarklev, “Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter,” Opt. Lett. 32, 1707-1709 (2007).
    [CrossRef] [PubMed]
  14. D. Noordegraaf, L. Scolari, J. Lægsgaard, T. T. Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S.-T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33, 986-988 (2008).
    [CrossRef] [PubMed]
  15. J. Li, C. -H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” IEEE OSA J. Disp. Technol. 1, 51-61 (2005).
    [CrossRef]
  16. J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19-24(2004).
    [CrossRef]

2008 (1)

2007 (2)

2006 (2)

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, “Tunable highly birefringent bandgap-guiding liquid-crystal microstructured fibers,” J. Lightwave Technol. 24, 3427-3432(2006).
[CrossRef]

2005 (3)

J. Li, C. -H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” IEEE OSA J. Disp. Technol. 1, 51-61 (2005).
[CrossRef]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 819-821 (2005).
[CrossRef]

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483-7496 (2005).
[CrossRef] [PubMed]

2004 (3)

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S.-T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12, 5857-5871 (2004).
[CrossRef] [PubMed]

F. Du, Y. Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181-2183(2004).
[CrossRef]

J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19-24(2004).
[CrossRef]

2003 (2)

2002 (1)

2001 (1)

Alkeskjold, T. T.

Anawati, A.

Bassi, P.

Bise, R.

R. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, and B. J. Eggleton, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, A. Sawchuk, ed., (Optical Society of America, 2002), Vol. 70 of OSA Trends in Optics and Photonics, paper ThK3.
[CrossRef]

Bjarklev, A.

Borelli, E.

Broeng, J.

Dabrowski, R.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Domanski, A. W.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Du, F.

F. Du, Y. Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181-2183(2004).
[CrossRef]

Eggleton, B. J.

C. Kerbage and B. J. Eggleton, “Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,” Opt. Express 10, 246-255 (2002).
[PubMed]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

R. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, and B. J. Eggleton, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, A. Sawchuk, ed., (Optical Society of America, 2002), Vol. 70 of OSA Trends in Optics and Photonics, paper ThK3.
[CrossRef]

Engan, H. E.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 819-821 (2005).
[CrossRef]

Ertman, S.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Gauza, S.

J. Li, C. -H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” IEEE OSA J. Disp. Technol. 1, 51-61 (2005).
[CrossRef]

J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19-24(2004).
[CrossRef]

Haakestad, M. W.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 819-821 (2005).
[CrossRef]

Hale, A.

Hermann, D.

Kerbage, C.

C. Kerbage and B. J. Eggleton, “Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,” Opt. Express 10, 246-255 (2002).
[PubMed]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

R. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, and B. J. Eggleton, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, A. Sawchuk, ed., (Optical Society of America, 2002), Vol. 70 of OSA Trends in Optics and Photonics, paper ThK3.
[CrossRef]

Kranz, K. S.

R. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, and B. J. Eggleton, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, A. Sawchuk, ed., (Optical Society of America, 2002), Vol. 70 of OSA Trends in Optics and Photonics, paper ThK3.
[CrossRef]

Kriezis, E. E.

Lægsgaard, J.

Larsen, T. T.

Lesiak, P.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Li, J.

Lu, R.

J. Li, C. -H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” IEEE OSA J. Disp. Technol. 1, 51-61 (2005).
[CrossRef]

Lu, Y. Q.

F. Du, Y. Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181-2183(2004).
[CrossRef]

Nielsen, M.

Nielsen, M. D.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 819-821 (2005).
[CrossRef]

Noordegraaf, D.

Nowinowski-Kruszelnicki, E.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Riishede, J.

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483-7496 (2005).
[CrossRef] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 819-821 (2005).
[CrossRef]

Rindorf, L.

Russell, P. St. J.

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Scolari, L.

Szaniawska, K.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Tartarini, G.

Tsiboukis, T. D.

Wen, C. -H.

J. Li, C. -H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” IEEE OSA J. Disp. Technol. 1, 51-61 (2005).
[CrossRef]

Westbrook, P. S.

Windeler, R.

Windeler, R. S.

R. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, and B. J. Eggleton, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, A. Sawchuk, ed., (Optical Society of America, 2002), Vol. 70 of OSA Trends in Optics and Photonics, paper ThK3.
[CrossRef]

Wojcik, J.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Wolinski, T. R.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Wu, S.-T.

D. Noordegraaf, L. Scolari, J. Lægsgaard, T. T. Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S.-T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33, 986-988 (2008).
[CrossRef] [PubMed]

J. Li, C. -H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” IEEE OSA J. Disp. Technol. 1, 51-61 (2005).
[CrossRef]

J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19-24(2004).
[CrossRef]

F. Du, Y. Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181-2183(2004).
[CrossRef]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S.-T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12, 5857-5871 (2004).
[CrossRef] [PubMed]

Zografopoulos, D. C.

Appl. Phys. Lett. (1)

F. Du, Y. Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181-2183(2004).
[CrossRef]

IEEE OSA J. Disp. Technol. (1)

J. Li, C. -H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” IEEE OSA J. Disp. Technol. 1, 51-61 (2005).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 819-821 (2005).
[CrossRef]

J. Appl. Phys. (1)

J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19-24(2004).
[CrossRef]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (1)

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Science (1)

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Other (1)

R. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, and B. J. Eggleton, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, A. Sawchuk, ed., (Optical Society of America, 2002), Vol. 70 of OSA Trends in Optics and Photonics, paper ThK3.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Three types of alignment of LCs: (a) planar alignment, (b)  45 ° splayed alignment, and (c)  90 ° splayed alignment.

Fig. 2
Fig. 2

Transmission spectrum of LMA-13 filled with 20 mm MLC-6608 for different temperatures. The inset shows the tunability of this notch in the temperature range of 22 80 ° C .

Fig. 3
Fig. 3

Transmission spectrum of LMA-13 filled with 20 mm MLC-6608 for different voltages at 30 ° C . The inset shows the shift of the long-wavelength bandgap edge ( Δ λ ) measured at 10 dB below the peak as a function of voltage at 30 ° C .

Fig. 4
Fig. 4

PDL of LMA-13 filled with 20 mm MLC-6608 at (a) 1310 and (b)  1550 nm as a function of voltage for different temperatures. The insets show the AL at (a) 1310 and (b)  1550 nm as a function of voltage for different temperatures.

Fig. 5
Fig. 5

Phase shift on the Poincaré sphere when a driving voltage of (a) 0, (b) 60, (c) 120, and (d)  180 Vrms is applied to LMA-13 filled with 20 mm MLC-6608 at 30 ° C by launching 1550 nm polarized laser light. The red line represents the polarization states in the near part of the sphere, and the blue line represents the polarization states on the opposite side of the sphere.

Fig. 6
Fig. 6

Electrically induced phase shift of LMA-13 filled with MLC-6608 for different voltages at 30 ° C .

Fig. 7
Fig. 7

Electrically induced phase shift of LMA-13 filled with MLC-6608 for different voltages at (a)  35 ° C and (b)  40 ° C .

Fig. 8
Fig. 8

Phase shift of LMA-13 filled with MLC-6608 as a function of wavelength for realizing quarter- and half-wave plates at different temperatures by applying a certain voltage. The dotted curve represents the 180 ° phase shift necessary for a half-wave plate, and the solid curve represents the 90 ° phase shift necessary for a quarter-wave plate among the working wavelength range of 1520 1580 nm .

Fig. 9
Fig. 9

Driving voltage of LMA-13 filled with MLC-6608 as a function of wavelength for realizing quarter- and half-wave plates at different temperatures.

Metrics