Abstract

The use of a whispering gallery mode (WGM) resonator with an ultrahigh quality factor Q is promising in highly sensitive, label-free, lab-on-a-chip sensor applications. We investigated a novel method of using the differential frequency of TE and TM modes to reduce the thermal noise baseline, which commonly limits the sensitivity of WGM sensors. We studied the temperature dependence of WGM based sensors and experimentally demonstrated the reduction of temperature fluctuation and thus a significant improvement in the practical sensor detection limit.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes. Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006).
    [CrossRef]
  2. C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134-142 (2006).
    [CrossRef]
  3. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059(2002).
    [CrossRef]
  4. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering gallery modes in microsphere by protein adsorption,” Opt. Lett. 28, 272-274 (2003).
    [CrossRef] [PubMed]
  5. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
    [CrossRef]
  6. A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30, 3344-3346 (2005).
    [CrossRef]
  7. V. Zamora, A. Diez, M. V. Andres, and B. Gimeno, “Refractometric sensor based on whispering-gallery modes of thin capillaries,” Opt. Express 15, 12011-12016 (2007).
    [CrossRef] [PubMed]
  8. R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt. 40, 5742-5747 (2001).
    [CrossRef]
  9. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
    [CrossRef] [PubMed]
  10. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
    [CrossRef]
  11. J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonators,” Appl. Opt. 46, 389-396 (2007).
    [CrossRef] [PubMed]
  12. A. A. Savchenko, A. B. Matsko, V. S. Ilchenko, N. Yu, and L. Maleki, “Whispering-gallery-mode resonators as frequency references. II. Stabilization,” J. Opt. Soc. Am. B 24, 2988-2997 (2007).
    [CrossRef]
  13. Melles Griot, http://optics.mellesgriot.com/opguide/mp_3_2.htm.
  14. C. C. Lam, P. T. Leung, and K. Young, “Explicit asymptotic formulas for positions, widths and strengths of resonances in Mie scattering,” J. Opt. Soc. Am. B 9, 1585-1592 (1992).
    [CrossRef]
  15. T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high Q whispering-gallery resonators,” IEEE Photonics Technol. Lett. 18, 859-861 (2006).
    [CrossRef]
  16. Z. Weissman, E. Brand, I. Tsimberov, D. Brook, and S. Ruschin, “Mach-Zehnder, type, evanescent wave sensor, using periodically segmented waveguide,” Laser and Electro-Optics Society Annual Meeting, 1998, LEOS'98 (IEEE, 1998), Vol. 2, pp. 85-86.
  17. J. L. Remo, “Reduced-noise-displacement measurements with a correlated differential photodiode sensors,” Appl. Opt. 36, 5488-5493 (1997).
    [CrossRef] [PubMed]

2007 (4)

2006 (3)

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high Q whispering-gallery resonators,” IEEE Photonics Technol. Lett. 18, 859-861 (2006).
[CrossRef]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes. Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006).
[CrossRef]

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134-142 (2006).
[CrossRef]

2005 (3)

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30, 3344-3346 (2005).
[CrossRef]

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

2003 (1)

2002 (1)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059(2002).
[CrossRef]

2001 (1)

1997 (1)

1992 (1)

Andres, M. V.

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Arnold, S.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering gallery modes in microsphere by protein adsorption,” Opt. Lett. 28, 272-274 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059(2002).
[CrossRef]

Boyd, R. W.

Brand, E.

Z. Weissman, E. Brand, I. Tsimberov, D. Brook, and S. Ruschin, “Mach-Zehnder, type, evanescent wave sensor, using periodically segmented waveguide,” Laser and Electro-Optics Society Annual Meeting, 1998, LEOS'98 (IEEE, 1998), Vol. 2, pp. 85-86.

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059(2002).
[CrossRef]

Brook, D.

Z. Weissman, E. Brand, I. Tsimberov, D. Brook, and S. Ruschin, “Mach-Zehnder, type, evanescent wave sensor, using periodically segmented waveguide,” Laser and Electro-Optics Society Annual Meeting, 1998, LEOS'98 (IEEE, 1998), Vol. 2, pp. 85-86.

Chao, C. Y.

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134-142 (2006).
[CrossRef]

Diez, A.

Fan, X.

J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonators,” Appl. Opt. 46, 389-396 (2007).
[CrossRef] [PubMed]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Fung, W.

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134-142 (2006).
[CrossRef]

Gimeno, B.

Griot, Melles

Melles Griot, http://optics.mellesgriot.com/opguide/mp_3_2.htm.

Guo, L. J.

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134-142 (2006).
[CrossRef]

Hanumegowda, N. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Heebner, J. E.

Holler, S.

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Ilchenko, V. S.

A. A. Savchenko, A. B. Matsko, V. S. Ilchenko, N. Yu, and L. Maleki, “Whispering-gallery-mode resonators as frequency references. II. Stabilization,” J. Opt. Soc. Am. B 24, 2988-2997 (2007).
[CrossRef]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes. Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006).
[CrossRef]

Khoshsima, M.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering gallery modes in microsphere by protein adsorption,” Opt. Lett. 28, 272-274 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059(2002).
[CrossRef]

Ksendzov, A.

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Lam, C. C.

Le, T.

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high Q whispering-gallery resonators,” IEEE Photonics Technol. Lett. 18, 859-861 (2006).
[CrossRef]

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Leung, P. T.

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059(2002).
[CrossRef]

Lin, Y.

Maleki, L.

A. A. Savchenko, A. B. Matsko, V. S. Ilchenko, N. Yu, and L. Maleki, “Whispering-gallery-mode resonators as frequency references. II. Stabilization,” J. Opt. Soc. Am. B 24, 2988-2997 (2007).
[CrossRef]

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high Q whispering-gallery resonators,” IEEE Photonics Technol. Lett. 18, 859-861 (2006).
[CrossRef]

Matsko, A. B.

A. A. Savchenko, A. B. Matsko, V. S. Ilchenko, N. Yu, and L. Maleki, “Whispering-gallery-mode resonators as frequency references. II. Stabilization,” J. Opt. Soc. Am. B 24, 2988-2997 (2007).
[CrossRef]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes. Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006).
[CrossRef]

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Remo, J. L.

Ruschin, S.

Z. Weissman, E. Brand, I. Tsimberov, D. Brook, and S. Ruschin, “Mach-Zehnder, type, evanescent wave sensor, using periodically segmented waveguide,” Laser and Electro-Optics Society Annual Meeting, 1998, LEOS'98 (IEEE, 1998), Vol. 2, pp. 85-86.

Savchenko, A. A.

Savchenkov, A. A.

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high Q whispering-gallery resonators,” IEEE Photonics Technol. Lett. 18, 859-861 (2006).
[CrossRef]

Steier, W. H.

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high Q whispering-gallery resonators,” IEEE Photonics Technol. Lett. 18, 859-861 (2006).
[CrossRef]

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Suter, J. D.

Tazawa, H.

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high Q whispering-gallery resonators,” IEEE Photonics Technol. Lett. 18, 859-861 (2006).
[CrossRef]

Teraoka, I.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering gallery modes in microsphere by protein adsorption,” Opt. Lett. 28, 272-274 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059(2002).
[CrossRef]

Tsimberov, I.

Z. Weissman, E. Brand, I. Tsimberov, D. Brook, and S. Ruschin, “Mach-Zehnder, type, evanescent wave sensor, using periodically segmented waveguide,” Laser and Electro-Optics Society Annual Meeting, 1998, LEOS'98 (IEEE, 1998), Vol. 2, pp. 85-86.

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Vollmer, F.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering gallery modes in microsphere by protein adsorption,” Opt. Lett. 28, 272-274 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059(2002).
[CrossRef]

Weissman, Z.

Z. Weissman, E. Brand, I. Tsimberov, D. Brook, and S. Ruschin, “Mach-Zehnder, type, evanescent wave sensor, using periodically segmented waveguide,” Laser and Electro-Optics Society Annual Meeting, 1998, LEOS'98 (IEEE, 1998), Vol. 2, pp. 85-86.

White, I.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

White, I. M.

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Young, K.

Yu, N.

Zamora, V.

Zhu, H.

Appl. Opt. (3)

Appl. Phys. Lett. (3)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059(2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes. Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006).
[CrossRef]

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134-142 (2006).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high Q whispering-gallery resonators,” IEEE Photonics Technol. Lett. 18, 859-861 (2006).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Lett. (2)

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Other (2)

Melles Griot, http://optics.mellesgriot.com/opguide/mp_3_2.htm.

Z. Weissman, E. Brand, I. Tsimberov, D. Brook, and S. Ruschin, “Mach-Zehnder, type, evanescent wave sensor, using periodically segmented waveguide,” Laser and Electro-Optics Society Annual Meeting, 1998, LEOS'98 (IEEE, 1998), Vol. 2, pp. 85-86.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Resonance frequencies shift due to temperature fluctuation for individual TE or TM modes and the change of the differential frequency of two resonance modes. The theoretical calculation is based on a 1.6 mm diameter fused silica resonator with n = 1.444 at 1550 nm , for the case of angular mode l = 9331 and radial mode q = 1 : (a) the case of the surrounding medium being air, (b) the case of the surrounding medium being water.

Fig. 2
Fig. 2

Resonance frequencies shift due to the change in the refractive index of the surrounding medium for individual TE or TM modes and the change of the differential frequency of two resonance modes. The theoretical calculation is based on a 1.6 mm diameter fused silica resonator with n = 1.444 at 1550 nm for the case of angular mode l = 9331 and radial mode q = 1 : (a) the case of surrounding medium being air; (b) the case of the surrounding medium being air, but expanding the change of outside refractive index to 10 8 RIU; (c) the case of surrounding medium being water.

Fig. 3
Fig. 3

Experiment setup.

Fig. 4
Fig. 4

Plot represents theoretical calculation versus experimental data for the resonance shift of each individual TE and TM mode, and the change of the differential frequencies when the temperature is changed by 5 ° C (the experimental system consists of a fused silica resonator surrounded by air). Crosses, dots, and triangles correspond to TE and TM resonance shifts and the differences, respectively. The dash, dot, and solid curves are the theory prediction of individual TM and TE resonant frequency shifts and the difference. The uncertainty of the TM or TE resonance mode shift is ± 0.65 pm . The observed changes in the differential frequency were within the accuracy of our measurement setup ( ± 0.05 pm ). Theoretically, the differential resonance shift is about 0.001 pm when temperature is change 5 ° C .

Fig. 5
Fig. 5

Experimental data and the theory prediction. The changes in the outside refractive index were calculated for the three glucose solutions.

Fig. 6
Fig. 6

Output transmission spectrum when the detected samples are DI water, with glucose concentrations of 0.5   wt . % and 1   wt . % .

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δ f f | TE , TM = R T · 1 R Δ T + n eff T · 1 n eff Δ T .
n eff T = α out n eff n o + α n n eff n + α R n eff R ,
ω ν , q c 1 R n o [ ν m + α q m ( ν 2 ) 1 / 3 P m 2 1 + 3 α q 2 20 m ( 2 ν ) 1 / 3 + O ( ν 2 / 3 ) ] ,
n eff v q v c R ω v , q ,
Δ ω TE c | Temp 1 R ( n ( n 2 n o 2 ) 3 / 2 1 n 2 [ ν + α q ( ν 2 ) 1 / 3 + 3 α q 2 20 ( 2 ν ) 1 / 3 ] ) α n Δ T + 1 R ( n o ( n 2 n o 2 ) 3 / 2 ) α out Δ T ,
Δ ω TM c | Temp 1 R ( n o 2 ( 3 n 2 2 n o 2 ) n 3 ( n 2 n o 2 ) 3 / 2 1 n 2 [ ν + α q ( ν 2 ) 1 / 3 + 3 α q 2 20 ( 2 ν ) 1 / 3 ] ) α n Δ T + 1 R ( n o ( n 2 n o 2 ) 3 / 2 [ 2 n o 2 n 2 ] ) α out Δ T .
( Δ ω TE Δ ω TM ) c | Temp 1 R n ( 1 2 n o 2 n 2 n 2 n o 2 ) α n Δ T + 1 R n 2 ( n o n 2 n o 2 ) α out Δ T .
Δ ω TE c | n _ out 1 R n o Δ n o ( n 2 n o 2 ) 3 / 2 ,
Δ ω TM c | n _ out 1 R n o Δ n o ( n 2 n o 2 ) 3 / 2 ( 2 n o 2 n 2 ) .
( Δ ω TE Δ ω TM ) c | n _ out 1 R n 2 ( n o n 2 n o 2 ) Δ n o .

Metrics