Abstract

We present a method for measurement and reconstruction of light fields in finite spaces. Using a custom-made device called a plenopter, we can measure spatially and directionally varying radiance distribution functions from a real-world scene up to their second-order spherical harmonics approximations. Interpolating between measurement points, we can recover this function for arbitrary points of a scene. We visualized the global structure of the light field using light tubes, which gives an intuitive description of the flux propagation throughout three-dimensional scenes and provides information about the quality of light in the scenes. Our second-order reconstructions are sufficient to render convex matte objects and therefore have a direct interest for computer graphics applications.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription