Abstract

We design and manufacture a fused-silica polarization-independent two-port beam splitter grating. The physical mechanism of this deeply etched grating can be shown clearly by using the simplified modal method with consideration of corresponding accumulated phase difference of two excited propagating grating modes, which illustrates that the binary-phase fused-silica grating structure depends little on the incident wavelength, but mainly on the ratio of groove depth to grating period and the ratio of incident wavelength to grating period. These analytic results would also be very helpful for wavelength bandwidth analysis. The exact grating profile is optimized by using the rigorous coupled-wave analysis. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results agree well with the theoretical values.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kim, J. R. Birge, V. Sharma, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, “Ultrabroadband beam splitter with matched group-delay dispersion,” Opt. Lett. 30, 1569-1571(2005).
    [CrossRef] [PubMed]
  2. T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. Tünnermann, M. Jupé, and D. Ristau, “Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems,” Appl. Opt. 42, 6934-6938(2003).
    [CrossRef] [PubMed]
  3. J. Néauport, E. Journot, G. Gaborit, and P. Bouchut, “Design, optical characterization, and operation of large transmission gratings for the laser integration line and laser megajoule facilities,” Appl. Opt. 44, 3143-3152 (2005).
    [CrossRef] [PubMed]
  4. W. Jia, C. Zhou, J. Feng, and E. Dai, “Miniature pulse compressor of deep-etched gratings,” Appl. Opt. 47, 6058-6063(2008).
    [CrossRef] [PubMed]
  5. P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” J. Opt. A Pure Appl. Opt. 1, 215-219 (1999).
    [CrossRef]
  6. D. Delbeke, R. Baets, and P. Muys, “Polarization-selective beam splitter based on a highly efficient simple binary diffraction grating,” Appl. Opt. 43, 6157-6165 (2004).
    [CrossRef] [PubMed]
  7. B. Wang, C. Zhou, S. Wang, and J. Feng, “Polarizing beam splitter of a deep-etched fused-silica grating,” Opt. Lett. 32, 1299-1301 (2007).
    [CrossRef] [PubMed]
  8. R. Borghi, G. Cincotti, and M. Santarsiero, “Diffractive variable beam splitter: optimal design,” J. Opt. Soc. Am. A 17, 63-67 (2000).
    [CrossRef]
  9. S. Fahr, T. Clausnitzer, E.-B. Kley, and A. Tünnermann, “Reflective diffractive beam splitter for laser interferometers,” Appl. Opt. 46, 6092-6095 (2007).
    [CrossRef] [PubMed]
  10. B. Wang, C. Zhou, J. Feng, H. Ru, and J. Zheng, “Wideband two-port beam splitter of a binary fused-silica phase grating,” Appl. Opt. 47, 4004-4008 (2008).
    [CrossRef] [PubMed]
  11. I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981).
    [CrossRef]
  12. A. V. Tishchenko, “Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,” Opt. Quantum Electron. 37, 309-330 (2005).
    [CrossRef]
  13. T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, U. Peschel, A. V. Tishchenko, and O. Parriaux, “An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings,” Opt. Express 13, 10448-10456 (2005).
    [CrossRef] [PubMed]
  14. T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, A. Tishchenko, and O. Parriaux, “Investigation of the polarization-dependent diffraction of deep dielectric rectangular transmission gratings illuminated in Littrow mounting,” Appl. Opt. 46, 819-826 (2007).
    [CrossRef] [PubMed]
  15. J. Zheng, C. Zhou, J. Feng, and B. Wang, “Polarizing beam splitter of deep-etched triangular-groove fused-silica gratings,” Opt. Lett. 33, 1554-1556 (2008).
    [CrossRef] [PubMed]
  16. J. Feng, C. Zhou, J. Zheng, and B. Wang, “Modal analysis of deep-etched low-contrast two-port beam splitter grating,” Opt. Commun. 281, 5298-5301 (2008).
    [CrossRef]
  17. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068-1076 (1995).
    [CrossRef]
  18. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779-784 (1996).
    [CrossRef]
  19. S. Wang, C. Zhou, H. Ru, and Y. Zhang, “Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology,” Appl. Opt. 44, 4429-4434 (2005).
    [CrossRef] [PubMed]
  20. J. Feng, C. Zhou, B. Wang, J. Zheng, W. Jia, H. Cao, and P. Lv, “Three-port beam splitter of a binary fused-silica grating,” Appl. Opt. 47, 6638-6643 (2008).
    [CrossRef] [PubMed]

2008 (5)

2007 (3)

2005 (5)

2004 (1)

2003 (1)

2000 (1)

1999 (1)

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” J. Opt. A Pure Appl. Opt. 1, 215-219 (1999).
[CrossRef]

1996 (1)

1995 (1)

1981 (1)

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981).
[CrossRef]

Adams, J. L.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981).
[CrossRef]

Andrewartha, J. R.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981).
[CrossRef]

Angelow, G.

Baets, R.

Birge, J. R.

Borghi, R.

Botten, I. C.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981).
[CrossRef]

Bouchut, P.

Cambril, E.

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” J. Opt. A Pure Appl. Opt. 1, 215-219 (1999).
[CrossRef]

Cao, H.

Chavel, P.

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” J. Opt. A Pure Appl. Opt. 1, 215-219 (1999).
[CrossRef]

Cincotti, G.

Clausnitzer, T.

Craig, M. S.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981).
[CrossRef]

Dai, E.

Delbeke, D.

Fahr, S.

Feng, J.

Fuchs, H.-J.

Fujimoto, J. G.

Gaborit, G.

Gaylord, T. K.

Grann, E. B.

Hazart, J.

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” J. Opt. A Pure Appl. Opt. 1, 215-219 (1999).
[CrossRef]

Jia, W.

Journot, E.

Jupé, M.

Kämpfe, T.

Kärtner, F. X.

Kim, J.

Kley, E.-B.

Lalanne, P.

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” J. Opt. A Pure Appl. Opt. 1, 215-219 (1999).
[CrossRef]

P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779-784 (1996).
[CrossRef]

Launois, H.

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” J. Opt. A Pure Appl. Opt. 1, 215-219 (1999).
[CrossRef]

Limpert, J.

Lv, P.

McPhedran, R. C.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981).
[CrossRef]

Moharam, M. G.

Morris, G. M.

Muys, P.

Néauport, J.

Parriaux, O.

Peschel, U.

Pommet, D. A.

Ristau, D.

Ru, H.

Santarsiero, M.

Scheuer, V.

Sharma, V.

Tishchenko, A.

Tishchenko, A. V.

Tünnermann, A.

Wang, B.

Wang, S.

Zellmer, H.

Zhang, Y.

Zheng, J.

Zhou, C.

Zöllner, K.

Appl. Opt. (9)

T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. Tünnermann, M. Jupé, and D. Ristau, “Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems,” Appl. Opt. 42, 6934-6938(2003).
[CrossRef] [PubMed]

D. Delbeke, R. Baets, and P. Muys, “Polarization-selective beam splitter based on a highly efficient simple binary diffraction grating,” Appl. Opt. 43, 6157-6165 (2004).
[CrossRef] [PubMed]

J. Néauport, E. Journot, G. Gaborit, and P. Bouchut, “Design, optical characterization, and operation of large transmission gratings for the laser integration line and laser megajoule facilities,” Appl. Opt. 44, 3143-3152 (2005).
[CrossRef] [PubMed]

S. Wang, C. Zhou, H. Ru, and Y. Zhang, “Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology,” Appl. Opt. 44, 4429-4434 (2005).
[CrossRef] [PubMed]

T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, A. Tishchenko, and O. Parriaux, “Investigation of the polarization-dependent diffraction of deep dielectric rectangular transmission gratings illuminated in Littrow mounting,” Appl. Opt. 46, 819-826 (2007).
[CrossRef] [PubMed]

S. Fahr, T. Clausnitzer, E.-B. Kley, and A. Tünnermann, “Reflective diffractive beam splitter for laser interferometers,” Appl. Opt. 46, 6092-6095 (2007).
[CrossRef] [PubMed]

B. Wang, C. Zhou, J. Feng, H. Ru, and J. Zheng, “Wideband two-port beam splitter of a binary fused-silica phase grating,” Appl. Opt. 47, 4004-4008 (2008).
[CrossRef] [PubMed]

W. Jia, C. Zhou, J. Feng, and E. Dai, “Miniature pulse compressor of deep-etched gratings,” Appl. Opt. 47, 6058-6063(2008).
[CrossRef] [PubMed]

J. Feng, C. Zhou, B. Wang, J. Zheng, W. Jia, H. Cao, and P. Lv, “Three-port beam splitter of a binary fused-silica grating,” Appl. Opt. 47, 6638-6643 (2008).
[CrossRef] [PubMed]

J. Opt. A Pure Appl. Opt. (1)

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” J. Opt. A Pure Appl. Opt. 1, 215-219 (1999).
[CrossRef]

J. Opt. Soc. Am. A (3)

Opt. Acta (1)

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981).
[CrossRef]

Opt. Commun. (1)

J. Feng, C. Zhou, J. Zheng, and B. Wang, “Modal analysis of deep-etched low-contrast two-port beam splitter grating,” Opt. Commun. 281, 5298-5301 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

A. V. Tishchenko, “Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,” Opt. Quantum Electron. 37, 309-330 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustration of a polarization- independent beam splitter grating. n 1 and n 2 , refractive indices of air and fused-silica, respectively; Λ, grating period; b, ridge width; h, groove depth; θ 0 and θ 1 , diffraction angles of the zeroth and 1 st diffractive orders, respectively.

Fig. 2
Fig. 2

Contour of the effective indices differences ( n 0 eff n 1 eff ) versus duty cycle f and ratio of wavelength to grating period λ / Λ for (a) TM and (b) TE polarizations. (c) Contour of the ratio of effective indices differences for TM polarization to that for TE polarization.

Fig. 3
Fig. 3

Contour of the efficiency ratio between the 1 st and the zeroth diffractive orders versus grating period and groove depth for (a) TM and (b) TE polarizations.

Fig. 4
Fig. 4

Diffraction efficiency as a function of incident wavelength under Littrow mounting with (a)  Λ = 891 nm , h = 2.873 μm , f = 0.5 , and (b)  Λ = 890 nm , h = 4.053 μm , f = 0.903 .

Fig. 5
Fig. 5

Contour of the efficiency ratio between the 1 st and the zeroth diffractive orders versus duty cycle and groove depth for (a) TM and (b) TE polarizations, showing the fabrication tolerance of the designed beam splitter grating.

Fig. 6
Fig. 6

Scanning electron micrograph image of the manufactured grating.

Fig. 7
Fig. 7

Theoretical and experimental diffraction efficiencies of the manufactured grating at different incident angles for (a) TM polarization and (b) TE polarization.

Tables (1)

Tables Icon

Table 1 Corresponding Diffractive Efficiencies of Beam Splitter Gratings at Other Wavelengths for Both Polarizations with λ / Λ = 1.470 and h / Λ = 3.224 by the RCWA Method ( f = 0.5 )

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

η 0 = cos 2 Δ φ 2 ,
η 1 = sin 2 Δ φ 2 ,
Δ φ = ( n 0 eff n 1 eff ) k 0 h = 2 π ( n 0 eff n 1 eff ) h λ ,
Δ φ TM Δ φ TE = n 0 eff \_ TE n 1 eff \_ TE n 0 eff \_ TM n 1 eff \_ TM = 2 l 1 2 m 1 ,
cos [ k 1 ( 1 f ) Λ ] cos ( k 2 f Λ ) k 1 2 + k 2 2 2 k 1 k 2 sin [ k 1 ( 1 f ) Λ ] sin ( k 2 f Λ ) = cos ( α Λ ) ,
k i = k 0 n i 2 n eff 2
cos [ k 1 ( 1 f ) Λ ] cos ( k 2 f Λ ) n 2 4 k 1 2 + k 2 2 2 n 2 2 k 1 k 2 sin [ k 1 ( 1 f ) Λ ] sin ( k 2 f Λ ) = cos ( α Λ ) .
Δ φ = 2 π 1.472 ( n 0 eff n 1 eff ) h Λ .

Metrics