Abstract

A simple method for coupling a standard single-mode fiber and a capillary optical fiber is proposed based on the process of splicing and tapering at the fusion point between the two fibers. The coupling model is presented, and the theoretical prediction is confirmed by the experimental results.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1549 (1998).
    [CrossRef] [PubMed]
  2. A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modeling the fabrication of hollow fibers: capillary drawing,” J. Lightwave Technol. 19, 1924-1931 (2001).
    [CrossRef]
  3. J. C. Knight and P. St. J. Russell, “New ways to guide light,” Science 296, 276-277 (2002).
    [CrossRef] [PubMed]
  4. P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  5. J. Bravo, I. R. Matías, I. D. Villar, J. M. Corres, and F. J. Arregui, “Nanofilms on hollow core fiber-based structures: an optical study,” J. Lightwave Technol. 24, 2100-2107(2006).
    [CrossRef]
  6. B. K. Keller, M. D. DeGrandpre, and C. P. Palmer, “Waveguiding properties of fiber-optic capillaries for chemical sensing applications,” Sens. Actuators B 125, 360-371 (2007).
    [CrossRef]
  7. M. Ohtsu, “Progress of high-resolution photon scanning tunneling microscopy due to a nanometric fiber probe,” J. Lightwave Technol. 13, 1200-1221 (1995).
    [CrossRef]
  8. J. W. C. Pang and I. P. Bond, “A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility,” Compos. Sci. Technol. 65, 1791-1799 (2005).
    [CrossRef]
  9. C. Dry, “Self repairing composites for airplane components,” Proc. SPIE 6932, 693212 (2008).
    [CrossRef]
  10. S. Hayashi, A. Ishimizu, T. Tohei, and M. Tachikawa, “Parametric excitation of laser-guided Cs atoms in a hollow-core optical fiber,” Phys. Rev. A 68, 053408 (2003).
    [CrossRef]
  11. E. A. Nersesov, S. V. Popruzhenko, D. F. Zaretsky, and W. Becker, “The gain of high harmonics in an atomic jet and in a hollow-core fiber,” Opt. Commun. 183, 289-297(2000).
    [CrossRef]
  12. S. Choi, K. Oh, W. Shin, and U. C. Ryu, “A low loss mode converter based on the adiabatically tapered hollow optical fiber,” Electron. Lett. 37, 823-825 (2001).
    [CrossRef]
  13. S. Choi, T. J. Eom, J. W. Yu, B. H. Lee, and K. Oh, “Novel all-fiber bandpass filter based on hollow optical fiber,” IEEE Photon. Technol. Lett. 14, 1701-1703 (2002).
    [CrossRef]
  14. J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256-1263 (1995).
    [CrossRef]
  15. S. Tao, S. Gong, J. C. Fanguy, and X. Hu, “The application of a light guiding flexible tubular waveguide in evanescent wave absorption optical sensing,” Sens. Actuators B 120, 724-731 (2007).
    [CrossRef]
  16. W. Peng, G. R. Pickerel, F. Shen, and A. Wang, “Hollow fiber optic waveguide gas sensor for simultaneous monitoring of multiple gas species,” Proc. SPIE 5589, 1-7 (2004).
    [CrossRef]
  17. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, 1983), pp. 336-338.
    [CrossRef]
  18. W. Wang, J. Yin, W. Gao, Y. Zhu, and Y. Wang, “Fraunhofer and Fresnel field distributions from the LP01 mode in a micro-sized hollow optical fibre,” J. Mod. Opt. 45, 1899-1912(1998).
  19. C. Won, S. H. Yoo, K. Oh, U.-C. Paek, and W. Jhe, “Near-field diffraction by a hollow-core optical fiber,” Opt. Commun. 161, 25-30 (1999).
    [CrossRef]
  20. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432-438 (1992).
    [CrossRef]

2008 (1)

C. Dry, “Self repairing composites for airplane components,” Proc. SPIE 6932, 693212 (2008).
[CrossRef]

2007 (2)

B. K. Keller, M. D. DeGrandpre, and C. P. Palmer, “Waveguiding properties of fiber-optic capillaries for chemical sensing applications,” Sens. Actuators B 125, 360-371 (2007).
[CrossRef]

S. Tao, S. Gong, J. C. Fanguy, and X. Hu, “The application of a light guiding flexible tubular waveguide in evanescent wave absorption optical sensing,” Sens. Actuators B 120, 724-731 (2007).
[CrossRef]

2006 (1)

2005 (1)

J. W. C. Pang and I. P. Bond, “A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility,” Compos. Sci. Technol. 65, 1791-1799 (2005).
[CrossRef]

2004 (1)

W. Peng, G. R. Pickerel, F. Shen, and A. Wang, “Hollow fiber optic waveguide gas sensor for simultaneous monitoring of multiple gas species,” Proc. SPIE 5589, 1-7 (2004).
[CrossRef]

2003 (2)

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358-362 (2003).
[CrossRef] [PubMed]

S. Hayashi, A. Ishimizu, T. Tohei, and M. Tachikawa, “Parametric excitation of laser-guided Cs atoms in a hollow-core optical fiber,” Phys. Rev. A 68, 053408 (2003).
[CrossRef]

2002 (2)

S. Choi, T. J. Eom, J. W. Yu, B. H. Lee, and K. Oh, “Novel all-fiber bandpass filter based on hollow optical fiber,” IEEE Photon. Technol. Lett. 14, 1701-1703 (2002).
[CrossRef]

J. C. Knight and P. St. J. Russell, “New ways to guide light,” Science 296, 276-277 (2002).
[CrossRef] [PubMed]

2001 (2)

A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modeling the fabrication of hollow fibers: capillary drawing,” J. Lightwave Technol. 19, 1924-1931 (2001).
[CrossRef]

S. Choi, K. Oh, W. Shin, and U. C. Ryu, “A low loss mode converter based on the adiabatically tapered hollow optical fiber,” Electron. Lett. 37, 823-825 (2001).
[CrossRef]

2000 (1)

E. A. Nersesov, S. V. Popruzhenko, D. F. Zaretsky, and W. Becker, “The gain of high harmonics in an atomic jet and in a hollow-core fiber,” Opt. Commun. 183, 289-297(2000).
[CrossRef]

1999 (1)

C. Won, S. H. Yoo, K. Oh, U.-C. Paek, and W. Jhe, “Near-field diffraction by a hollow-core optical fiber,” Opt. Commun. 161, 25-30 (1999).
[CrossRef]

1998 (2)

W. Wang, J. Yin, W. Gao, Y. Zhu, and Y. Wang, “Fraunhofer and Fresnel field distributions from the LP01 mode in a micro-sized hollow optical fibre,” J. Mod. Opt. 45, 1899-1912(1998).

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1549 (1998).
[CrossRef] [PubMed]

1995 (2)

M. Ohtsu, “Progress of high-resolution photon scanning tunneling microscopy due to a nanometric fiber probe,” J. Lightwave Technol. 13, 1200-1221 (1995).
[CrossRef]

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256-1263 (1995).
[CrossRef]

1992 (1)

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

Arregui, F. J.

Becker, W.

E. A. Nersesov, S. V. Popruzhenko, D. F. Zaretsky, and W. Becker, “The gain of high harmonics in an atomic jet and in a hollow-core fiber,” Opt. Commun. 183, 289-297(2000).
[CrossRef]

Berkoff, T. A.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256-1263 (1995).
[CrossRef]

Birks, T. A.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1549 (1998).
[CrossRef] [PubMed]

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

Bond, I. P.

J. W. C. Pang and I. P. Bond, “A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility,” Compos. Sci. Technol. 65, 1791-1799 (2005).
[CrossRef]

Bravo, J.

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1549 (1998).
[CrossRef] [PubMed]

Choi, S.

S. Choi, T. J. Eom, J. W. Yu, B. H. Lee, and K. Oh, “Novel all-fiber bandpass filter based on hollow optical fiber,” IEEE Photon. Technol. Lett. 14, 1701-1703 (2002).
[CrossRef]

S. Choi, K. Oh, W. Shin, and U. C. Ryu, “A low loss mode converter based on the adiabatically tapered hollow optical fiber,” Electron. Lett. 37, 823-825 (2001).
[CrossRef]

Corres, J. M.

DeGrandpre, M. D.

B. K. Keller, M. D. DeGrandpre, and C. P. Palmer, “Waveguiding properties of fiber-optic capillaries for chemical sensing applications,” Sens. Actuators B 125, 360-371 (2007).
[CrossRef]

Dry, C.

C. Dry, “Self repairing composites for airplane components,” Proc. SPIE 6932, 693212 (2008).
[CrossRef]

Eom, T. J.

S. Choi, T. J. Eom, J. W. Yu, B. H. Lee, and K. Oh, “Novel all-fiber bandpass filter based on hollow optical fiber,” IEEE Photon. Technol. Lett. 14, 1701-1703 (2002).
[CrossRef]

Fanguy, J. C.

S. Tao, S. Gong, J. C. Fanguy, and X. Hu, “The application of a light guiding flexible tubular waveguide in evanescent wave absorption optical sensing,” Sens. Actuators B 120, 724-731 (2007).
[CrossRef]

Fitt, A. D.

Friebele, E. J.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256-1263 (1995).
[CrossRef]

Furusawa, K.

Gao, W.

W. Wang, J. Yin, W. Gao, Y. Zhu, and Y. Wang, “Fraunhofer and Fresnel field distributions from the LP01 mode in a micro-sized hollow optical fibre,” J. Mod. Opt. 45, 1899-1912(1998).

Gong, S.

S. Tao, S. Gong, J. C. Fanguy, and X. Hu, “The application of a light guiding flexible tubular waveguide in evanescent wave absorption optical sensing,” Sens. Actuators B 120, 724-731 (2007).
[CrossRef]

Hayashi, S.

S. Hayashi, A. Ishimizu, T. Tohei, and M. Tachikawa, “Parametric excitation of laser-guided Cs atoms in a hollow-core optical fiber,” Phys. Rev. A 68, 053408 (2003).
[CrossRef]

Hu, X.

S. Tao, S. Gong, J. C. Fanguy, and X. Hu, “The application of a light guiding flexible tubular waveguide in evanescent wave absorption optical sensing,” Sens. Actuators B 120, 724-731 (2007).
[CrossRef]

Ishimizu, A.

S. Hayashi, A. Ishimizu, T. Tohei, and M. Tachikawa, “Parametric excitation of laser-guided Cs atoms in a hollow-core optical fiber,” Phys. Rev. A 68, 053408 (2003).
[CrossRef]

Jhe, W.

C. Won, S. H. Yoo, K. Oh, U.-C. Paek, and W. Jhe, “Near-field diffraction by a hollow-core optical fiber,” Opt. Commun. 161, 25-30 (1999).
[CrossRef]

Jones, R. T.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256-1263 (1995).
[CrossRef]

Keller, B. K.

B. K. Keller, M. D. DeGrandpre, and C. P. Palmer, “Waveguiding properties of fiber-optic capillaries for chemical sensing applications,” Sens. Actuators B 125, 360-371 (2007).
[CrossRef]

Kersey, A. D.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256-1263 (1995).
[CrossRef]

Knight, J. C.

J. C. Knight and P. St. J. Russell, “New ways to guide light,” Science 296, 276-277 (2002).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1549 (1998).
[CrossRef] [PubMed]

Lee, B. H.

S. Choi, T. J. Eom, J. W. Yu, B. H. Lee, and K. Oh, “Novel all-fiber bandpass filter based on hollow optical fiber,” IEEE Photon. Technol. Lett. 14, 1701-1703 (2002).
[CrossRef]

Li, Y. W.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, 1983), pp. 336-338.
[CrossRef]

Matías, I. R.

Monro, T. M.

Nersesov, E. A.

E. A. Nersesov, S. V. Popruzhenko, D. F. Zaretsky, and W. Becker, “The gain of high harmonics in an atomic jet and in a hollow-core fiber,” Opt. Commun. 183, 289-297(2000).
[CrossRef]

Oh, K.

S. Choi, T. J. Eom, J. W. Yu, B. H. Lee, and K. Oh, “Novel all-fiber bandpass filter based on hollow optical fiber,” IEEE Photon. Technol. Lett. 14, 1701-1703 (2002).
[CrossRef]

S. Choi, K. Oh, W. Shin, and U. C. Ryu, “A low loss mode converter based on the adiabatically tapered hollow optical fiber,” Electron. Lett. 37, 823-825 (2001).
[CrossRef]

C. Won, S. H. Yoo, K. Oh, U.-C. Paek, and W. Jhe, “Near-field diffraction by a hollow-core optical fiber,” Opt. Commun. 161, 25-30 (1999).
[CrossRef]

Ohtsu, M.

M. Ohtsu, “Progress of high-resolution photon scanning tunneling microscopy due to a nanometric fiber probe,” J. Lightwave Technol. 13, 1200-1221 (1995).
[CrossRef]

Paek, U.-C.

C. Won, S. H. Yoo, K. Oh, U.-C. Paek, and W. Jhe, “Near-field diffraction by a hollow-core optical fiber,” Opt. Commun. 161, 25-30 (1999).
[CrossRef]

Palmer, C. P.

B. K. Keller, M. D. DeGrandpre, and C. P. Palmer, “Waveguiding properties of fiber-optic capillaries for chemical sensing applications,” Sens. Actuators B 125, 360-371 (2007).
[CrossRef]

Pang, J. W. C.

J. W. C. Pang and I. P. Bond, “A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility,” Compos. Sci. Technol. 65, 1791-1799 (2005).
[CrossRef]

Peng, W.

W. Peng, G. R. Pickerel, F. Shen, and A. Wang, “Hollow fiber optic waveguide gas sensor for simultaneous monitoring of multiple gas species,” Proc. SPIE 5589, 1-7 (2004).
[CrossRef]

Pickerel, G. R.

W. Peng, G. R. Pickerel, F. Shen, and A. Wang, “Hollow fiber optic waveguide gas sensor for simultaneous monitoring of multiple gas species,” Proc. SPIE 5589, 1-7 (2004).
[CrossRef]

Please, C. P.

Popruzhenko, S. V.

E. A. Nersesov, S. V. Popruzhenko, D. F. Zaretsky, and W. Becker, “The gain of high harmonics in an atomic jet and in a hollow-core fiber,” Opt. Commun. 183, 289-297(2000).
[CrossRef]

Putnam, M. A.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256-1263 (1995).
[CrossRef]

Russell, P. St. J.

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358-362 (2003).
[CrossRef] [PubMed]

J. C. Knight and P. St. J. Russell, “New ways to guide light,” Science 296, 276-277 (2002).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1549 (1998).
[CrossRef] [PubMed]

Ryu, U. C.

S. Choi, K. Oh, W. Shin, and U. C. Ryu, “A low loss mode converter based on the adiabatically tapered hollow optical fiber,” Electron. Lett. 37, 823-825 (2001).
[CrossRef]

Shen, F.

W. Peng, G. R. Pickerel, F. Shen, and A. Wang, “Hollow fiber optic waveguide gas sensor for simultaneous monitoring of multiple gas species,” Proc. SPIE 5589, 1-7 (2004).
[CrossRef]

Shin, W.

S. Choi, K. Oh, W. Shin, and U. C. Ryu, “A low loss mode converter based on the adiabatically tapered hollow optical fiber,” Electron. Lett. 37, 823-825 (2001).
[CrossRef]

Singh, H.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256-1263 (1995).
[CrossRef]

Sirkis, J.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256-1263 (1995).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, 1983), pp. 336-338.
[CrossRef]

Tachikawa, M.

S. Hayashi, A. Ishimizu, T. Tohei, and M. Tachikawa, “Parametric excitation of laser-guided Cs atoms in a hollow-core optical fiber,” Phys. Rev. A 68, 053408 (2003).
[CrossRef]

Tao, S.

S. Tao, S. Gong, J. C. Fanguy, and X. Hu, “The application of a light guiding flexible tubular waveguide in evanescent wave absorption optical sensing,” Sens. Actuators B 120, 724-731 (2007).
[CrossRef]

Tohei, T.

S. Hayashi, A. Ishimizu, T. Tohei, and M. Tachikawa, “Parametric excitation of laser-guided Cs atoms in a hollow-core optical fiber,” Phys. Rev. A 68, 053408 (2003).
[CrossRef]

Villar, I. D.

Wang, A.

W. Peng, G. R. Pickerel, F. Shen, and A. Wang, “Hollow fiber optic waveguide gas sensor for simultaneous monitoring of multiple gas species,” Proc. SPIE 5589, 1-7 (2004).
[CrossRef]

Wang, W.

W. Wang, J. Yin, W. Gao, Y. Zhu, and Y. Wang, “Fraunhofer and Fresnel field distributions from the LP01 mode in a micro-sized hollow optical fibre,” J. Mod. Opt. 45, 1899-1912(1998).

Wang, Y.

W. Wang, J. Yin, W. Gao, Y. Zhu, and Y. Wang, “Fraunhofer and Fresnel field distributions from the LP01 mode in a micro-sized hollow optical fibre,” J. Mod. Opt. 45, 1899-1912(1998).

Won, C.

C. Won, S. H. Yoo, K. Oh, U.-C. Paek, and W. Jhe, “Near-field diffraction by a hollow-core optical fiber,” Opt. Commun. 161, 25-30 (1999).
[CrossRef]

Yin, J.

W. Wang, J. Yin, W. Gao, Y. Zhu, and Y. Wang, “Fraunhofer and Fresnel field distributions from the LP01 mode in a micro-sized hollow optical fibre,” J. Mod. Opt. 45, 1899-1912(1998).

Yoo, S. H.

C. Won, S. H. Yoo, K. Oh, U.-C. Paek, and W. Jhe, “Near-field diffraction by a hollow-core optical fiber,” Opt. Commun. 161, 25-30 (1999).
[CrossRef]

Yu, J. W.

S. Choi, T. J. Eom, J. W. Yu, B. H. Lee, and K. Oh, “Novel all-fiber bandpass filter based on hollow optical fiber,” IEEE Photon. Technol. Lett. 14, 1701-1703 (2002).
[CrossRef]

Zaretsky, D. F.

E. A. Nersesov, S. V. Popruzhenko, D. F. Zaretsky, and W. Becker, “The gain of high harmonics in an atomic jet and in a hollow-core fiber,” Opt. Commun. 183, 289-297(2000).
[CrossRef]

Zhu, Y.

W. Wang, J. Yin, W. Gao, Y. Zhu, and Y. Wang, “Fraunhofer and Fresnel field distributions from the LP01 mode in a micro-sized hollow optical fibre,” J. Mod. Opt. 45, 1899-1912(1998).

Compos. Sci. Technol. (1)

J. W. C. Pang and I. P. Bond, “A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility,” Compos. Sci. Technol. 65, 1791-1799 (2005).
[CrossRef]

Electron. Lett. (1)

S. Choi, K. Oh, W. Shin, and U. C. Ryu, “A low loss mode converter based on the adiabatically tapered hollow optical fiber,” Electron. Lett. 37, 823-825 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Choi, T. J. Eom, J. W. Yu, B. H. Lee, and K. Oh, “Novel all-fiber bandpass filter based on hollow optical fiber,” IEEE Photon. Technol. Lett. 14, 1701-1703 (2002).
[CrossRef]

J. Lightwave Technol. (5)

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256-1263 (1995).
[CrossRef]

M. Ohtsu, “Progress of high-resolution photon scanning tunneling microscopy due to a nanometric fiber probe,” J. Lightwave Technol. 13, 1200-1221 (1995).
[CrossRef]

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modeling the fabrication of hollow fibers: capillary drawing,” J. Lightwave Technol. 19, 1924-1931 (2001).
[CrossRef]

J. Bravo, I. R. Matías, I. D. Villar, J. M. Corres, and F. J. Arregui, “Nanofilms on hollow core fiber-based structures: an optical study,” J. Lightwave Technol. 24, 2100-2107(2006).
[CrossRef]

J. Mod. Opt. (1)

W. Wang, J. Yin, W. Gao, Y. Zhu, and Y. Wang, “Fraunhofer and Fresnel field distributions from the LP01 mode in a micro-sized hollow optical fibre,” J. Mod. Opt. 45, 1899-1912(1998).

Opt. Commun. (2)

C. Won, S. H. Yoo, K. Oh, U.-C. Paek, and W. Jhe, “Near-field diffraction by a hollow-core optical fiber,” Opt. Commun. 161, 25-30 (1999).
[CrossRef]

E. A. Nersesov, S. V. Popruzhenko, D. F. Zaretsky, and W. Becker, “The gain of high harmonics in an atomic jet and in a hollow-core fiber,” Opt. Commun. 183, 289-297(2000).
[CrossRef]

Phys. Rev. A (1)

S. Hayashi, A. Ishimizu, T. Tohei, and M. Tachikawa, “Parametric excitation of laser-guided Cs atoms in a hollow-core optical fiber,” Phys. Rev. A 68, 053408 (2003).
[CrossRef]

Proc. SPIE (2)

W. Peng, G. R. Pickerel, F. Shen, and A. Wang, “Hollow fiber optic waveguide gas sensor for simultaneous monitoring of multiple gas species,” Proc. SPIE 5589, 1-7 (2004).
[CrossRef]

C. Dry, “Self repairing composites for airplane components,” Proc. SPIE 6932, 693212 (2008).
[CrossRef]

Science (3)

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1549 (1998).
[CrossRef] [PubMed]

J. C. Knight and P. St. J. Russell, “New ways to guide light,” Science 296, 276-277 (2002).
[CrossRef] [PubMed]

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Sens. Actuators B (1)

B. K. Keller, M. D. DeGrandpre, and C. P. Palmer, “Waveguiding properties of fiber-optic capillaries for chemical sensing applications,” Sens. Actuators B 125, 360-371 (2007).
[CrossRef]

Sens. Actuators B (1)

S. Tao, S. Gong, J. C. Fanguy, and X. Hu, “The application of a light guiding flexible tubular waveguide in evanescent wave absorption optical sensing,” Sens. Actuators B 120, 724-731 (2007).
[CrossRef]

Other (1)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, 1983), pp. 336-338.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for monitoring the power coupling process.

Fig. 2
Fig. 2

Cross section of the COF.

Fig. 3
Fig. 3

Coupling scheme of SMF to the COF: (a) aligned and attached, (b)  heated and drawn at the fusion point, (c)  when the tapered zone reached a certain length most of the input optical power coupled from SMF into the COF.

Fig. 4
Fig. 4

Mode field radius as a function of the outer core radius of SMF.

Fig. 5
Fig. 5

Mode field distribution ψ h of the COF when (a)  a = 3.85 μm (b)  a = 2 μm , (c)  a = 1 μm .

Fig. 6
Fig. 6

Coupling power P in the COF as a function of a.

Fig. 7
Fig. 7

Comparison of the theoretical prediction and experimental results.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ψ s ( r ) = 2 π 1 ω 0 exp ( r 2 ω 0 2 ) ,
β 2 = 0 ( k 2 n 2 ( r ) ψ s 2 ( r ) ( ψ s r ) 2 ) r d r 0 ψ s 2 ( r ) r d r ,
β 2 ω 0 = 0 ,
a 2 k 2 ( n 1 2 n 2 2 ) exp ( 2 a 2 ω 0 2 ) + b 2 k 2 ( n 2 2 n 3 2 ) exp ( 2 b 2 ω 0 2 ) = 1 ,
ψ h ( r ) = { A I 0 ( v a r ) ( r < a ) B J 0 ( u a r ) + C N 0 ( u a r ) ( a r b ) D K 0 ( w a r ) ( r > b ) ,
u = a n 1 2 k 2 β 2 , v = a β 2 n 2 2 k 2 , w = a β 2 n 2 2 k 2 ,
A I 0 ( v ) = B J 0 ( u ) + C N 0 ( u ) , B J 0 ( α u ) + C N 0 ( α u ) = D K 0 ( α w ) , A v I 0 ( v ) = B u J 0 ( u ) + C u N 0 ( u ) , B u J ( α u ) + C u N 0 ( α u ) = D w K 0 ( α w ) ,
J 0 ( α u ) J 0 ( u ) [ J 1 ( α u ) J 0 ( α u ) w K 1 ( α w ) u K 0 ( α w ) ] [ v I 1 ( v ) u I 0 ( v ) + N 1 ( u ) N 0 ( u ) ] = N 0 ( α u ) N 0 ( u ) [ N 1 ( α u ) N 0 ( α u ) w K 1 ( α w ) u K 0 ( α w ) ] [ J 1 ( u ) J 0 ( u ) + v I 1 ( v ) u I 0 ( v ) ] .
P = | ψ s ψ h * r d r | 2 [ ψ s 2 r d r ] [ ψ h 2 r d r ] ,
L = [ 1 2 ln ( a / 3.85 ) ] L 0 .

Metrics