Abstract

Recent research has shown that a hyperspectral imaging-based spatially-resolved technique is useful for determining the optical properties of homogenous fruits and food products. To better characterize fruit properties and quality attributes, it is desirable to consider fruit to be composed of two homogeneous layers of skin and flesh. This research was aimed at developing a nondestructive method to determine the absorption and scattering properties of two-layer turbid materials with the characteristics of fruit. An inverse algorithm along with the sensitivity coefficient analysis for a two-layer diffusion model was developed for the extraction of optical properties from the spatially-resolved diffuse reflectance data acquired using a hyperspectral imaging system. The diffusion model and the inverse algorithm were validated with Monte Carlo simulations and experimental measurements from solid model samples of known optical properties. The average errors of determining two and four optical parameters were 6.8% and 15.3%, respectively, for Monte Carlo reflectance data. The optical properties of the first or top layer of the model samples were determined with errors of less than 23.0% for the absorption coefficient and 18.4% for the reduced scattering coefficient. The inverse algorithm did not give acceptable estimations for the second or lower layer of the model samples. While the hyperspectral imaging-based spatially-resolved technique has the potential to measure the optical properties of two-layer turbid materials like fruits and food products, further improvements are needed in determining the optical properties of the second layer.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2000).
  2. J. Qin and R. Lu, “Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique,” Postharv. Biol. Technol. 49, 355-365 (2008).
    [CrossRef]
  3. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967-981 (1999).
    [CrossRef]
  4. Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, “Optical properties of porcine skin dermis between 900 nm and 1500 nm,” Phys. Med. Biol. 46, 167-181 (2001).
    [CrossRef]
  5. K. P. Rao, S. Radhakrishnan, and M. R. Reddy, “Brain tissue phantoms for optical near infrared imaging,” Exp. Brain Res. 170, 433-437 (2006).
    [CrossRef]
  6. M. Friebel, A. Roggan, G. Muller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase function,” J. Biomed. Opt. 11, 034021 (2006).
    [CrossRef]
  7. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical-properties,” Appl. Opt. 28, 2331-2336(1989).
    [CrossRef]
  8. M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, and J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474-4476 (1991).
    [CrossRef]
  9. R. A. J. Groenhuis, J. J. Tenbosch, and H. A. Ferwerda, “Scattering and absorption of turbid materials determined from reflection measurements. 2. Measuring method and calibration,” Appl. Opt. 22, 2463-2467 (1983).
    [CrossRef]
  10. R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, C. Dover, D. Johnson, M. Ruiz-Altisent, and C. Valero, “Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650-1000 nm,” Appl. Opt. 40, 538-543 (2001).
    [CrossRef]
  11. J. Qin and R. Lu, “Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging,” Appl. Spectrosc. 61, 388-396 (2007).
    [CrossRef]
  12. E. R. Anderson, D. J. Cuccia, and A. J. Durkin, “Detection of bruises on Golden Delicious apples using spatial-frequency-domain imaging,” Proc. SPIE 6430, 64301O (2007).
    [CrossRef]
  13. R. Lu, H. Cen, M. Huang, and D. P. Ariana, “Optical properties of bruised apple tissue,” in Proceedings of the ASABE Annual International Meeting, 096998 (American Society of Agricultural and Biological Engineers, 2009).
  14. J. M. Schmitt, G. X. Zhou, E. C. Walker, and R. T. Wall, “Multilayer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141-2153 (1990).
    [CrossRef]
  15. A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779-791 (1998).
    [CrossRef]
  16. J. L. Hollmann and L. V. Wang, “Multiple-source optical diffusion approximation for a multilayer scattering medium,” Appl. Opt. 46, 6004-6009 (2007).
    [CrossRef]
  17. G. Alexandrakis, D. R. Busch, G. W. Faris, and M. S. Patterson, “Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid Monte Carlo diffusion model,” Appl. Opt. 40, 3810-3821 (2001).
    [CrossRef]
  18. M. Schweiger and S. R. Arridge, “The finite-element method for the propagation of light in scattering media: frequency domain case,” Med. Phys. 24, 895-902 (1997).
    [CrossRef]
  19. I. Seo, J. S. You, C. K. Hayakawa, and V. Venugopalan, “Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model,” J. Biomed. Opt. 12, 014030 (2007).
    [CrossRef]
  20. P. Gonzalez-Rodriguez and A. D. Kim, “Light propagation in two-layer tissues with an irregular interface,” J. Opt. Soc. Am. A 25, 64-73 (2008).
    [CrossRef]
  21. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, and M. S. McAdams, “Boundary-conditions for the diffusion equation in radiative-transfer,” J. Opt. Soc. Am. A 11, 2727-2741(1994).
    [CrossRef]
  22. L. F. Shampine, “Vectorized adaptive quadrature in MATLAB,” J. Comput. Appl. Math. 211, 131-140 (2008).
    [CrossRef]
  23. S. H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13, 014016 (2008).
    [CrossRef]
  24. J. Beck and K. Arnold, Parameter Estimation in Engineering and Science (Wiley, 1977).
  25. R. Taktak, J. V. Beck, and E. P. Scott, “Optimal experimental design for estimating thermal properties of composite materials,” Int. J. Heat Mass Transf. 36, 2977-2986 (1993).
    [CrossRef]
  26. F. C. Thomas and Y. Y. Li, “On the convergence of interiro-reflective Newton methods for nonlinear minimization subject to bounds,” Math. Program. 67, 189-224 (1994).
    [CrossRef]
  27. R. Lu and Y. R. Chen, “Hyperspectral imaging for safety inspection of food and agricultural products,” Proc. SPIE 3544, 121-133 (1999).
    [CrossRef]
  28. S. A. Prahl, M. J. C. Vangemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32, 559-568 (1993).
    [CrossRef]
  29. W. Saeys, M. A. Velazco-Roa, S. N. Thennadil, H. Ramon, and B. M. Nicolai, “Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm,” Appl. Opt. 47, 908-919 (2008).
    [CrossRef]
  30. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Meth. Programs Biomed. 47, 131-146 (1995).
    [CrossRef]
  31. I. W. Budiastra, Y. Ikeda, and T. Nishizu, “Optical methods for quality evaluation of fruits (part 1)--optical properties of selected fruits using the Kubelka-Munk theory and their relationships with fruit maturity and sugar content,” J. Japan Soc. Agr. Mach. 60, 117-128 (1998).

2008 (5)

J. Qin and R. Lu, “Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique,” Postharv. Biol. Technol. 49, 355-365 (2008).
[CrossRef]

L. F. Shampine, “Vectorized adaptive quadrature in MATLAB,” J. Comput. Appl. Math. 211, 131-140 (2008).
[CrossRef]

S. H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13, 014016 (2008).
[CrossRef]

P. Gonzalez-Rodriguez and A. D. Kim, “Light propagation in two-layer tissues with an irregular interface,” J. Opt. Soc. Am. A 25, 64-73 (2008).
[CrossRef]

W. Saeys, M. A. Velazco-Roa, S. N. Thennadil, H. Ramon, and B. M. Nicolai, “Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm,” Appl. Opt. 47, 908-919 (2008).
[CrossRef]

2007 (4)

J. Qin and R. Lu, “Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging,” Appl. Spectrosc. 61, 388-396 (2007).
[CrossRef]

J. L. Hollmann and L. V. Wang, “Multiple-source optical diffusion approximation for a multilayer scattering medium,” Appl. Opt. 46, 6004-6009 (2007).
[CrossRef]

E. R. Anderson, D. J. Cuccia, and A. J. Durkin, “Detection of bruises on Golden Delicious apples using spatial-frequency-domain imaging,” Proc. SPIE 6430, 64301O (2007).
[CrossRef]

I. Seo, J. S. You, C. K. Hayakawa, and V. Venugopalan, “Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model,” J. Biomed. Opt. 12, 014030 (2007).
[CrossRef]

2006 (2)

K. P. Rao, S. Radhakrishnan, and M. R. Reddy, “Brain tissue phantoms for optical near infrared imaging,” Exp. Brain Res. 170, 433-437 (2006).
[CrossRef]

M. Friebel, A. Roggan, G. Muller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase function,” J. Biomed. Opt. 11, 034021 (2006).
[CrossRef]

2001 (3)

1999 (2)

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef]

R. Lu and Y. R. Chen, “Hyperspectral imaging for safety inspection of food and agricultural products,” Proc. SPIE 3544, 121-133 (1999).
[CrossRef]

1998 (2)

I. W. Budiastra, Y. Ikeda, and T. Nishizu, “Optical methods for quality evaluation of fruits (part 1)--optical properties of selected fruits using the Kubelka-Munk theory and their relationships with fruit maturity and sugar content,” J. Japan Soc. Agr. Mach. 60, 117-128 (1998).

A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779-791 (1998).
[CrossRef]

1997 (1)

M. Schweiger and S. R. Arridge, “The finite-element method for the propagation of light in scattering media: frequency domain case,” Med. Phys. 24, 895-902 (1997).
[CrossRef]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Meth. Programs Biomed. 47, 131-146 (1995).
[CrossRef]

1994 (2)

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, and M. S. McAdams, “Boundary-conditions for the diffusion equation in radiative-transfer,” J. Opt. Soc. Am. A 11, 2727-2741(1994).
[CrossRef]

F. C. Thomas and Y. Y. Li, “On the convergence of interiro-reflective Newton methods for nonlinear minimization subject to bounds,” Math. Program. 67, 189-224 (1994).
[CrossRef]

1993 (2)

S. A. Prahl, M. J. C. Vangemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32, 559-568 (1993).
[CrossRef]

R. Taktak, J. V. Beck, and E. P. Scott, “Optimal experimental design for estimating thermal properties of composite materials,” Int. J. Heat Mass Transf. 36, 2977-2986 (1993).
[CrossRef]

1991 (1)

1990 (1)

1989 (1)

1983 (1)

Aalders, M. C.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef]

Alexandrakis, G.

Anderson, E. R.

E. R. Anderson, D. J. Cuccia, and A. J. Durkin, “Detection of bruises on Golden Delicious apples using spatial-frequency-domain imaging,” Proc. SPIE 6430, 64301O (2007).
[CrossRef]

Ariana, D. P.

R. Lu, H. Cen, M. Huang, and D. P. Ariana, “Optical properties of bruised apple tissue,” in Proceedings of the ASABE Annual International Meeting, 096998 (American Society of Agricultural and Biological Engineers, 2009).

Arnold, K.

J. Beck and K. Arnold, Parameter Estimation in Engineering and Science (Wiley, 1977).

Arridge, S. R.

M. Schweiger and S. R. Arridge, “The finite-element method for the propagation of light in scattering media: frequency domain case,” Med. Phys. 24, 895-902 (1997).
[CrossRef]

Bays, R.

Beck, J.

J. Beck and K. Arnold, Parameter Estimation in Engineering and Science (Wiley, 1977).

Beck, J. V.

R. Taktak, J. V. Beck, and E. P. Scott, “Optimal experimental design for estimating thermal properties of composite materials,” Int. J. Heat Mass Transf. 36, 2977-2986 (1993).
[CrossRef]

Berndt, K. W.

Budiastra, I. W.

I. W. Budiastra, Y. Ikeda, and T. Nishizu, “Optical methods for quality evaluation of fruits (part 1)--optical properties of selected fruits using the Kubelka-Munk theory and their relationships with fruit maturity and sugar content,” J. Japan Soc. Agr. Mach. 60, 117-128 (1998).

Busch, D. R.

Cariveau, M.

Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, “Optical properties of porcine skin dermis between 900 nm and 1500 nm,” Phys. Med. Biol. 46, 167-181 (2001).
[CrossRef]

Cen, H.

R. Lu, H. Cen, M. Huang, and D. P. Ariana, “Optical properties of bruised apple tissue,” in Proceedings of the ASABE Annual International Meeting, 096998 (American Society of Agricultural and Biological Engineers, 2009).

Chance, B.

Chen, Y. R.

R. Lu and Y. R. Chen, “Hyperspectral imaging for safety inspection of food and agricultural products,” Proc. SPIE 3544, 121-133 (1999).
[CrossRef]

Cross, F. W.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef]

Cubeddu, R.

Cuccia, D. J.

E. R. Anderson, D. J. Cuccia, and A. J. Durkin, “Detection of bruises on Golden Delicious apples using spatial-frequency-domain imaging,” Proc. SPIE 6430, 64301O (2007).
[CrossRef]

D'Andrea, C.

Dognitz, N.

Doornbos, R. M. P.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef]

Dover, C.

Du, Y.

Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, “Optical properties of porcine skin dermis between 900 nm and 1500 nm,” Phys. Med. Biol. 46, 167-181 (2001).
[CrossRef]

Durkin, A. J.

S. H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13, 014016 (2008).
[CrossRef]

E. R. Anderson, D. J. Cuccia, and A. J. Durkin, “Detection of bruises on Golden Delicious apples using spatial-frequency-domain imaging,” Proc. SPIE 6430, 64301O (2007).
[CrossRef]

Faris, G. W.

Feng, T. C.

Ferwerda, H. A.

Friebel, M.

M. Friebel, A. Roggan, G. Muller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase function,” J. Biomed. Opt. 11, 034021 (2006).
[CrossRef]

Gonzalez-Rodriguez, P.

Grant, A.

S. H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13, 014016 (2008).
[CrossRef]

Groenhuis, R. A. J.

Haskell, R. C.

Hayakawa, C. K.

I. Seo, J. S. You, C. K. Hayakawa, and V. Venugopalan, “Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model,” J. Biomed. Opt. 12, 014030 (2007).
[CrossRef]

Hollmann, J. L.

Hu, X. H.

Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, “Optical properties of porcine skin dermis between 900 nm and 1500 nm,” Phys. Med. Biol. 46, 167-181 (2001).
[CrossRef]

Huang, M.

R. Lu, H. Cen, M. Huang, and D. P. Ariana, “Optical properties of bruised apple tissue,” in Proceedings of the ASABE Annual International Meeting, 096998 (American Society of Agricultural and Biological Engineers, 2009).

Ikeda, Y.

I. W. Budiastra, Y. Ikeda, and T. Nishizu, “Optical methods for quality evaluation of fruits (part 1)--optical properties of selected fruits using the Kubelka-Munk theory and their relationships with fruit maturity and sugar content,” J. Japan Soc. Agr. Mach. 60, 117-128 (1998).

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Meth. Programs Biomed. 47, 131-146 (1995).
[CrossRef]

Johnson, D.

Kalmus, G. W.

Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, “Optical properties of porcine skin dermis between 900 nm and 1500 nm,” Phys. Med. Biol. 46, 167-181 (2001).
[CrossRef]

Kienle, A.

Kim, A. D.

Lakowicz, J. R.

Lang, R.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef]

Li, Y. Y.

F. C. Thomas and Y. Y. Li, “On the convergence of interiro-reflective Newton methods for nonlinear minimization subject to bounds,” Math. Program. 67, 189-224 (1994).
[CrossRef]

Lu, J. Q.

Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, “Optical properties of porcine skin dermis between 900 nm and 1500 nm,” Phys. Med. Biol. 46, 167-181 (2001).
[CrossRef]

Lu, R.

J. Qin and R. Lu, “Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique,” Postharv. Biol. Technol. 49, 355-365 (2008).
[CrossRef]

J. Qin and R. Lu, “Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging,” Appl. Spectrosc. 61, 388-396 (2007).
[CrossRef]

R. Lu and Y. R. Chen, “Hyperspectral imaging for safety inspection of food and agricultural products,” Proc. SPIE 3544, 121-133 (1999).
[CrossRef]

R. Lu, H. Cen, M. Huang, and D. P. Ariana, “Optical properties of bruised apple tissue,” in Proceedings of the ASABE Annual International Meeting, 096998 (American Society of Agricultural and Biological Engineers, 2009).

Ma, X.

Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, “Optical properties of porcine skin dermis between 900 nm and 1500 nm,” Phys. Med. Biol. 46, 167-181 (2001).
[CrossRef]

McAdams, M. S.

Meinke, M.

M. Friebel, A. Roggan, G. Muller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase function,” J. Biomed. Opt. 11, 034021 (2006).
[CrossRef]

Moulton, J. D.

Muller, G.

M. Friebel, A. Roggan, G. Muller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase function,” J. Biomed. Opt. 11, 034021 (2006).
[CrossRef]

Nicolai, B. M.

Nishizu, T.

I. W. Budiastra, Y. Ikeda, and T. Nishizu, “Optical methods for quality evaluation of fruits (part 1)--optical properties of selected fruits using the Kubelka-Munk theory and their relationships with fruit maturity and sugar content,” J. Japan Soc. Agr. Mach. 60, 117-128 (1998).

Patterson, M. S.

Pifferi, A.

Prahl, S. A.

Qin, J.

J. Qin and R. Lu, “Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique,” Postharv. Biol. Technol. 49, 355-365 (2008).
[CrossRef]

J. Qin and R. Lu, “Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging,” Appl. Spectrosc. 61, 388-396 (2007).
[CrossRef]

Radhakrishnan, S.

K. P. Rao, S. Radhakrishnan, and M. R. Reddy, “Brain tissue phantoms for optical near infrared imaging,” Exp. Brain Res. 170, 433-437 (2006).
[CrossRef]

Ramon, H.

Rao, K. P.

K. P. Rao, S. Radhakrishnan, and M. R. Reddy, “Brain tissue phantoms for optical near infrared imaging,” Exp. Brain Res. 170, 433-437 (2006).
[CrossRef]

Reddy, M. R.

K. P. Rao, S. Radhakrishnan, and M. R. Reddy, “Brain tissue phantoms for optical near infrared imaging,” Exp. Brain Res. 170, 433-437 (2006).
[CrossRef]

Roggan, A.

M. Friebel, A. Roggan, G. Muller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase function,” J. Biomed. Opt. 11, 034021 (2006).
[CrossRef]

Ruiz-Altisent, M.

Saeys, W.

Schmitt, J. M.

Schweiger, M.

M. Schweiger and S. R. Arridge, “The finite-element method for the propagation of light in scattering media: frequency domain case,” Med. Phys. 24, 895-902 (1997).
[CrossRef]

Scott, E. P.

R. Taktak, J. V. Beck, and E. P. Scott, “Optimal experimental design for estimating thermal properties of composite materials,” Int. J. Heat Mass Transf. 36, 2977-2986 (1993).
[CrossRef]

Seo, I.

I. Seo, J. S. You, C. K. Hayakawa, and V. Venugopalan, “Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model,” J. Biomed. Opt. 12, 014030 (2007).
[CrossRef]

Shampine, L. F.

L. F. Shampine, “Vectorized adaptive quadrature in MATLAB,” J. Comput. Appl. Math. 211, 131-140 (2008).
[CrossRef]

Sterenborg, H.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef]

Svaasand, L. O.

Taktak, R.

R. Taktak, J. V. Beck, and E. P. Scott, “Optimal experimental design for estimating thermal properties of composite materials,” Int. J. Heat Mass Transf. 36, 2977-2986 (1993).
[CrossRef]

Taroni, P.

Tenbosch, J. J.

Thennadil, S. N.

Thomas, F. C.

F. C. Thomas and Y. Y. Li, “On the convergence of interiro-reflective Newton methods for nonlinear minimization subject to bounds,” Math. Program. 67, 189-224 (1994).
[CrossRef]

Torricelli, A.

Tsay, T. T.

Tseng, S. H.

S. H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13, 014016 (2008).
[CrossRef]

Tuchin, V.

V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2000).

Valentini, G.

Valero, C.

van den Bergh, H.

Vangemert, M. J. C.

Velazco-Roa, M. A.

Venugopalan, V.

I. Seo, J. S. You, C. K. Hayakawa, and V. Venugopalan, “Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model,” J. Biomed. Opt. 12, 014030 (2007).
[CrossRef]

Wagnieres, G.

Walker, E. C.

Wall, R. T.

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Meth. Programs Biomed. 47, 131-146 (1995).
[CrossRef]

Wang, L. V.

Welch, A. J.

Wilson, B. C.

You, J. S.

I. Seo, J. S. You, C. K. Hayakawa, and V. Venugopalan, “Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model,” J. Biomed. Opt. 12, 014030 (2007).
[CrossRef]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Meth. Programs Biomed. 47, 131-146 (1995).
[CrossRef]

Zhou, G. X.

Appl. Opt. (9)

R. A. J. Groenhuis, J. J. Tenbosch, and H. A. Ferwerda, “Scattering and absorption of turbid materials determined from reflection measurements. 2. Measuring method and calibration,” Appl. Opt. 22, 2463-2467 (1983).
[CrossRef]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical-properties,” Appl. Opt. 28, 2331-2336(1989).
[CrossRef]

S. A. Prahl, M. J. C. Vangemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32, 559-568 (1993).
[CrossRef]

A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779-791 (1998).
[CrossRef]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, C. Dover, D. Johnson, M. Ruiz-Altisent, and C. Valero, “Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650-1000 nm,” Appl. Opt. 40, 538-543 (2001).
[CrossRef]

G. Alexandrakis, D. R. Busch, G. W. Faris, and M. S. Patterson, “Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid Monte Carlo diffusion model,” Appl. Opt. 40, 3810-3821 (2001).
[CrossRef]

J. L. Hollmann and L. V. Wang, “Multiple-source optical diffusion approximation for a multilayer scattering medium,” Appl. Opt. 46, 6004-6009 (2007).
[CrossRef]

W. Saeys, M. A. Velazco-Roa, S. N. Thennadil, H. Ramon, and B. M. Nicolai, “Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm,” Appl. Opt. 47, 908-919 (2008).
[CrossRef]

M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, and J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474-4476 (1991).
[CrossRef]

Appl. Spectrosc. (1)

Comput. Meth. Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Meth. Programs Biomed. 47, 131-146 (1995).
[CrossRef]

Exp. Brain Res. (1)

K. P. Rao, S. Radhakrishnan, and M. R. Reddy, “Brain tissue phantoms for optical near infrared imaging,” Exp. Brain Res. 170, 433-437 (2006).
[CrossRef]

Int. J. Heat Mass Transf. (1)

R. Taktak, J. V. Beck, and E. P. Scott, “Optimal experimental design for estimating thermal properties of composite materials,” Int. J. Heat Mass Transf. 36, 2977-2986 (1993).
[CrossRef]

J. Biomed. Opt. (3)

M. Friebel, A. Roggan, G. Muller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase function,” J. Biomed. Opt. 11, 034021 (2006).
[CrossRef]

I. Seo, J. S. You, C. K. Hayakawa, and V. Venugopalan, “Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model,” J. Biomed. Opt. 12, 014030 (2007).
[CrossRef]

S. H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13, 014016 (2008).
[CrossRef]

J. Comput. Appl. Math. (1)

L. F. Shampine, “Vectorized adaptive quadrature in MATLAB,” J. Comput. Appl. Math. 211, 131-140 (2008).
[CrossRef]

J. Japan Soc. Agr. Mach. (1)

I. W. Budiastra, Y. Ikeda, and T. Nishizu, “Optical methods for quality evaluation of fruits (part 1)--optical properties of selected fruits using the Kubelka-Munk theory and their relationships with fruit maturity and sugar content,” J. Japan Soc. Agr. Mach. 60, 117-128 (1998).

J. Opt. Soc. Am. A (3)

Math. Program. (1)

F. C. Thomas and Y. Y. Li, “On the convergence of interiro-reflective Newton methods for nonlinear minimization subject to bounds,” Math. Program. 67, 189-224 (1994).
[CrossRef]

Med. Phys. (1)

M. Schweiger and S. R. Arridge, “The finite-element method for the propagation of light in scattering media: frequency domain case,” Med. Phys. 24, 895-902 (1997).
[CrossRef]

Phys. Med. Biol. (2)

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef]

Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, “Optical properties of porcine skin dermis between 900 nm and 1500 nm,” Phys. Med. Biol. 46, 167-181 (2001).
[CrossRef]

Postharv. Biol. Technol. (1)

J. Qin and R. Lu, “Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique,” Postharv. Biol. Technol. 49, 355-365 (2008).
[CrossRef]

Proc. SPIE (2)

E. R. Anderson, D. J. Cuccia, and A. J. Durkin, “Detection of bruises on Golden Delicious apples using spatial-frequency-domain imaging,” Proc. SPIE 6430, 64301O (2007).
[CrossRef]

R. Lu and Y. R. Chen, “Hyperspectral imaging for safety inspection of food and agricultural products,” Proc. SPIE 3544, 121-133 (1999).
[CrossRef]

Other (3)

R. Lu, H. Cen, M. Huang, and D. P. Ariana, “Optical properties of bruised apple tissue,” in Proceedings of the ASABE Annual International Meeting, 096998 (American Society of Agricultural and Biological Engineers, 2009).

V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2000).

J. Beck and K. Arnold, Parameter Estimation in Engineering and Science (Wiley, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics