Abstract

A ground-based spectral radiometer system for albedo and flux (GSAF) was developed to retrieve a mass concentration of snow impurities and effective snow grain size automatically. The GSAF measures spectral albedo and diffuse fraction with a single sensor to omit a radiometric calibration. The deviation from an ideal cosine response of the sensor to insolation is precisely corrected. The snow physical parameters can be retrieved with the GSAF even under cloudy conditions, because the effect of illumination conditions on albedo is considered in a retrieval algorithm. Continuous measurements with the GSAF at two snowfields in Hokkaido, Japan, showed the correlations between the retrieved parameters and in situ measurements (R=0.595 to 0.940).

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Wiscombe and S. G. Warren, “A model for the spectral albedo of snow. I: Pure snow,” J. Atmos. Sci. 37, 2712-2733(1980).
    [CrossRef]
  2. S. G. Warren and W. J. Wiscombe, “A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols,” J. Atmos. Sci. 37, 2734-2745 (1980).
    [CrossRef]
  3. Te. Aoki, Ta. Aoki, M. Fukabori, Y. Tachibana, Y. Zaizen, F. Nishio, and T. Oishi, “Spectral albedo observation on the snow field at Barrow, Alaska,” Polar Meteorol. Glaciol. 12, 1-9 (1998).
  4. Te. Aoki, Ta. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219-10236 (2000).
    [CrossRef]
  5. Te. Aoki, A. Hachikubo, and M. Hori, “Effects of snow physical parameters on shortwave broadband albedos,” J. Geophys. Res. 108, 4616, doi:10.1029/2003JD003506 (2003).
    [CrossRef]
  6. H. Motoyoshi, Te. Aoki, M. Hori, O. Abe, and S. Mochizuki, “Possible effect of anthropogenic aerosol deposition on snow albedo reduction at Shinjo, Japan,” J. Meteorol. Soc. Jpn. 83A, 137-146 (2005).
    [CrossRef]
  7. Te. Aoki, H. Motoyoshi, Y. Kodama, T. J. Yasunari, and K. Sugiura, “Variations of the snow physical parameters and their effects on albedo in Sapporo, Japan,” Ann. Glaciol. 46, 375-381 (2007).
    [CrossRef]
  8. G. S. W. Hagler, M. H. Bergin, E. A. Smith, J. E. Dibb, C. Anderson, and E. J. Steig, “Particulate and water-soluble carbon measured in recent snow at Summit, Greenland,” Geophys. Res. Lett. 34, doi:10.1029/2007GL030110 (2004).
    [CrossRef]
  9. T. C. Grenfell, S. G. Warren, and P. C. Mullen, “Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths,” J. Geophys. Res. 99, 18669-18684 (1994).
    [CrossRef]
  10. T. C. Grenfell and S. G. Warren, “Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation,” J. Geophys. Res. 104, 31697-31709 (1999).
    [CrossRef]
  11. A. W. Nolin and J. Dozier, “Estimating snow grain size using AVIRIS data,” Remote Sens. Environ. 44, 231-238 (1993).
    [CrossRef]
  12. M. Fily, B. Bourdelles, J. P. Dedieu, and C. Sergent, “Comparison of in situ and Landsat Thematic Mapper derived snow grain characteristics in the alps,” Remote Sens. Environ. 59, 452-460 (1997).
    [CrossRef]
  13. W. Li, K. Stamnes, B. Chen, and X. Xiong, “Snow grain size retrieved from near-infrared radiances at multiple wavelengths,” Geophys. Res. Lett. 28, 1699-1702 (2001).
    [CrossRef]
  14. T. A. Scambos, T. M. Haran, M. A. Fahnestock, T. H. Painter, and J. Bohlander, “Continent-wide surface morphology and snow grain size,” Remote Sens. Environ. 111, 242-257(2007).
    [CrossRef]
  15. Z. Jin, T. P. Charlock, P. Yang, Y. Xie, and W. Miller, “Snow optical properties of different particles shapes with application to snow grain size retrieval and MODIS/CERES radiance comparison over Antarctica,” Remote Sens. Environ. 112, 3563-3581 (2008).
    [CrossRef]
  16. T. Tanikawa, Te. Aoki, and F. Nishio, “Remote sensing of snow grain-size and impurities from Airborne Multispectral Scanner data using a snow bidirectional reflectance distribution function model,” Ann. Glaciol. 34, 74-80 (2002).
    [CrossRef]
  17. K. Stamnes, W. Li, H. Eide, Te. Aoki, M. Hori, and R. Storvold, “ADEOS-II/GLI snow/ice products----Part I: Scientific basis,” Remote. Sens. Environ. 111, 258-273 (2007).
    [CrossRef]
  18. M. Hori, Te. Aoki, K. Stamnes, and W. Li, “ADEOS-II/GLI snow/ice products----Part III: Retrieved results,” Remote. Sens. Environ. 111, 291-336 (2007).
    [CrossRef]
  19. C. Leroux, J. Deuzé, P. Goloub, C. Sergent, and M. Fily, “Ground measurements of the polarized bidirectional reflectance of snow in the near-infrared spectral domain: comparisons with model results,” J. Geophys. Res. 103, 19721-19731(1998).
    [CrossRef]
  20. T. Tanikawa, Te. Aoki, M. Hori, A. Hachikubo, and M. Aniya, “Snow bidirectional reflectance model using non-spherical snow particles and its validation with fields measurements,” EARSeL eProceedings 5, 137-145 (2006).
  21. S. G. Warren, R. E. Brandt, and P. O. Hinton, “Effect of surface roughness on bidirectional reflectance of Antarctic snow,” J. Geophys. Res. 103, 25789-25807 (1998).
    [CrossRef]
  22. S. G. Warren, “Optical properties of snow,” Rev. Geophys. Space Phys. 20, 67-89 (1982).
    [CrossRef]
  23. Te. Aoki, Ta. Aoki, M. Fukabori, and A. Uchiyama, “Numerical simulation of the atmospheric effects on snow albedo with a multiple scattering radiative transfer model for the atmosphere-snow system,” J. Meteorol. Soc. Jpn. 77, 595-614(1999).
  24. T. Yamanouchi, “Variations of incident solar flux and snow albedo on the solar zenith angle and cloud cover, at Mizuho station, Antarctica,” J. Meteorol. Soc. Jpn. 61, 879-893 (1983).
  25. S. Asano, M. Shiobara, Y. Nakanishi, and Y. Miyake, “A multichannel cloud pyranometer system for airborne measurement of solar spectral reflectance by cloud,” J. Atmos. Ocean. Technol. 12, 479-487 (1995).
    [CrossRef]
  26. M. D. Steven, “Standard distributions of clear sky radiance,” Q. J. R. Meteorol. Soc. 103, 457-465 (1977).
    [CrossRef]
  27. M. D. Steven and M. H. Unsworth, “The angular distribution and interception of diffuse solar radiation below overcast skies,” Q. J. R. Meteorol. Soc. 106, 57-61 (1980).
    [CrossRef]
  28. M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831-844 (1998).
    [CrossRef]
  29. G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, AFGL Atmospheric Constituent Profiles (0-120 km) (Air Force Geophys. Lab., 1986).
    [PubMed]
  30. T. H. Painter and J. Dozier, “Measurements of the hemispherical-directional reflectance of snow at fine spectral and angular resolution,” J. Geophys. Res. 109, doi:10.1029/2003JD004458 (2004).
    [CrossRef]
  31. S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: a revised compilation,” J. Geophys. Res. 113, D14220, doi:10.1029/2007JD009744 (2008).
    [CrossRef]
  32. T. Tanikawa, Te. Aoki, M. Hori, A. Hachikubo, O. Abe, and M. Aniya, “Monte Carlo simulations of spectral albedo for artificial snowpacks composed of spherical and nonspherical particles,” Appl. Opt. 45, 5310-5319 (2006).
    [CrossRef] [PubMed]
  33. J. J. Huntzicker, R. L. Johnson, J. J. Shah, and R. A. Cary, “Analysis of organic and elemental carbon in ambient aerosol by a thermal-optical method,” in Particulate Carbon-Atmospheric Life Cycle, G.T.Wolff and R.L.Klimisch, eds. (Plenum, 1982), pp. 79-88.
  34. J. C. Chow, J. G. Watson, L. C. Pritchett, W. R. Pierson, C. A. Frazier, and R. G. Purcell, “The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. Air Quality Studies,” Atmos. Environ. 27, 1185-1201 (1993).
    [CrossRef]
  35. Te. Aoki, M. Hori, H. Motoyoshi, T. Tanikawa, A. Hachikubo, K. Sugiura, T. J. Yasunari, R. Storvold, H. A. Eide, K. Stamnes, W. Li, J. Nieke, Y. Nakajime, and F. Takahashi, “ADEOS-II/GLI snow/ice products----Part II: Validation results using GLI and MODIS data,” Remote Sens. Environ. 111, 274-290(2007).
    [CrossRef]
  36. M. Ishizaka, “New categories for the climatic division of snowy areas in Japan,” Ann. Glaciol. 26, 131-137 (1998).
  37. J. G. Watson, J. C. Chow, and L. W. A. Chen, “Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons,” Aerosol Air Qual. Res. 5, 65-102(2005).
  38. M. O. Andreae and A. Gelencser, “Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols,” Atmos. Chem. Phys. 6, 3131-3148 (2006).
    [CrossRef]
  39. T. C. Grenfell and L. Bonnie, “Spatial distribution and radiative effects of soot in the snow and sea ice during SHEBA experiment,” J. Geophys. Res. 107, 8032, doi: 10.1029/2000JC000414 (2002).
    [CrossRef]

2008 (2)

Z. Jin, T. P. Charlock, P. Yang, Y. Xie, and W. Miller, “Snow optical properties of different particles shapes with application to snow grain size retrieval and MODIS/CERES radiance comparison over Antarctica,” Remote Sens. Environ. 112, 3563-3581 (2008).
[CrossRef]

S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: a revised compilation,” J. Geophys. Res. 113, D14220, doi:10.1029/2007JD009744 (2008).
[CrossRef]

2007 (5)

Te. Aoki, M. Hori, H. Motoyoshi, T. Tanikawa, A. Hachikubo, K. Sugiura, T. J. Yasunari, R. Storvold, H. A. Eide, K. Stamnes, W. Li, J. Nieke, Y. Nakajime, and F. Takahashi, “ADEOS-II/GLI snow/ice products----Part II: Validation results using GLI and MODIS data,” Remote Sens. Environ. 111, 274-290(2007).
[CrossRef]

T. A. Scambos, T. M. Haran, M. A. Fahnestock, T. H. Painter, and J. Bohlander, “Continent-wide surface morphology and snow grain size,” Remote Sens. Environ. 111, 242-257(2007).
[CrossRef]

K. Stamnes, W. Li, H. Eide, Te. Aoki, M. Hori, and R. Storvold, “ADEOS-II/GLI snow/ice products----Part I: Scientific basis,” Remote. Sens. Environ. 111, 258-273 (2007).
[CrossRef]

M. Hori, Te. Aoki, K. Stamnes, and W. Li, “ADEOS-II/GLI snow/ice products----Part III: Retrieved results,” Remote. Sens. Environ. 111, 291-336 (2007).
[CrossRef]

Te. Aoki, H. Motoyoshi, Y. Kodama, T. J. Yasunari, and K. Sugiura, “Variations of the snow physical parameters and their effects on albedo in Sapporo, Japan,” Ann. Glaciol. 46, 375-381 (2007).
[CrossRef]

2006 (3)

T. Tanikawa, Te. Aoki, M. Hori, A. Hachikubo, and M. Aniya, “Snow bidirectional reflectance model using non-spherical snow particles and its validation with fields measurements,” EARSeL eProceedings 5, 137-145 (2006).

M. O. Andreae and A. Gelencser, “Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols,” Atmos. Chem. Phys. 6, 3131-3148 (2006).
[CrossRef]

T. Tanikawa, Te. Aoki, M. Hori, A. Hachikubo, O. Abe, and M. Aniya, “Monte Carlo simulations of spectral albedo for artificial snowpacks composed of spherical and nonspherical particles,” Appl. Opt. 45, 5310-5319 (2006).
[CrossRef] [PubMed]

2005 (2)

J. G. Watson, J. C. Chow, and L. W. A. Chen, “Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons,” Aerosol Air Qual. Res. 5, 65-102(2005).

H. Motoyoshi, Te. Aoki, M. Hori, O. Abe, and S. Mochizuki, “Possible effect of anthropogenic aerosol deposition on snow albedo reduction at Shinjo, Japan,” J. Meteorol. Soc. Jpn. 83A, 137-146 (2005).
[CrossRef]

2004 (2)

G. S. W. Hagler, M. H. Bergin, E. A. Smith, J. E. Dibb, C. Anderson, and E. J. Steig, “Particulate and water-soluble carbon measured in recent snow at Summit, Greenland,” Geophys. Res. Lett. 34, doi:10.1029/2007GL030110 (2004).
[CrossRef]

T. H. Painter and J. Dozier, “Measurements of the hemispherical-directional reflectance of snow at fine spectral and angular resolution,” J. Geophys. Res. 109, doi:10.1029/2003JD004458 (2004).
[CrossRef]

2003 (1)

Te. Aoki, A. Hachikubo, and M. Hori, “Effects of snow physical parameters on shortwave broadband albedos,” J. Geophys. Res. 108, 4616, doi:10.1029/2003JD003506 (2003).
[CrossRef]

2002 (2)

T. Tanikawa, Te. Aoki, and F. Nishio, “Remote sensing of snow grain-size and impurities from Airborne Multispectral Scanner data using a snow bidirectional reflectance distribution function model,” Ann. Glaciol. 34, 74-80 (2002).
[CrossRef]

T. C. Grenfell and L. Bonnie, “Spatial distribution and radiative effects of soot in the snow and sea ice during SHEBA experiment,” J. Geophys. Res. 107, 8032, doi: 10.1029/2000JC000414 (2002).
[CrossRef]

2001 (1)

W. Li, K. Stamnes, B. Chen, and X. Xiong, “Snow grain size retrieved from near-infrared radiances at multiple wavelengths,” Geophys. Res. Lett. 28, 1699-1702 (2001).
[CrossRef]

2000 (1)

Te. Aoki, Ta. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219-10236 (2000).
[CrossRef]

1999 (2)

T. C. Grenfell and S. G. Warren, “Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation,” J. Geophys. Res. 104, 31697-31709 (1999).
[CrossRef]

Te. Aoki, Ta. Aoki, M. Fukabori, and A. Uchiyama, “Numerical simulation of the atmospheric effects on snow albedo with a multiple scattering radiative transfer model for the atmosphere-snow system,” J. Meteorol. Soc. Jpn. 77, 595-614(1999).

1998 (5)

S. G. Warren, R. E. Brandt, and P. O. Hinton, “Effect of surface roughness on bidirectional reflectance of Antarctic snow,” J. Geophys. Res. 103, 25789-25807 (1998).
[CrossRef]

M. Ishizaka, “New categories for the climatic division of snowy areas in Japan,” Ann. Glaciol. 26, 131-137 (1998).

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831-844 (1998).
[CrossRef]

C. Leroux, J. Deuzé, P. Goloub, C. Sergent, and M. Fily, “Ground measurements of the polarized bidirectional reflectance of snow in the near-infrared spectral domain: comparisons with model results,” J. Geophys. Res. 103, 19721-19731(1998).
[CrossRef]

Te. Aoki, Ta. Aoki, M. Fukabori, Y. Tachibana, Y. Zaizen, F. Nishio, and T. Oishi, “Spectral albedo observation on the snow field at Barrow, Alaska,” Polar Meteorol. Glaciol. 12, 1-9 (1998).

1997 (1)

M. Fily, B. Bourdelles, J. P. Dedieu, and C. Sergent, “Comparison of in situ and Landsat Thematic Mapper derived snow grain characteristics in the alps,” Remote Sens. Environ. 59, 452-460 (1997).
[CrossRef]

1995 (1)

S. Asano, M. Shiobara, Y. Nakanishi, and Y. Miyake, “A multichannel cloud pyranometer system for airborne measurement of solar spectral reflectance by cloud,” J. Atmos. Ocean. Technol. 12, 479-487 (1995).
[CrossRef]

1994 (1)

T. C. Grenfell, S. G. Warren, and P. C. Mullen, “Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths,” J. Geophys. Res. 99, 18669-18684 (1994).
[CrossRef]

1993 (2)

A. W. Nolin and J. Dozier, “Estimating snow grain size using AVIRIS data,” Remote Sens. Environ. 44, 231-238 (1993).
[CrossRef]

J. C. Chow, J. G. Watson, L. C. Pritchett, W. R. Pierson, C. A. Frazier, and R. G. Purcell, “The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. Air Quality Studies,” Atmos. Environ. 27, 1185-1201 (1993).
[CrossRef]

1983 (1)

T. Yamanouchi, “Variations of incident solar flux and snow albedo on the solar zenith angle and cloud cover, at Mizuho station, Antarctica,” J. Meteorol. Soc. Jpn. 61, 879-893 (1983).

1982 (1)

S. G. Warren, “Optical properties of snow,” Rev. Geophys. Space Phys. 20, 67-89 (1982).
[CrossRef]

1980 (3)

M. D. Steven and M. H. Unsworth, “The angular distribution and interception of diffuse solar radiation below overcast skies,” Q. J. R. Meteorol. Soc. 106, 57-61 (1980).
[CrossRef]

W. J. Wiscombe and S. G. Warren, “A model for the spectral albedo of snow. I: Pure snow,” J. Atmos. Sci. 37, 2712-2733(1980).
[CrossRef]

S. G. Warren and W. J. Wiscombe, “A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols,” J. Atmos. Sci. 37, 2734-2745 (1980).
[CrossRef]

1977 (1)

M. D. Steven, “Standard distributions of clear sky radiance,” Q. J. R. Meteorol. Soc. 103, 457-465 (1977).
[CrossRef]

Abe, O.

T. Tanikawa, Te. Aoki, M. Hori, A. Hachikubo, O. Abe, and M. Aniya, “Monte Carlo simulations of spectral albedo for artificial snowpacks composed of spherical and nonspherical particles,” Appl. Opt. 45, 5310-5319 (2006).
[CrossRef] [PubMed]

H. Motoyoshi, Te. Aoki, M. Hori, O. Abe, and S. Mochizuki, “Possible effect of anthropogenic aerosol deposition on snow albedo reduction at Shinjo, Japan,” J. Meteorol. Soc. Jpn. 83A, 137-146 (2005).
[CrossRef]

Anderson, C.

G. S. W. Hagler, M. H. Bergin, E. A. Smith, J. E. Dibb, C. Anderson, and E. J. Steig, “Particulate and water-soluble carbon measured in recent snow at Summit, Greenland,” Geophys. Res. Lett. 34, doi:10.1029/2007GL030110 (2004).
[CrossRef]

Anderson, G. P.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, AFGL Atmospheric Constituent Profiles (0-120 km) (Air Force Geophys. Lab., 1986).
[PubMed]

Andreae, M. O.

M. O. Andreae and A. Gelencser, “Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols,” Atmos. Chem. Phys. 6, 3131-3148 (2006).
[CrossRef]

Aniya, M.

T. Tanikawa, Te. Aoki, M. Hori, A. Hachikubo, O. Abe, and M. Aniya, “Monte Carlo simulations of spectral albedo for artificial snowpacks composed of spherical and nonspherical particles,” Appl. Opt. 45, 5310-5319 (2006).
[CrossRef] [PubMed]

T. Tanikawa, Te. Aoki, M. Hori, A. Hachikubo, and M. Aniya, “Snow bidirectional reflectance model using non-spherical snow particles and its validation with fields measurements,” EARSeL eProceedings 5, 137-145 (2006).

Aoki, Ta.

Te. Aoki, Ta. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219-10236 (2000).
[CrossRef]

Te. Aoki, Ta. Aoki, M. Fukabori, and A. Uchiyama, “Numerical simulation of the atmospheric effects on snow albedo with a multiple scattering radiative transfer model for the atmosphere-snow system,” J. Meteorol. Soc. Jpn. 77, 595-614(1999).

Te. Aoki, Ta. Aoki, M. Fukabori, Y. Tachibana, Y. Zaizen, F. Nishio, and T. Oishi, “Spectral albedo observation on the snow field at Barrow, Alaska,” Polar Meteorol. Glaciol. 12, 1-9 (1998).

Aoki, Te.

M. Hori, Te. Aoki, K. Stamnes, and W. Li, “ADEOS-II/GLI snow/ice products----Part III: Retrieved results,” Remote. Sens. Environ. 111, 291-336 (2007).
[CrossRef]

Te. Aoki, M. Hori, H. Motoyoshi, T. Tanikawa, A. Hachikubo, K. Sugiura, T. J. Yasunari, R. Storvold, H. A. Eide, K. Stamnes, W. Li, J. Nieke, Y. Nakajime, and F. Takahashi, “ADEOS-II/GLI snow/ice products----Part II: Validation results using GLI and MODIS data,” Remote Sens. Environ. 111, 274-290(2007).
[CrossRef]

Te. Aoki, H. Motoyoshi, Y. Kodama, T. J. Yasunari, and K. Sugiura, “Variations of the snow physical parameters and their effects on albedo in Sapporo, Japan,” Ann. Glaciol. 46, 375-381 (2007).
[CrossRef]

K. Stamnes, W. Li, H. Eide, Te. Aoki, M. Hori, and R. Storvold, “ADEOS-II/GLI snow/ice products----Part I: Scientific basis,” Remote. Sens. Environ. 111, 258-273 (2007).
[CrossRef]

T. Tanikawa, Te. Aoki, M. Hori, A. Hachikubo, O. Abe, and M. Aniya, “Monte Carlo simulations of spectral albedo for artificial snowpacks composed of spherical and nonspherical particles,” Appl. Opt. 45, 5310-5319 (2006).
[CrossRef] [PubMed]

T. Tanikawa, Te. Aoki, M. Hori, A. Hachikubo, and M. Aniya, “Snow bidirectional reflectance model using non-spherical snow particles and its validation with fields measurements,” EARSeL eProceedings 5, 137-145 (2006).

H. Motoyoshi, Te. Aoki, M. Hori, O. Abe, and S. Mochizuki, “Possible effect of anthropogenic aerosol deposition on snow albedo reduction at Shinjo, Japan,” J. Meteorol. Soc. Jpn. 83A, 137-146 (2005).
[CrossRef]

Te. Aoki, A. Hachikubo, and M. Hori, “Effects of snow physical parameters on shortwave broadband albedos,” J. Geophys. Res. 108, 4616, doi:10.1029/2003JD003506 (2003).
[CrossRef]

T. Tanikawa, Te. Aoki, and F. Nishio, “Remote sensing of snow grain-size and impurities from Airborne Multispectral Scanner data using a snow bidirectional reflectance distribution function model,” Ann. Glaciol. 34, 74-80 (2002).
[CrossRef]

Te. Aoki, Ta. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219-10236 (2000).
[CrossRef]

Te. Aoki, Ta. Aoki, M. Fukabori, and A. Uchiyama, “Numerical simulation of the atmospheric effects on snow albedo with a multiple scattering radiative transfer model for the atmosphere-snow system,” J. Meteorol. Soc. Jpn. 77, 595-614(1999).

Te. Aoki, Ta. Aoki, M. Fukabori, Y. Tachibana, Y. Zaizen, F. Nishio, and T. Oishi, “Spectral albedo observation on the snow field at Barrow, Alaska,” Polar Meteorol. Glaciol. 12, 1-9 (1998).

Asano, S.

S. Asano, M. Shiobara, Y. Nakanishi, and Y. Miyake, “A multichannel cloud pyranometer system for airborne measurement of solar spectral reflectance by cloud,” J. Atmos. Ocean. Technol. 12, 479-487 (1995).
[CrossRef]

Bergin, M. H.

G. S. W. Hagler, M. H. Bergin, E. A. Smith, J. E. Dibb, C. Anderson, and E. J. Steig, “Particulate and water-soluble carbon measured in recent snow at Summit, Greenland,” Geophys. Res. Lett. 34, doi:10.1029/2007GL030110 (2004).
[CrossRef]

Bohlander, J.

T. A. Scambos, T. M. Haran, M. A. Fahnestock, T. H. Painter, and J. Bohlander, “Continent-wide surface morphology and snow grain size,” Remote Sens. Environ. 111, 242-257(2007).
[CrossRef]

Bonnie, L.

T. C. Grenfell and L. Bonnie, “Spatial distribution and radiative effects of soot in the snow and sea ice during SHEBA experiment,” J. Geophys. Res. 107, 8032, doi: 10.1029/2000JC000414 (2002).
[CrossRef]

Bourdelles, B.

M. Fily, B. Bourdelles, J. P. Dedieu, and C. Sergent, “Comparison of in situ and Landsat Thematic Mapper derived snow grain characteristics in the alps,” Remote Sens. Environ. 59, 452-460 (1997).
[CrossRef]

Brandt, R. E.

S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: a revised compilation,” J. Geophys. Res. 113, D14220, doi:10.1029/2007JD009744 (2008).
[CrossRef]

S. G. Warren, R. E. Brandt, and P. O. Hinton, “Effect of surface roughness on bidirectional reflectance of Antarctic snow,” J. Geophys. Res. 103, 25789-25807 (1998).
[CrossRef]

Cary, R. A.

J. J. Huntzicker, R. L. Johnson, J. J. Shah, and R. A. Cary, “Analysis of organic and elemental carbon in ambient aerosol by a thermal-optical method,” in Particulate Carbon-Atmospheric Life Cycle, G.T.Wolff and R.L.Klimisch, eds. (Plenum, 1982), pp. 79-88.

Charlock, T. P.

Z. Jin, T. P. Charlock, P. Yang, Y. Xie, and W. Miller, “Snow optical properties of different particles shapes with application to snow grain size retrieval and MODIS/CERES radiance comparison over Antarctica,” Remote Sens. Environ. 112, 3563-3581 (2008).
[CrossRef]

Chen, B.

W. Li, K. Stamnes, B. Chen, and X. Xiong, “Snow grain size retrieved from near-infrared radiances at multiple wavelengths,” Geophys. Res. Lett. 28, 1699-1702 (2001).
[CrossRef]

Chen, L. W. A.

J. G. Watson, J. C. Chow, and L. W. A. Chen, “Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons,” Aerosol Air Qual. Res. 5, 65-102(2005).

Chetwynd, J. H.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, AFGL Atmospheric Constituent Profiles (0-120 km) (Air Force Geophys. Lab., 1986).
[PubMed]

Chow, J. C.

J. G. Watson, J. C. Chow, and L. W. A. Chen, “Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons,” Aerosol Air Qual. Res. 5, 65-102(2005).

J. C. Chow, J. G. Watson, L. C. Pritchett, W. R. Pierson, C. A. Frazier, and R. G. Purcell, “The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. Air Quality Studies,” Atmos. Environ. 27, 1185-1201 (1993).
[CrossRef]

Clough, S. A.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, AFGL Atmospheric Constituent Profiles (0-120 km) (Air Force Geophys. Lab., 1986).
[PubMed]

Dedieu, J. P.

M. Fily, B. Bourdelles, J. P. Dedieu, and C. Sergent, “Comparison of in situ and Landsat Thematic Mapper derived snow grain characteristics in the alps,” Remote Sens. Environ. 59, 452-460 (1997).
[CrossRef]

Deuzé, J.

C. Leroux, J. Deuzé, P. Goloub, C. Sergent, and M. Fily, “Ground measurements of the polarized bidirectional reflectance of snow in the near-infrared spectral domain: comparisons with model results,” J. Geophys. Res. 103, 19721-19731(1998).
[CrossRef]

Dibb, J. E.

G. S. W. Hagler, M. H. Bergin, E. A. Smith, J. E. Dibb, C. Anderson, and E. J. Steig, “Particulate and water-soluble carbon measured in recent snow at Summit, Greenland,” Geophys. Res. Lett. 34, doi:10.1029/2007GL030110 (2004).
[CrossRef]

Dozier, J.

T. H. Painter and J. Dozier, “Measurements of the hemispherical-directional reflectance of snow at fine spectral and angular resolution,” J. Geophys. Res. 109, doi:10.1029/2003JD004458 (2004).
[CrossRef]

A. W. Nolin and J. Dozier, “Estimating snow grain size using AVIRIS data,” Remote Sens. Environ. 44, 231-238 (1993).
[CrossRef]

Eide, H.

K. Stamnes, W. Li, H. Eide, Te. Aoki, M. Hori, and R. Storvold, “ADEOS-II/GLI snow/ice products----Part I: Scientific basis,” Remote. Sens. Environ. 111, 258-273 (2007).
[CrossRef]

Eide, H. A.

Te. Aoki, M. Hori, H. Motoyoshi, T. Tanikawa, A. Hachikubo, K. Sugiura, T. J. Yasunari, R. Storvold, H. A. Eide, K. Stamnes, W. Li, J. Nieke, Y. Nakajime, and F. Takahashi, “ADEOS-II/GLI snow/ice products----Part II: Validation results using GLI and MODIS data,” Remote Sens. Environ. 111, 274-290(2007).
[CrossRef]

Fahnestock, M. A.

T. A. Scambos, T. M. Haran, M. A. Fahnestock, T. H. Painter, and J. Bohlander, “Continent-wide surface morphology and snow grain size,” Remote Sens. Environ. 111, 242-257(2007).
[CrossRef]

Fily, M.

C. Leroux, J. Deuzé, P. Goloub, C. Sergent, and M. Fily, “Ground measurements of the polarized bidirectional reflectance of snow in the near-infrared spectral domain: comparisons with model results,” J. Geophys. Res. 103, 19721-19731(1998).
[CrossRef]

M. Fily, B. Bourdelles, J. P. Dedieu, and C. Sergent, “Comparison of in situ and Landsat Thematic Mapper derived snow grain characteristics in the alps,” Remote Sens. Environ. 59, 452-460 (1997).
[CrossRef]

Frazier, C. A.

J. C. Chow, J. G. Watson, L. C. Pritchett, W. R. Pierson, C. A. Frazier, and R. G. Purcell, “The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. Air Quality Studies,” Atmos. Environ. 27, 1185-1201 (1993).
[CrossRef]

Fukabori, M.

Te. Aoki, Ta. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219-10236 (2000).
[CrossRef]

Te. Aoki, Ta. Aoki, M. Fukabori, and A. Uchiyama, “Numerical simulation of the atmospheric effects on snow albedo with a multiple scattering radiative transfer model for the atmosphere-snow system,” J. Meteorol. Soc. Jpn. 77, 595-614(1999).

Te. Aoki, Ta. Aoki, M. Fukabori, Y. Tachibana, Y. Zaizen, F. Nishio, and T. Oishi, “Spectral albedo observation on the snow field at Barrow, Alaska,” Polar Meteorol. Glaciol. 12, 1-9 (1998).

Gelencser, A.

M. O. Andreae and A. Gelencser, “Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols,” Atmos. Chem. Phys. 6, 3131-3148 (2006).
[CrossRef]

Goloub, P.

C. Leroux, J. Deuzé, P. Goloub, C. Sergent, and M. Fily, “Ground measurements of the polarized bidirectional reflectance of snow in the near-infrared spectral domain: comparisons with model results,” J. Geophys. Res. 103, 19721-19731(1998).
[CrossRef]

Grenfell, T. C.

T. C. Grenfell and L. Bonnie, “Spatial distribution and radiative effects of soot in the snow and sea ice during SHEBA experiment,” J. Geophys. Res. 107, 8032, doi: 10.1029/2000JC000414 (2002).
[CrossRef]

T. C. Grenfell and S. G. Warren, “Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation,” J. Geophys. Res. 104, 31697-31709 (1999).
[CrossRef]

T. C. Grenfell, S. G. Warren, and P. C. Mullen, “Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths,” J. Geophys. Res. 99, 18669-18684 (1994).
[CrossRef]

Hachikubo, A.

Te. Aoki, M. Hori, H. Motoyoshi, T. Tanikawa, A. Hachikubo, K. Sugiura, T. J. Yasunari, R. Storvold, H. A. Eide, K. Stamnes, W. Li, J. Nieke, Y. Nakajime, and F. Takahashi, “ADEOS-II/GLI snow/ice products----Part II: Validation results using GLI and MODIS data,” Remote Sens. Environ. 111, 274-290(2007).
[CrossRef]

T. Tanikawa, Te. Aoki, M. Hori, A. Hachikubo, and M. Aniya, “Snow bidirectional reflectance model using non-spherical snow particles and its validation with fields measurements,” EARSeL eProceedings 5, 137-145 (2006).

T. Tanikawa, Te. Aoki, M. Hori, A. Hachikubo, O. Abe, and M. Aniya, “Monte Carlo simulations of spectral albedo for artificial snowpacks composed of spherical and nonspherical particles,” Appl. Opt. 45, 5310-5319 (2006).
[CrossRef] [PubMed]

Te. Aoki, A. Hachikubo, and M. Hori, “Effects of snow physical parameters on shortwave broadband albedos,” J. Geophys. Res. 108, 4616, doi:10.1029/2003JD003506 (2003).
[CrossRef]

Te. Aoki, Ta. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219-10236 (2000).
[CrossRef]

Hagler, G. S. W.

G. S. W. Hagler, M. H. Bergin, E. A. Smith, J. E. Dibb, C. Anderson, and E. J. Steig, “Particulate and water-soluble carbon measured in recent snow at Summit, Greenland,” Geophys. Res. Lett. 34, doi:10.1029/2007GL030110 (2004).
[CrossRef]

Haran, T. M.

T. A. Scambos, T. M. Haran, M. A. Fahnestock, T. H. Painter, and J. Bohlander, “Continent-wide surface morphology and snow grain size,” Remote Sens. Environ. 111, 242-257(2007).
[CrossRef]

Hess, M.

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831-844 (1998).
[CrossRef]

Hinton, P. O.

S. G. Warren, R. E. Brandt, and P. O. Hinton, “Effect of surface roughness on bidirectional reflectance of Antarctic snow,” J. Geophys. Res. 103, 25789-25807 (1998).
[CrossRef]

Hori, M.

M. Hori, Te. Aoki, K. Stamnes, and W. Li, “ADEOS-II/GLI snow/ice products----Part III: Retrieved results,” Remote. Sens. Environ. 111, 291-336 (2007).
[CrossRef]

Te. Aoki, M. Hori, H. Motoyoshi, T. Tanikawa, A. Hachikubo, K. Sugiura, T. J. Yasunari, R. Storvold, H. A. Eide, K. Stamnes, W. Li, J. Nieke, Y. Nakajime, and F. Takahashi, “ADEOS-II/GLI snow/ice products----Part II: Validation results using GLI and MODIS data,” Remote Sens. Environ. 111, 274-290(2007).
[CrossRef]

K. Stamnes, W. Li, H. Eide, Te. Aoki, M. Hori, and R. Storvold, “ADEOS-II/GLI snow/ice products----Part I: Scientific basis,” Remote. Sens. Environ. 111, 258-273 (2007).
[CrossRef]

T. Tanikawa, Te. Aoki, M. Hori, A. Hachikubo, and M. Aniya, “Snow bidirectional reflectance model using non-spherical snow particles and its validation with fields measurements,” EARSeL eProceedings 5, 137-145 (2006).

T. Tanikawa, Te. Aoki, M. Hori, A. Hachikubo, O. Abe, and M. Aniya, “Monte Carlo simulations of spectral albedo for artificial snowpacks composed of spherical and nonspherical particles,” Appl. Opt. 45, 5310-5319 (2006).
[CrossRef] [PubMed]

H. Motoyoshi, Te. Aoki, M. Hori, O. Abe, and S. Mochizuki, “Possible effect of anthropogenic aerosol deposition on snow albedo reduction at Shinjo, Japan,” J. Meteorol. Soc. Jpn. 83A, 137-146 (2005).
[CrossRef]

Te. Aoki, A. Hachikubo, and M. Hori, “Effects of snow physical parameters on shortwave broadband albedos,” J. Geophys. Res. 108, 4616, doi:10.1029/2003JD003506 (2003).
[CrossRef]

Huntzicker, J. J.

J. J. Huntzicker, R. L. Johnson, J. J. Shah, and R. A. Cary, “Analysis of organic and elemental carbon in ambient aerosol by a thermal-optical method,” in Particulate Carbon-Atmospheric Life Cycle, G.T.Wolff and R.L.Klimisch, eds. (Plenum, 1982), pp. 79-88.

Ishizaka, M.

M. Ishizaka, “New categories for the climatic division of snowy areas in Japan,” Ann. Glaciol. 26, 131-137 (1998).

Jin, Z.

Z. Jin, T. P. Charlock, P. Yang, Y. Xie, and W. Miller, “Snow optical properties of different particles shapes with application to snow grain size retrieval and MODIS/CERES radiance comparison over Antarctica,” Remote Sens. Environ. 112, 3563-3581 (2008).
[CrossRef]

Johnson, R. L.

J. J. Huntzicker, R. L. Johnson, J. J. Shah, and R. A. Cary, “Analysis of organic and elemental carbon in ambient aerosol by a thermal-optical method,” in Particulate Carbon-Atmospheric Life Cycle, G.T.Wolff and R.L.Klimisch, eds. (Plenum, 1982), pp. 79-88.

Kneizys, F. X.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, AFGL Atmospheric Constituent Profiles (0-120 km) (Air Force Geophys. Lab., 1986).
[PubMed]

Kodama, Y.

Te. Aoki, H. Motoyoshi, Y. Kodama, T. J. Yasunari, and K. Sugiura, “Variations of the snow physical parameters and their effects on albedo in Sapporo, Japan,” Ann. Glaciol. 46, 375-381 (2007).
[CrossRef]

Koepke, P.

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831-844 (1998).
[CrossRef]

Leroux, C.

C. Leroux, J. Deuzé, P. Goloub, C. Sergent, and M. Fily, “Ground measurements of the polarized bidirectional reflectance of snow in the near-infrared spectral domain: comparisons with model results,” J. Geophys. Res. 103, 19721-19731(1998).
[CrossRef]

Li, W.

K. Stamnes, W. Li, H. Eide, Te. Aoki, M. Hori, and R. Storvold, “ADEOS-II/GLI snow/ice products----Part I: Scientific basis,” Remote. Sens. Environ. 111, 258-273 (2007).
[CrossRef]

Te. Aoki, M. Hori, H. Motoyoshi, T. Tanikawa, A. Hachikubo, K. Sugiura, T. J. Yasunari, R. Storvold, H. A. Eide, K. Stamnes, W. Li, J. Nieke, Y. Nakajime, and F. Takahashi, “ADEOS-II/GLI snow/ice products----Part II: Validation results using GLI and MODIS data,” Remote Sens. Environ. 111, 274-290(2007).
[CrossRef]

M. Hori, Te. Aoki, K. Stamnes, and W. Li, “ADEOS-II/GLI snow/ice products----Part III: Retrieved results,” Remote. Sens. Environ. 111, 291-336 (2007).
[CrossRef]

W. Li, K. Stamnes, B. Chen, and X. Xiong, “Snow grain size retrieved from near-infrared radiances at multiple wavelengths,” Geophys. Res. Lett. 28, 1699-1702 (2001).
[CrossRef]

Miller, W.

Z. Jin, T. P. Charlock, P. Yang, Y. Xie, and W. Miller, “Snow optical properties of different particles shapes with application to snow grain size retrieval and MODIS/CERES radiance comparison over Antarctica,” Remote Sens. Environ. 112, 3563-3581 (2008).
[CrossRef]

Miyake, Y.

S. Asano, M. Shiobara, Y. Nakanishi, and Y. Miyake, “A multichannel cloud pyranometer system for airborne measurement of solar spectral reflectance by cloud,” J. Atmos. Ocean. Technol. 12, 479-487 (1995).
[CrossRef]

Mochizuki, S.

H. Motoyoshi, Te. Aoki, M. Hori, O. Abe, and S. Mochizuki, “Possible effect of anthropogenic aerosol deposition on snow albedo reduction at Shinjo, Japan,” J. Meteorol. Soc. Jpn. 83A, 137-146 (2005).
[CrossRef]

Motoyoshi, H.

Te. Aoki, H. Motoyoshi, Y. Kodama, T. J. Yasunari, and K. Sugiura, “Variations of the snow physical parameters and their effects on albedo in Sapporo, Japan,” Ann. Glaciol. 46, 375-381 (2007).
[CrossRef]

Te. Aoki, M. Hori, H. Motoyoshi, T. Tanikawa, A. Hachikubo, K. Sugiura, T. J. Yasunari, R. Storvold, H. A. Eide, K. Stamnes, W. Li, J. Nieke, Y. Nakajime, and F. Takahashi, “ADEOS-II/GLI snow/ice products----Part II: Validation results using GLI and MODIS data,” Remote Sens. Environ. 111, 274-290(2007).
[CrossRef]

H. Motoyoshi, Te. Aoki, M. Hori, O. Abe, and S. Mochizuki, “Possible effect of anthropogenic aerosol deposition on snow albedo reduction at Shinjo, Japan,” J. Meteorol. Soc. Jpn. 83A, 137-146 (2005).
[CrossRef]

Mullen, P. C.

T. C. Grenfell, S. G. Warren, and P. C. Mullen, “Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths,” J. Geophys. Res. 99, 18669-18684 (1994).
[CrossRef]

Nakajime, Y.

Te. Aoki, M. Hori, H. Motoyoshi, T. Tanikawa, A. Hachikubo, K. Sugiura, T. J. Yasunari, R. Storvold, H. A. Eide, K. Stamnes, W. Li, J. Nieke, Y. Nakajime, and F. Takahashi, “ADEOS-II/GLI snow/ice products----Part II: Validation results using GLI and MODIS data,” Remote Sens. Environ. 111, 274-290(2007).
[CrossRef]

Nakanishi, Y.

S. Asano, M. Shiobara, Y. Nakanishi, and Y. Miyake, “A multichannel cloud pyranometer system for airborne measurement of solar spectral reflectance by cloud,” J. Atmos. Ocean. Technol. 12, 479-487 (1995).
[CrossRef]

Nieke, J.

Te. Aoki, M. Hori, H. Motoyoshi, T. Tanikawa, A. Hachikubo, K. Sugiura, T. J. Yasunari, R. Storvold, H. A. Eide, K. Stamnes, W. Li, J. Nieke, Y. Nakajime, and F. Takahashi, “ADEOS-II/GLI snow/ice products----Part II: Validation results using GLI and MODIS data,” Remote Sens. Environ. 111, 274-290(2007).
[CrossRef]

Nishio, F.

T. Tanikawa, Te. Aoki, and F. Nishio, “Remote sensing of snow grain-size and impurities from Airborne Multispectral Scanner data using a snow bidirectional reflectance distribution function model,” Ann. Glaciol. 34, 74-80 (2002).
[CrossRef]

Te. Aoki, Ta. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219-10236 (2000).
[CrossRef]

Te. Aoki, Ta. Aoki, M. Fukabori, Y. Tachibana, Y. Zaizen, F. Nishio, and T. Oishi, “Spectral albedo observation on the snow field at Barrow, Alaska,” Polar Meteorol. Glaciol. 12, 1-9 (1998).

Nolin, A. W.

A. W. Nolin and J. Dozier, “Estimating snow grain size using AVIRIS data,” Remote Sens. Environ. 44, 231-238 (1993).
[CrossRef]

Oishi, T.

Te. Aoki, Ta. Aoki, M. Fukabori, Y. Tachibana, Y. Zaizen, F. Nishio, and T. Oishi, “Spectral albedo observation on the snow field at Barrow, Alaska,” Polar Meteorol. Glaciol. 12, 1-9 (1998).

Painter, T. H.

T. A. Scambos, T. M. Haran, M. A. Fahnestock, T. H. Painter, and J. Bohlander, “Continent-wide surface morphology and snow grain size,” Remote Sens. Environ. 111, 242-257(2007).
[CrossRef]

T. H. Painter and J. Dozier, “Measurements of the hemispherical-directional reflectance of snow at fine spectral and angular resolution,” J. Geophys. Res. 109, doi:10.1029/2003JD004458 (2004).
[CrossRef]

Pierson, W. R.

J. C. Chow, J. G. Watson, L. C. Pritchett, W. R. Pierson, C. A. Frazier, and R. G. Purcell, “The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. Air Quality Studies,” Atmos. Environ. 27, 1185-1201 (1993).
[CrossRef]

Pritchett, L. C.

J. C. Chow, J. G. Watson, L. C. Pritchett, W. R. Pierson, C. A. Frazier, and R. G. Purcell, “The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. Air Quality Studies,” Atmos. Environ. 27, 1185-1201 (1993).
[CrossRef]

Purcell, R. G.

J. C. Chow, J. G. Watson, L. C. Pritchett, W. R. Pierson, C. A. Frazier, and R. G. Purcell, “The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. Air Quality Studies,” Atmos. Environ. 27, 1185-1201 (1993).
[CrossRef]

Scambos, T. A.

T. A. Scambos, T. M. Haran, M. A. Fahnestock, T. H. Painter, and J. Bohlander, “Continent-wide surface morphology and snow grain size,” Remote Sens. Environ. 111, 242-257(2007).
[CrossRef]

Schult, I.

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831-844 (1998).
[CrossRef]

Sergent, C.

C. Leroux, J. Deuzé, P. Goloub, C. Sergent, and M. Fily, “Ground measurements of the polarized bidirectional reflectance of snow in the near-infrared spectral domain: comparisons with model results,” J. Geophys. Res. 103, 19721-19731(1998).
[CrossRef]

M. Fily, B. Bourdelles, J. P. Dedieu, and C. Sergent, “Comparison of in situ and Landsat Thematic Mapper derived snow grain characteristics in the alps,” Remote Sens. Environ. 59, 452-460 (1997).
[CrossRef]

Shah, J. J.

J. J. Huntzicker, R. L. Johnson, J. J. Shah, and R. A. Cary, “Analysis of organic and elemental carbon in ambient aerosol by a thermal-optical method,” in Particulate Carbon-Atmospheric Life Cycle, G.T.Wolff and R.L.Klimisch, eds. (Plenum, 1982), pp. 79-88.

Shettle, E. P.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, AFGL Atmospheric Constituent Profiles (0-120 km) (Air Force Geophys. Lab., 1986).
[PubMed]

Shiobara, M.

S. Asano, M. Shiobara, Y. Nakanishi, and Y. Miyake, “A multichannel cloud pyranometer system for airborne measurement of solar spectral reflectance by cloud,” J. Atmos. Ocean. Technol. 12, 479-487 (1995).
[CrossRef]

Smith, E. A.

G. S. W. Hagler, M. H. Bergin, E. A. Smith, J. E. Dibb, C. Anderson, and E. J. Steig, “Particulate and water-soluble carbon measured in recent snow at Summit, Greenland,” Geophys. Res. Lett. 34, doi:10.1029/2007GL030110 (2004).
[CrossRef]

Stamnes, K.

K. Stamnes, W. Li, H. Eide, Te. Aoki, M. Hori, and R. Storvold, “ADEOS-II/GLI snow/ice products----Part I: Scientific basis,” Remote. Sens. Environ. 111, 258-273 (2007).
[CrossRef]

Te. Aoki, M. Hori, H. Motoyoshi, T. Tanikawa, A. Hachikubo, K. Sugiura, T. J. Yasunari, R. Storvold, H. A. Eide, K. Stamnes, W. Li, J. Nieke, Y. Nakajime, and F. Takahashi, “ADEOS-II/GLI snow/ice products----Part II: Validation results using GLI and MODIS data,” Remote Sens. Environ. 111, 274-290(2007).
[CrossRef]

M. Hori, Te. Aoki, K. Stamnes, and W. Li, “ADEOS-II/GLI snow/ice products----Part III: Retrieved results,” Remote. Sens. Environ. 111, 291-336 (2007).
[CrossRef]

W. Li, K. Stamnes, B. Chen, and X. Xiong, “Snow grain size retrieved from near-infrared radiances at multiple wavelengths,” Geophys. Res. Lett. 28, 1699-1702 (2001).
[CrossRef]

Steig, E. J.

G. S. W. Hagler, M. H. Bergin, E. A. Smith, J. E. Dibb, C. Anderson, and E. J. Steig, “Particulate and water-soluble carbon measured in recent snow at Summit, Greenland,” Geophys. Res. Lett. 34, doi:10.1029/2007GL030110 (2004).
[CrossRef]

Steven, M. D.

M. D. Steven and M. H. Unsworth, “The angular distribution and interception of diffuse solar radiation below overcast skies,” Q. J. R. Meteorol. Soc. 106, 57-61 (1980).
[CrossRef]

M. D. Steven, “Standard distributions of clear sky radiance,” Q. J. R. Meteorol. Soc. 103, 457-465 (1977).
[CrossRef]

Storvold, R.

K. Stamnes, W. Li, H. Eide, Te. Aoki, M. Hori, and R. Storvold, “ADEOS-II/GLI snow/ice products----Part I: Scientific basis,” Remote. Sens. Environ. 111, 258-273 (2007).
[CrossRef]

Te. Aoki, M. Hori, H. Motoyoshi, T. Tanikawa, A. Hachikubo, K. Sugiura, T. J. Yasunari, R. Storvold, H. A. Eide, K. Stamnes, W. Li, J. Nieke, Y. Nakajime, and F. Takahashi, “ADEOS-II/GLI snow/ice products----Part II: Validation results using GLI and MODIS data,” Remote Sens. Environ. 111, 274-290(2007).
[CrossRef]

Sugiura, K.

Te. Aoki, M. Hori, H. Motoyoshi, T. Tanikawa, A. Hachikubo, K. Sugiura, T. J. Yasunari, R. Storvold, H. A. Eide, K. Stamnes, W. Li, J. Nieke, Y. Nakajime, and F. Takahashi, “ADEOS-II/GLI snow/ice products----Part II: Validation results using GLI and MODIS data,” Remote Sens. Environ. 111, 274-290(2007).
[CrossRef]

Te. Aoki, H. Motoyoshi, Y. Kodama, T. J. Yasunari, and K. Sugiura, “Variations of the snow physical parameters and their effects on albedo in Sapporo, Japan,” Ann. Glaciol. 46, 375-381 (2007).
[CrossRef]

Tachibana, Y.

Te. Aoki, Ta. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219-10236 (2000).
[CrossRef]

Te. Aoki, Ta. Aoki, M. Fukabori, Y. Tachibana, Y. Zaizen, F. Nishio, and T. Oishi, “Spectral albedo observation on the snow field at Barrow, Alaska,” Polar Meteorol. Glaciol. 12, 1-9 (1998).

Takahashi, F.

Te. Aoki, M. Hori, H. Motoyoshi, T. Tanikawa, A. Hachikubo, K. Sugiura, T. J. Yasunari, R. Storvold, H. A. Eide, K. Stamnes, W. Li, J. Nieke, Y. Nakajime, and F. Takahashi, “ADEOS-II/GLI snow/ice products----Part II: Validation results using GLI and MODIS data,” Remote Sens. Environ. 111, 274-290(2007).
[CrossRef]

Tanikawa, T.

Te. Aoki, M. Hori, H. Motoyoshi, T. Tanikawa, A. Hachikubo, K. Sugiura, T. J. Yasunari, R. Storvold, H. A. Eide, K. Stamnes, W. Li, J. Nieke, Y. Nakajime, and F. Takahashi, “ADEOS-II/GLI snow/ice products----Part II: Validation results using GLI and MODIS data,” Remote Sens. Environ. 111, 274-290(2007).
[CrossRef]

T. Tanikawa, Te. Aoki, M. Hori, A. Hachikubo, and M. Aniya, “Snow bidirectional reflectance model using non-spherical snow particles and its validation with fields measurements,” EARSeL eProceedings 5, 137-145 (2006).

T. Tanikawa, Te. Aoki, M. Hori, A. Hachikubo, O. Abe, and M. Aniya, “Monte Carlo simulations of spectral albedo for artificial snowpacks composed of spherical and nonspherical particles,” Appl. Opt. 45, 5310-5319 (2006).
[CrossRef] [PubMed]

T. Tanikawa, Te. Aoki, and F. Nishio, “Remote sensing of snow grain-size and impurities from Airborne Multispectral Scanner data using a snow bidirectional reflectance distribution function model,” Ann. Glaciol. 34, 74-80 (2002).
[CrossRef]

Uchiyama, A.

Te. Aoki, Ta. Aoki, M. Fukabori, and A. Uchiyama, “Numerical simulation of the atmospheric effects on snow albedo with a multiple scattering radiative transfer model for the atmosphere-snow system,” J. Meteorol. Soc. Jpn. 77, 595-614(1999).

Unsworth, M. H.

M. D. Steven and M. H. Unsworth, “The angular distribution and interception of diffuse solar radiation below overcast skies,” Q. J. R. Meteorol. Soc. 106, 57-61 (1980).
[CrossRef]

Warren, S. G.

S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: a revised compilation,” J. Geophys. Res. 113, D14220, doi:10.1029/2007JD009744 (2008).
[CrossRef]

T. C. Grenfell and S. G. Warren, “Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation,” J. Geophys. Res. 104, 31697-31709 (1999).
[CrossRef]

S. G. Warren, R. E. Brandt, and P. O. Hinton, “Effect of surface roughness on bidirectional reflectance of Antarctic snow,” J. Geophys. Res. 103, 25789-25807 (1998).
[CrossRef]

T. C. Grenfell, S. G. Warren, and P. C. Mullen, “Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths,” J. Geophys. Res. 99, 18669-18684 (1994).
[CrossRef]

S. G. Warren, “Optical properties of snow,” Rev. Geophys. Space Phys. 20, 67-89 (1982).
[CrossRef]

W. J. Wiscombe and S. G. Warren, “A model for the spectral albedo of snow. I: Pure snow,” J. Atmos. Sci. 37, 2712-2733(1980).
[CrossRef]

S. G. Warren and W. J. Wiscombe, “A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols,” J. Atmos. Sci. 37, 2734-2745 (1980).
[CrossRef]

Watson, J. G.

J. G. Watson, J. C. Chow, and L. W. A. Chen, “Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons,” Aerosol Air Qual. Res. 5, 65-102(2005).

J. C. Chow, J. G. Watson, L. C. Pritchett, W. R. Pierson, C. A. Frazier, and R. G. Purcell, “The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. Air Quality Studies,” Atmos. Environ. 27, 1185-1201 (1993).
[CrossRef]

Wiscombe, W. J.

S. G. Warren and W. J. Wiscombe, “A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols,” J. Atmos. Sci. 37, 2734-2745 (1980).
[CrossRef]

W. J. Wiscombe and S. G. Warren, “A model for the spectral albedo of snow. I: Pure snow,” J. Atmos. Sci. 37, 2712-2733(1980).
[CrossRef]

Xie, Y.

Z. Jin, T. P. Charlock, P. Yang, Y. Xie, and W. Miller, “Snow optical properties of different particles shapes with application to snow grain size retrieval and MODIS/CERES radiance comparison over Antarctica,” Remote Sens. Environ. 112, 3563-3581 (2008).
[CrossRef]

Xiong, X.

W. Li, K. Stamnes, B. Chen, and X. Xiong, “Snow grain size retrieved from near-infrared radiances at multiple wavelengths,” Geophys. Res. Lett. 28, 1699-1702 (2001).
[CrossRef]

Yamanouchi, T.

T. Yamanouchi, “Variations of incident solar flux and snow albedo on the solar zenith angle and cloud cover, at Mizuho station, Antarctica,” J. Meteorol. Soc. Jpn. 61, 879-893 (1983).

Yang, P.

Z. Jin, T. P. Charlock, P. Yang, Y. Xie, and W. Miller, “Snow optical properties of different particles shapes with application to snow grain size retrieval and MODIS/CERES radiance comparison over Antarctica,” Remote Sens. Environ. 112, 3563-3581 (2008).
[CrossRef]

Yasunari, T. J.

Te. Aoki, M. Hori, H. Motoyoshi, T. Tanikawa, A. Hachikubo, K. Sugiura, T. J. Yasunari, R. Storvold, H. A. Eide, K. Stamnes, W. Li, J. Nieke, Y. Nakajime, and F. Takahashi, “ADEOS-II/GLI snow/ice products----Part II: Validation results using GLI and MODIS data,” Remote Sens. Environ. 111, 274-290(2007).
[CrossRef]

Te. Aoki, H. Motoyoshi, Y. Kodama, T. J. Yasunari, and K. Sugiura, “Variations of the snow physical parameters and their effects on albedo in Sapporo, Japan,” Ann. Glaciol. 46, 375-381 (2007).
[CrossRef]

Zaizen, Y.

Te. Aoki, Ta. Aoki, M. Fukabori, Y. Tachibana, Y. Zaizen, F. Nishio, and T. Oishi, “Spectral albedo observation on the snow field at Barrow, Alaska,” Polar Meteorol. Glaciol. 12, 1-9 (1998).

Aerosol Air Qual. Res. (1)

J. G. Watson, J. C. Chow, and L. W. A. Chen, “Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons,” Aerosol Air Qual. Res. 5, 65-102(2005).

Ann. Glaciol. (3)

M. Ishizaka, “New categories for the climatic division of snowy areas in Japan,” Ann. Glaciol. 26, 131-137 (1998).

Te. Aoki, H. Motoyoshi, Y. Kodama, T. J. Yasunari, and K. Sugiura, “Variations of the snow physical parameters and their effects on albedo in Sapporo, Japan,” Ann. Glaciol. 46, 375-381 (2007).
[CrossRef]

T. Tanikawa, Te. Aoki, and F. Nishio, “Remote sensing of snow grain-size and impurities from Airborne Multispectral Scanner data using a snow bidirectional reflectance distribution function model,” Ann. Glaciol. 34, 74-80 (2002).
[CrossRef]

Appl. Opt. (1)

Atmos. Chem. Phys. (1)

M. O. Andreae and A. Gelencser, “Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols,” Atmos. Chem. Phys. 6, 3131-3148 (2006).
[CrossRef]

Atmos. Environ. (1)

J. C. Chow, J. G. Watson, L. C. Pritchett, W. R. Pierson, C. A. Frazier, and R. G. Purcell, “The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. Air Quality Studies,” Atmos. Environ. 27, 1185-1201 (1993).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831-844 (1998).
[CrossRef]

EARSeL eProceedings (1)

T. Tanikawa, Te. Aoki, M. Hori, A. Hachikubo, and M. Aniya, “Snow bidirectional reflectance model using non-spherical snow particles and its validation with fields measurements,” EARSeL eProceedings 5, 137-145 (2006).

Geophys. Res. Lett. (2)

W. Li, K. Stamnes, B. Chen, and X. Xiong, “Snow grain size retrieved from near-infrared radiances at multiple wavelengths,” Geophys. Res. Lett. 28, 1699-1702 (2001).
[CrossRef]

G. S. W. Hagler, M. H. Bergin, E. A. Smith, J. E. Dibb, C. Anderson, and E. J. Steig, “Particulate and water-soluble carbon measured in recent snow at Summit, Greenland,” Geophys. Res. Lett. 34, doi:10.1029/2007GL030110 (2004).
[CrossRef]

J. Atmos. Ocean. Technol. (1)

S. Asano, M. Shiobara, Y. Nakanishi, and Y. Miyake, “A multichannel cloud pyranometer system for airborne measurement of solar spectral reflectance by cloud,” J. Atmos. Ocean. Technol. 12, 479-487 (1995).
[CrossRef]

J. Atmos. Sci. (2)

W. J. Wiscombe and S. G. Warren, “A model for the spectral albedo of snow. I: Pure snow,” J. Atmos. Sci. 37, 2712-2733(1980).
[CrossRef]

S. G. Warren and W. J. Wiscombe, “A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols,” J. Atmos. Sci. 37, 2734-2745 (1980).
[CrossRef]

J. Geophys. Res. (9)

Te. Aoki, Ta. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219-10236 (2000).
[CrossRef]

Te. Aoki, A. Hachikubo, and M. Hori, “Effects of snow physical parameters on shortwave broadband albedos,” J. Geophys. Res. 108, 4616, doi:10.1029/2003JD003506 (2003).
[CrossRef]

T. C. Grenfell, S. G. Warren, and P. C. Mullen, “Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths,” J. Geophys. Res. 99, 18669-18684 (1994).
[CrossRef]

T. C. Grenfell and S. G. Warren, “Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation,” J. Geophys. Res. 104, 31697-31709 (1999).
[CrossRef]

S. G. Warren, R. E. Brandt, and P. O. Hinton, “Effect of surface roughness on bidirectional reflectance of Antarctic snow,” J. Geophys. Res. 103, 25789-25807 (1998).
[CrossRef]

T. H. Painter and J. Dozier, “Measurements of the hemispherical-directional reflectance of snow at fine spectral and angular resolution,” J. Geophys. Res. 109, doi:10.1029/2003JD004458 (2004).
[CrossRef]

S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: a revised compilation,” J. Geophys. Res. 113, D14220, doi:10.1029/2007JD009744 (2008).
[CrossRef]

T. C. Grenfell and L. Bonnie, “Spatial distribution and radiative effects of soot in the snow and sea ice during SHEBA experiment,” J. Geophys. Res. 107, 8032, doi: 10.1029/2000JC000414 (2002).
[CrossRef]

C. Leroux, J. Deuzé, P. Goloub, C. Sergent, and M. Fily, “Ground measurements of the polarized bidirectional reflectance of snow in the near-infrared spectral domain: comparisons with model results,” J. Geophys. Res. 103, 19721-19731(1998).
[CrossRef]

J. Meteorol. Soc. Jpn. (3)

Te. Aoki, Ta. Aoki, M. Fukabori, and A. Uchiyama, “Numerical simulation of the atmospheric effects on snow albedo with a multiple scattering radiative transfer model for the atmosphere-snow system,” J. Meteorol. Soc. Jpn. 77, 595-614(1999).

T. Yamanouchi, “Variations of incident solar flux and snow albedo on the solar zenith angle and cloud cover, at Mizuho station, Antarctica,” J. Meteorol. Soc. Jpn. 61, 879-893 (1983).

H. Motoyoshi, Te. Aoki, M. Hori, O. Abe, and S. Mochizuki, “Possible effect of anthropogenic aerosol deposition on snow albedo reduction at Shinjo, Japan,” J. Meteorol. Soc. Jpn. 83A, 137-146 (2005).
[CrossRef]

Polar Meteorol. Glaciol. (1)

Te. Aoki, Ta. Aoki, M. Fukabori, Y. Tachibana, Y. Zaizen, F. Nishio, and T. Oishi, “Spectral albedo observation on the snow field at Barrow, Alaska,” Polar Meteorol. Glaciol. 12, 1-9 (1998).

Q. J. R. Meteorol. Soc. (2)

M. D. Steven, “Standard distributions of clear sky radiance,” Q. J. R. Meteorol. Soc. 103, 457-465 (1977).
[CrossRef]

M. D. Steven and M. H. Unsworth, “The angular distribution and interception of diffuse solar radiation below overcast skies,” Q. J. R. Meteorol. Soc. 106, 57-61 (1980).
[CrossRef]

Remote Sens. Environ. (5)

Te. Aoki, M. Hori, H. Motoyoshi, T. Tanikawa, A. Hachikubo, K. Sugiura, T. J. Yasunari, R. Storvold, H. A. Eide, K. Stamnes, W. Li, J. Nieke, Y. Nakajime, and F. Takahashi, “ADEOS-II/GLI snow/ice products----Part II: Validation results using GLI and MODIS data,” Remote Sens. Environ. 111, 274-290(2007).
[CrossRef]

A. W. Nolin and J. Dozier, “Estimating snow grain size using AVIRIS data,” Remote Sens. Environ. 44, 231-238 (1993).
[CrossRef]

M. Fily, B. Bourdelles, J. P. Dedieu, and C. Sergent, “Comparison of in situ and Landsat Thematic Mapper derived snow grain characteristics in the alps,” Remote Sens. Environ. 59, 452-460 (1997).
[CrossRef]

T. A. Scambos, T. M. Haran, M. A. Fahnestock, T. H. Painter, and J. Bohlander, “Continent-wide surface morphology and snow grain size,” Remote Sens. Environ. 111, 242-257(2007).
[CrossRef]

Z. Jin, T. P. Charlock, P. Yang, Y. Xie, and W. Miller, “Snow optical properties of different particles shapes with application to snow grain size retrieval and MODIS/CERES radiance comparison over Antarctica,” Remote Sens. Environ. 112, 3563-3581 (2008).
[CrossRef]

Remote. Sens. Environ. (2)

K. Stamnes, W. Li, H. Eide, Te. Aoki, M. Hori, and R. Storvold, “ADEOS-II/GLI snow/ice products----Part I: Scientific basis,” Remote. Sens. Environ. 111, 258-273 (2007).
[CrossRef]

M. Hori, Te. Aoki, K. Stamnes, and W. Li, “ADEOS-II/GLI snow/ice products----Part III: Retrieved results,” Remote. Sens. Environ. 111, 291-336 (2007).
[CrossRef]

Rev. Geophys. Space Phys. (1)

S. G. Warren, “Optical properties of snow,” Rev. Geophys. Space Phys. 20, 67-89 (1982).
[CrossRef]

Other (2)

J. J. Huntzicker, R. L. Johnson, J. J. Shah, and R. A. Cary, “Analysis of organic and elemental carbon in ambient aerosol by a thermal-optical method,” in Particulate Carbon-Atmospheric Life Cycle, G.T.Wolff and R.L.Klimisch, eds. (Plenum, 1982), pp. 79-88.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, AFGL Atmospheric Constituent Profiles (0-120 km) (Air Force Geophys. Lab., 1986).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Photographs of the (a) observational setup of the GSAF and (b–d) three measurement modes. The diffuse component of downward flux is measured with the shadow blade blocking the direct component [(b) diffuse mode]. The downward global (upward) radiant flux is measured by turning the sensor unit upward (downward) [(c) global mode and (d) upward mode]. (e) Schematic illustration of the GSAF.

Fig. 2
Fig. 2

Deviation from an ideal cosine response of the incident angle dependence of the GSAF for the channels at λ = 0.44 , 0.87, 1.23, and 1.60 μm .

Fig. 3
Fig. 3

Normalized azimuthally averaged angular distributions of incoming radiance at θ 0 = 56.8 ° as a function of θ for downward diffuse flux ( D ¯ λ , dif ) at (a)  λ = 0.44 μm and (b)  λ = 1.60 μm . The val ues of D ¯ λ , dif are theoretically calculated under four atmospheric conditions with different optical depths of aerosols ( τ a ) and clouds ( τ c ) at λ = 0.5 μm .

Fig. 4
Fig. 4

Same as Fig. 3 but for upward flux only for direct solar irradiance ( D ¯ λ , dir ). The values of D ¯ λ , dir are theoretically calculated for three snowpack conditions with different effective snow grain radius ( r e ) and soot mass concentration in snow ( c s ).

Fig. 5
Fig. 5

Correction factor for downward direct flux ( C λ , dir ) as a function of solar zenith angle for the channels at λ = 0.44 , 0.87, 1.23, and 1.60 μm .

Fig. 6
Fig. 6

(a, b) Correction factor for downward diffuse flux ( C λ , dif ) as a function of uncorrected diffuse fraction ( r λ , dif * ) at (a)  λ = 0.44 μm and (b)  λ = 1.60 μm . (c, d) Correction factor for upward flux for direct irradiance ( C λ , dir ) and upward flux for diffuse irradiance ( C λ , dif ) as a function of uncorrected albedo ( α λ * ) at (c)  λ = 0.44 μm and (d)  λ = 1.60 μm . The solid horizontal line indicates the correction factor on the assumption of isotropic irradiance.

Fig. 7
Fig. 7

(a) Relationships of theoretically calculated spectral albedo at λ = 0.44 and 0.87 μm to various combinations of soot mass concentration ( c s ) and effective snow grain radius ( r e ). (b) Theoretically calculated spectral albedo as a function of effective snow grain radius at λ = 1.23 and 1.60 μm . Solar zenith angle ( θ 0 ) is 56.8 ° , and the diffuse fractions ( r λ , dif ) at λ = 0.44 , 0.87, 1.23, and 1.60 μm are 0.40, 0.10, 0.05, and 0.03, respectively.

Fig. 8
Fig. 8

Map showing the locations of observation sites, Sapporo and Memuro, in Hokkaido, Japan.

Fig. 9
Fig. 9

(a–c) Daily variations in (a) spectral albedos for the four spectral channels, (b) diffuse fraction of downward flux at λ = 0.87 μm , and (c) snow depth and air temperature at the Sapporo site during 2007/2008 winter. (d–f) Same as (a–c) but at the Memuro site. These measured values are 30 min averages from 1131 to 1200 h local time, around local solar noon.

Fig. 10
Fig. 10

(a) Retrieved soot mass concentration ( c s ), in situ measured total mass concentration of snow impurities [ c TOT ( 2 ) and c TOT ( 10 ) ], and in situ measured mass concentration of elemental carbon [ c EC ( 2 ) and c EC ( 10 ) ] at the Sapporo site. The snow layers of in situ measurements are 0 to 2 cm depth and 0 to 10 cm depth. (b) Effective snow grain radii retrieved with the different spectral channels ( r e 0.87 , r e 1.23 , and r e 1.60 ) and in situ measured snow grain radius averaged in 0 to 1 cm layer [ r ¯ 2 ( 1 ) ] at Sapporo. (c, d) Same as (a, b) but at Memuro.

Fig. 11
Fig. 11

Relative differences in snow physical pa rameters between those retrieved using the semi-infinite snow depth (SSD) algorithm and those retrieved using the finite snow depth (FSD) algorithm, together with snow water equivalent at (a) Sapporo and (b) Memuro. The values for r e 1.23 and r e 1.60 are less than 0.5%, and almost overlap with a solid horizontal line indicating 0%.

Fig. 12
Fig. 12

Relationships between retrieved soot mass concentration ( c s ) and in situ measured mass concentration of elemental carbon ( c EC ) in three different snow layers. The snow layers of the in situ measurements are (a) 0 to 2 cm , (b) 0 to 10 cm , and (c) 0 to 2 cm when r e 0.87 < 45 μm and 0 to 10 cm when r e 0.87 > 45 μm . The solid line represents a 1 1 relationship.

Fig. 13
Fig. 13

Relationships between effective snow grain radii retrieved with the different spectral channels [(a)  r e 0.87 , (b)  r e 1.23 , and (c)  r e 1.60 ] and in situ measured snow grain radius averaged in the specified snow layer [ r ¯ 2 ( d ) ]. The snow layers of the in situ measurements are (a) 0 to 3 cm , (b) 0 to 1 cm , and (c) the surface, at which the correlation coefficient is a maximum. The solid line represents a 1 1 relationship. The value indicated by A and B in (c) correspond to that on 11 March 2008 (21 March 2008) at Sapporo. The micrographs of snow grains on these days are shown in Fig. 15.

Fig. 14
Fig. 14

Correlation coefficient (R) between the retrieved effective snow grain radii ( r e 0.87 , r e 1.23 , and r e 1.60 ) and the in situ measured snow grain radius averaged in the specified snow layer [ r ¯ 2 ( d ) ] as a function of the snow layer thickness from the surface.

Fig. 15
Fig. 15

Micrographs of the snow grains for the surface at Sapporo on (a) 11 March 2008 and (b) 21 March 2008.

Tables (2)

Tables Icon

Table 1 Theoretically Calculated Penetration Depth as Functions of Soot Mass Concentration ( c s ) and Effective Snow Grain Radius ( r e ) at the GSAF Channels

Tables Icon

Table 2 Parameters of Statistical Analysis Between Retrieved Snow Physical Parameters and in situ Measurements

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

f λ , dif ( θ 0 ) = 2 0 π / 2 f λ ( θ ) D ¯ λ ( θ 0 , θ ) cos θ sin θ d θ ,
D ¯ λ ( θ 0 , θ ) = 1 2 π 0 2 π I λ ( θ 0 , θ , ϕ ) d ϕ 1 π 0 2 π 0 π / 2 I λ ( θ 0 , θ , ϕ ) cos θ sin θ d θ d ϕ ,
D ¯ λ , dif ( θ ) = 2 0 π / 2 D ¯ λ , dir ( θ i , θ ) cos θ i sin θ i d θ i .
C λ , dir ( θ 0 ) = 1 f λ , dir ( θ 0 ) .
C λ , dif ( θ 0 ) = 1 f blade f λ , dif ( θ 0 ) ,
C λ , dir ( θ 0 ) = 1 f mount f λ , dir ( θ 0 ) ,
C λ , dif = 1 f mount f λ , dif .
r λ , dif ( θ 0 ) = C λ , dif ( θ 0 ) F λ , dif ( θ 0 ) C λ , dir ( θ 0 ) ( F λ ( θ 0 ) F λ , dif ( θ 0 ) ) + C λ , dif ( θ 0 ) F λ , dif ( θ 0 ) ,
α λ ( θ 0 ) = [ ( 1 r λ , dif ( θ 0 ) ) C λ , dir ( θ 0 ) + r λ , dif ( θ 0 ) C λ , dif ] F λ ( θ 0 ) C λ , dir ( θ 0 ) ( F λ ( θ 0 ) F λ , dif ( θ 0 ) ) + C λ , dif ( θ 0 ) F λ , dif ( θ 0 ) ,
α λ ( c s , r e , θ 0 , r λ , dif ) = ( 1 r λ , dif ) α λ , dir ( c s , r e , θ 0 ) + r λ , dif α λ , dif ( c s , r e , θ 0 ) ,
α λ , dif ( c s , r e , θ 0 ) = 2 0 π / 2 α λ , dir ( c s , r e , θ i ) D ¯ λ , dif ( θ 0 , θ i ) cos θ i sin θ i d θ i .

Metrics