Abstract

We present a practical implementation of calibration-free wavelength-modulation spectroscopy with second harmonic detection (WMS-2f) for measurements of gas temperature and concentration in harsh environments. The method is applicable to measurements using lasers with synchronous wavelength and intensity modulation (such as injection current-tuned diode lasers). The key factors that enable mea surements without the on-site calibration normally associated with WMS are (1) normalization of the WMS-2f signal by the first harmonic (1f) signal to account for laser intensity, and (2) the inclusion of laser-specific tuning characteristics in the spectral-absorption model that is used to compare with measured 1f-normalized, WMS-2f signals to infer gas properties. The uncertainties associated with the calibration-free WMS method are discussed, with particular emphasis on the influence of pressure and optical depth on the WMS signals. Many of these uncertainties are also applicable to calibrated WMS measurements. An example experimental setup that combines six tunable diode laser sources between 1.3 and 2.0μm into one probe beam for measurements of temperature, H2O, and CO2 is shown. A hybrid combination of wavelength and frequency demultiplexing is used to distinguish among the laser signals, and the optimal set of laser-modulation waveforms is presented. The system is demonstrated in the harsh environment of a ground-test scramjet combustor. A comparison of direct absorption and 1f-normalized, WMS-2f shows a factor of 4 increase in signal-to-noise ratio with the WMS technique for measurements of CO2 in the supersonic flow. Multidimensional computational fluid-dynamics (CFD) calculations are compared with measurements of temperature and H2O using a simple method that accounts for the influence of line-of-sight (LOS) nonuniformity on the absorption measurements. The comparisons show the ability of the LOS calibration-free technique to gain useful information about multidimensional CFD models.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. D. Hinkley and P. L. Kelley, “Detection of air pollutants with tunable diode lasers,” Science 171, 635-639 (1971).
    [CrossRef]
  2. R. K. Hanson and P. K. Falcone, “Temperature measurement technique for high temperature gases using a tunable diode laser,” Appl. Opt. 17, 2477-2480 (1978).
    [CrossRef]
  3. M. Lackner, “Tunable diode laser spectroscopy (TDLAS) in the process industries--a review,” Rev. Chem. Eng. 23, 65 (2007).
  4. P. A. Martin, “Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring,” Chem. Soc. Rev. 31, 201-210 (2002).
    [CrossRef]
  5. P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta 54, 197-236 (1998).
    [CrossRef]
  6. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545-562 (1998).
    [CrossRef]
  7. R. K. Hanson and J. B. Jeffries, “Diode laser sensors for ground testing,” in Proceedings of the Twenty-Fifth American Institute of Aeronautics and Astronautics Aerodynamic Measurement Technology and Ground Testing Conference, AIAA 2006-3441 (American Institute of Aeronautics and Astronautics, 2006).
  8. We refer here to the frequency of the modulation sinusoid, not the modulation amplitude (which is sometimes also reported in frequency units).
  9. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707-717 (1992).
    [CrossRef]
  10. D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718-731 (1992).
    [CrossRef]
  11. T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B 75, 229-236 (2002).
    [CrossRef]
  12. J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701-6711 (2005).
    [CrossRef]
  13. G. B. Rieker, J. B. Jeffries, R. K. Hanson, T. Mathur, M. R. Gruber, and C. D. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32, 831-838 (2009).
    [CrossRef]
  14. G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041-3049 (2007).
    [CrossRef]
  15. J. Gustafsson, N. Chekalin, and O. Axner, “Improved detectability of wavelength modulation diode laser absorption spectrometry applied to window-equipped graphite furnaces by 4th and 6th harmonic detection,” Spectrochim. Acta B 58, 111-122 (2003).
    [CrossRef]
  16. R. T. Wainner, B. D. Green, M. G. Allen, M. A. White, J. Stafford-Evans, and R. Naper, “Handheld, battery-powered near-IR TDL sensor for stand-off detection of gas and vapor plumes,” Appl. Phys. B 75, 249-254 (2002).
    [CrossRef]
  17. J. A. Silver and D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol. 10, 845-852 (1999).
    [CrossRef]
  18. S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 mm,” Appl. Phys. B 92, 393-401 (2008).
    [CrossRef]
  19. J. Henningsen and H. Simonsen, “Quantitative wavelength-modulation without certified gas mixtures,” Appl. Phys. B 70, 627-633 (2000).
    [CrossRef]
  20. K. Duffin, A. J. McGettrick, W. Johnstone, G. Stewart, and D. G. Moodie, “Tunable diode laser spectroscopy with wavelength modulation: a calibration-free approach to the recovery of absolute gas absorption line-shapes,” J. Lightwave Technol. 25, 3114-3125 (2007).
    [CrossRef]
  21. A. J. McGettrick, K. Duffin, W. Johnstone, G. Stewart, and D. G. Moodie, “Tunable diode laser spectroscopy with wavelength modulation: a phasor decomposition method for calibration-free measurements of gas concentration and pressure,” J. Lightwave Technol. 26, 432-440 (2008).
    [CrossRef]
  22. D. T. Cassidy and J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185-1190 (1982).
    [CrossRef]
  23. K. Uehara and H. Tai, “Remote detection of methane with a 1.66 μm diode laser,” Appl. Opt. 31, 809-814 (1992).
    [CrossRef]
  24. T. Iseki, H. Tai, and K. Kimura, “A portable remote methane sensor using a tunable diode laser,” Meas. Sci. Technol. 11, 594-602 (2000).
    [CrossRef]
  25. H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052-1060 (2006).
    [CrossRef]
  26. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
    [CrossRef]
  27. G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87, 169-178 (2007).
    [CrossRef]
  28. G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 mm and implications on tunable diode laser sensor design,” Appl. Phys. B 94, 51-63 (2009).
    [CrossRef]
  29. G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195-1204(2007).
    [CrossRef]
  30. M. R. Gruber, J. Donbar, K. Jackson, T. Mathur, R. Baurle, D. Eklund, and C. Smith, “Newly developed direct-connect high-enthalpy supersonic combustion research facility,” J. Propul. Power 17, 1296-1304 (2001).
    [CrossRef]
  31. cos (α) represents a frequency component of the detector signal and cos (β) represents the reference sinusoid. If β is chosen to be 2πfot, where fo=2f, then the frequency components of the detector signal with αβ (i.e., components near 2f) will be shifted to αβ≈0, and become the DC output of the lock-in.
  32. J. H. Scofield, “A frequency-domain description of a lock-in amplifier,” Am. J. Phys. 62, 129-133 (1994).
    [CrossRef]
  33. P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803-5815 (1999).
    [CrossRef]
  34. J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers--comparison of experiment and theory,” Appl. Phys. B 26, 203-210 (1981).
    [CrossRef]
  35. L. C. Philippe and R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090-6103 (1993).
    [CrossRef]
  36. J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78, 503-511 (2004).
    [CrossRef]
  37. P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavlength modulation absorption spectrometry--an extensive scrutiny of the generation of signals,” Spectrochim. Acta B 56, 1277-1354 (2001).
    [CrossRef]
  38. S. Schilt, L. Thevenaz, and P. Robert, “Wavelength modulation spectroscopy: combined frequency and intensity laser modulation,” Appl. Opt. 42, 6728-6738 (2003).
    [CrossRef]
  39. X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurements of spectral parameters of water-vapour transitions near 1388 and 1345 nm for accurate simulation of high-pressure absorption spectra,” Meas. Sci. Technol. 18, 1185-1194 (2007).
    [CrossRef]
  40. O. Axner, J. Gustafsson, F. M. Schmidt, N. Omenetto, and J. D. Winefordner, “A discussion about the significance of absorbance and sample optical thickness in conventional spectrometry and wavelength-modulated laser absorption spectrometry,” Spectrochim. Acta B Spectrochim. Acta B 58, 1997-2014 (2003).
    [CrossRef]
  41. J. M. Seitzman and B. T. Scully, “Broadband infrared absorption sensor for high-pressure combustor control,” J. Propul. Power 16, 994-1001 (2000).
    [CrossRef]
  42. S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight gas temperature distributions,” Appl. Opt. 40, 4404-4415 (2001).
    [CrossRef]
  43. X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurement of nonuniform temperature distributions using line-of-sight absorption spectroscopy,” AIAA J. 45, 411-419 (2007).
    [CrossRef]
  44. D. B. Oh, M. E. Paige, and D. S. Bomse, “Frequency modulation multiplexing for simultaneous detection of multiple gases by use of wavelength modulation spectroscopy with diode lasers,” Appl. Opt. 37, 2499-2501 (1998).
    [CrossRef]
  45. M. R. Gruber, C. D. Carter, M. Ryan, G. B. Rieker, J. B. Jeffries, R. K. Hanson, J. Liu, and T. Mathur, “Laser-based measurements of OH, temperature, and water vapor concentration in a hydrocarbon-fueled scramjet,” in Proceedings of Forty-Fourth American Institute of Aeronautics and Astronautics/American Society of Mechanical Engineers/Society of Automotive Engineers/American Society for Engineering Education Joint Propulsion Conference and Exhibit, AIAA 2008-5070 (American Institute of Aeronautics and Astronautics, 2008).
  46. G. J. Koch, A. L. Cook, C. M. Fitzgerald, and A. N. Dharamsi, “Frequency stabilization of a diode laser to absorption lines of water vapor in the 944 nm wavelength region,” Opt. Eng. 40, 525-528 (2001).
    [CrossRef]
  47. R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thevenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl. Phys. B 85, 477-485 (2006).
    [CrossRef]

2009 (2)

G. B. Rieker, J. B. Jeffries, R. K. Hanson, T. Mathur, M. R. Gruber, and C. D. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32, 831-838 (2009).
[CrossRef]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 mm and implications on tunable diode laser sensor design,” Appl. Phys. B 94, 51-63 (2009).
[CrossRef]

2008 (2)

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 mm,” Appl. Phys. B 92, 393-401 (2008).
[CrossRef]

A. J. McGettrick, K. Duffin, W. Johnstone, G. Stewart, and D. G. Moodie, “Tunable diode laser spectroscopy with wavelength modulation: a phasor decomposition method for calibration-free measurements of gas concentration and pressure,” J. Lightwave Technol. 26, 432-440 (2008).
[CrossRef]

2007 (7)

K. Duffin, A. J. McGettrick, W. Johnstone, G. Stewart, and D. G. Moodie, “Tunable diode laser spectroscopy with wavelength modulation: a calibration-free approach to the recovery of absolute gas absorption line-shapes,” J. Lightwave Technol. 25, 3114-3125 (2007).
[CrossRef]

G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195-1204(2007).
[CrossRef]

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041-3049 (2007).
[CrossRef]

M. Lackner, “Tunable diode laser spectroscopy (TDLAS) in the process industries--a review,” Rev. Chem. Eng. 23, 65 (2007).

X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurements of spectral parameters of water-vapour transitions near 1388 and 1345 nm for accurate simulation of high-pressure absorption spectra,” Meas. Sci. Technol. 18, 1185-1194 (2007).
[CrossRef]

X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurement of nonuniform temperature distributions using line-of-sight absorption spectroscopy,” AIAA J. 45, 411-419 (2007).
[CrossRef]

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87, 169-178 (2007).
[CrossRef]

2006 (2)

R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thevenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl. Phys. B 85, 477-485 (2006).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052-1060 (2006).
[CrossRef]

2005 (2)

J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701-6711 (2005).
[CrossRef]

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

2004 (1)

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78, 503-511 (2004).
[CrossRef]

2003 (3)

O. Axner, J. Gustafsson, F. M. Schmidt, N. Omenetto, and J. D. Winefordner, “A discussion about the significance of absorbance and sample optical thickness in conventional spectrometry and wavelength-modulated laser absorption spectrometry,” Spectrochim. Acta B Spectrochim. Acta B 58, 1997-2014 (2003).
[CrossRef]

S. Schilt, L. Thevenaz, and P. Robert, “Wavelength modulation spectroscopy: combined frequency and intensity laser modulation,” Appl. Opt. 42, 6728-6738 (2003).
[CrossRef]

J. Gustafsson, N. Chekalin, and O. Axner, “Improved detectability of wavelength modulation diode laser absorption spectrometry applied to window-equipped graphite furnaces by 4th and 6th harmonic detection,” Spectrochim. Acta B 58, 111-122 (2003).
[CrossRef]

2002 (3)

R. T. Wainner, B. D. Green, M. G. Allen, M. A. White, J. Stafford-Evans, and R. Naper, “Handheld, battery-powered near-IR TDL sensor for stand-off detection of gas and vapor plumes,” Appl. Phys. B 75, 249-254 (2002).
[CrossRef]

P. A. Martin, “Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring,” Chem. Soc. Rev. 31, 201-210 (2002).
[CrossRef]

T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B 75, 229-236 (2002).
[CrossRef]

2001 (4)

M. R. Gruber, J. Donbar, K. Jackson, T. Mathur, R. Baurle, D. Eklund, and C. Smith, “Newly developed direct-connect high-enthalpy supersonic combustion research facility,” J. Propul. Power 17, 1296-1304 (2001).
[CrossRef]

S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight gas temperature distributions,” Appl. Opt. 40, 4404-4415 (2001).
[CrossRef]

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavlength modulation absorption spectrometry--an extensive scrutiny of the generation of signals,” Spectrochim. Acta B 56, 1277-1354 (2001).
[CrossRef]

G. J. Koch, A. L. Cook, C. M. Fitzgerald, and A. N. Dharamsi, “Frequency stabilization of a diode laser to absorption lines of water vapor in the 944 nm wavelength region,” Opt. Eng. 40, 525-528 (2001).
[CrossRef]

2000 (3)

J. M. Seitzman and B. T. Scully, “Broadband infrared absorption sensor for high-pressure combustor control,” J. Propul. Power 16, 994-1001 (2000).
[CrossRef]

J. Henningsen and H. Simonsen, “Quantitative wavelength-modulation without certified gas mixtures,” Appl. Phys. B 70, 627-633 (2000).
[CrossRef]

T. Iseki, H. Tai, and K. Kimura, “A portable remote methane sensor using a tunable diode laser,” Meas. Sci. Technol. 11, 594-602 (2000).
[CrossRef]

1999 (2)

J. A. Silver and D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol. 10, 845-852 (1999).
[CrossRef]

P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803-5815 (1999).
[CrossRef]

1998 (3)

D. B. Oh, M. E. Paige, and D. S. Bomse, “Frequency modulation multiplexing for simultaneous detection of multiple gases by use of wavelength modulation spectroscopy with diode lasers,” Appl. Opt. 37, 2499-2501 (1998).
[CrossRef]

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta 54, 197-236 (1998).
[CrossRef]

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545-562 (1998).
[CrossRef]

1994 (1)

J. H. Scofield, “A frequency-domain description of a lock-in amplifier,” Am. J. Phys. 62, 129-133 (1994).
[CrossRef]

1993 (1)

1992 (3)

1982 (1)

1981 (1)

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers--comparison of experiment and theory,” Appl. Phys. B 26, 203-210 (1981).
[CrossRef]

1978 (1)

1971 (1)

E. D. Hinkley and P. L. Kelley, “Detection of air pollutants with tunable diode lasers,” Science 171, 635-639 (1971).
[CrossRef]

Affolderbach, C.

R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thevenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl. Phys. B 85, 477-485 (2006).
[CrossRef]

Allen, M. G.

G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195-1204(2007).
[CrossRef]

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041-3049 (2007).
[CrossRef]

R. T. Wainner, B. D. Green, M. G. Allen, M. A. White, J. Stafford-Evans, and R. Naper, “Handheld, battery-powered near-IR TDL sensor for stand-off detection of gas and vapor plumes,” Appl. Phys. B 75, 249-254 (2002).
[CrossRef]

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545-562 (1998).
[CrossRef]

Axner, O.

J. Gustafsson, N. Chekalin, and O. Axner, “Improved detectability of wavelength modulation diode laser absorption spectrometry applied to window-equipped graphite furnaces by 4th and 6th harmonic detection,” Spectrochim. Acta B 58, 111-122 (2003).
[CrossRef]

O. Axner, J. Gustafsson, F. M. Schmidt, N. Omenetto, and J. D. Winefordner, “A discussion about the significance of absorbance and sample optical thickness in conventional spectrometry and wavelength-modulated laser absorption spectrometry,” Spectrochim. Acta B Spectrochim. Acta B 58, 1997-2014 (2003).
[CrossRef]

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavlength modulation absorption spectrometry--an extensive scrutiny of the generation of signals,” Spectrochim. Acta B 56, 1277-1354 (2001).
[CrossRef]

P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803-5815 (1999).
[CrossRef]

Barbe, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Baurle, R.

M. R. Gruber, J. Donbar, K. Jackson, T. Mathur, R. Baurle, D. Eklund, and C. Smith, “Newly developed direct-connect high-enthalpy supersonic combustion research facility,” J. Propul. Power 17, 1296-1304 (2001).
[CrossRef]

Benner, D. C.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Birk, M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Bomse, D. S.

Brown, L. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Carleer, M. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Carter, C. D.

G. B. Rieker, J. B. Jeffries, R. K. Hanson, T. Mathur, M. R. Gruber, and C. D. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32, 831-838 (2009).
[CrossRef]

J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701-6711 (2005).
[CrossRef]

M. R. Gruber, C. D. Carter, M. Ryan, G. B. Rieker, J. B. Jeffries, R. K. Hanson, J. Liu, and T. Mathur, “Laser-based measurements of OH, temperature, and water vapor concentration in a hydrocarbon-fueled scramjet,” in Proceedings of Forty-Fourth American Institute of Aeronautics and Astronautics/American Society of Mechanical Engineers/Society of Automotive Engineers/American Society for Engineering Education Joint Propulsion Conference and Exhibit, AIAA 2008-5070 (American Institute of Aeronautics and Astronautics, 2008).

Cassidy, D. T.

Chackerian, C.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Chance, K.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Chekalin, N.

J. Gustafsson, N. Chekalin, and O. Axner, “Improved detectability of wavelength modulation diode laser absorption spectrometry applied to window-equipped graphite furnaces by 4th and 6th harmonic detection,” Spectrochim. Acta B 58, 111-122 (2003).
[CrossRef]

Cook, A. L.

G. J. Koch, A. L. Cook, C. M. Fitzgerald, and A. N. Dharamsi, “Frequency stabilization of a diode laser to absorption lines of water vapor in the 944 nm wavelength region,” Opt. Eng. 40, 525-528 (2001).
[CrossRef]

Coudert, L. H.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Dana, V.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Devi, V. M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Dharamsi, A. N.

G. J. Koch, A. L. Cook, C. M. Fitzgerald, and A. N. Dharamsi, “Frequency stabilization of a diode laser to absorption lines of water vapor in the 944 nm wavelength region,” Opt. Eng. 40, 525-528 (2001).
[CrossRef]

Donbar, J.

M. R. Gruber, J. Donbar, K. Jackson, T. Mathur, R. Baurle, D. Eklund, and C. Smith, “Newly developed direct-connect high-enthalpy supersonic combustion research facility,” J. Propul. Power 17, 1296-1304 (2001).
[CrossRef]

Duffin, K.

Ebert, V.

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 mm,” Appl. Phys. B 92, 393-401 (2008).
[CrossRef]

T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B 75, 229-236 (2002).
[CrossRef]

Eklund, D.

M. R. Gruber, J. Donbar, K. Jackson, T. Mathur, R. Baurle, D. Eklund, and C. Smith, “Newly developed direct-connect high-enthalpy supersonic combustion research facility,” J. Propul. Power 17, 1296-1304 (2001).
[CrossRef]

Falcone, P. K.

Fernholz, T.

T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B 75, 229-236 (2002).
[CrossRef]

Fitzgerald, C. M.

G. J. Koch, A. L. Cook, C. M. Fitzgerald, and A. N. Dharamsi, “Frequency stabilization of a diode laser to absorption lines of water vapor in the 944 nm wavelength region,” Opt. Eng. 40, 525-528 (2001).
[CrossRef]

Flaud, J. M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Gamache, R. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Goldman, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Green, B. D.

R. T. Wainner, B. D. Green, M. G. Allen, M. A. White, J. Stafford-Evans, and R. Naper, “Handheld, battery-powered near-IR TDL sensor for stand-off detection of gas and vapor plumes,” Appl. Phys. B 75, 249-254 (2002).
[CrossRef]

Gruber, M. R.

G. B. Rieker, J. B. Jeffries, R. K. Hanson, T. Mathur, M. R. Gruber, and C. D. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32, 831-838 (2009).
[CrossRef]

J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701-6711 (2005).
[CrossRef]

M. R. Gruber, J. Donbar, K. Jackson, T. Mathur, R. Baurle, D. Eklund, and C. Smith, “Newly developed direct-connect high-enthalpy supersonic combustion research facility,” J. Propul. Power 17, 1296-1304 (2001).
[CrossRef]

M. R. Gruber, C. D. Carter, M. Ryan, G. B. Rieker, J. B. Jeffries, R. K. Hanson, J. Liu, and T. Mathur, “Laser-based measurements of OH, temperature, and water vapor concentration in a hydrocarbon-fueled scramjet,” in Proceedings of Forty-Fourth American Institute of Aeronautics and Astronautics/American Society of Mechanical Engineers/Society of Automotive Engineers/American Society for Engineering Education Joint Propulsion Conference and Exhibit, AIAA 2008-5070 (American Institute of Aeronautics and Astronautics, 2008).

Gustafsson, J.

O. Axner, J. Gustafsson, F. M. Schmidt, N. Omenetto, and J. D. Winefordner, “A discussion about the significance of absorbance and sample optical thickness in conventional spectrometry and wavelength-modulated laser absorption spectrometry,” Spectrochim. Acta B Spectrochim. Acta B 58, 1997-2014 (2003).
[CrossRef]

J. Gustafsson, N. Chekalin, and O. Axner, “Improved detectability of wavelength modulation diode laser absorption spectrometry applied to window-equipped graphite furnaces by 4th and 6th harmonic detection,” Spectrochim. Acta B 58, 111-122 (2003).
[CrossRef]

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavlength modulation absorption spectrometry--an extensive scrutiny of the generation of signals,” Spectrochim. Acta B 56, 1277-1354 (2001).
[CrossRef]

Hanson, R. K.

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 mm and implications on tunable diode laser sensor design,” Appl. Phys. B 94, 51-63 (2009).
[CrossRef]

G. B. Rieker, J. B. Jeffries, R. K. Hanson, T. Mathur, M. R. Gruber, and C. D. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32, 831-838 (2009).
[CrossRef]

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041-3049 (2007).
[CrossRef]

G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195-1204(2007).
[CrossRef]

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87, 169-178 (2007).
[CrossRef]

X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurements of spectral parameters of water-vapour transitions near 1388 and 1345 nm for accurate simulation of high-pressure absorption spectra,” Meas. Sci. Technol. 18, 1185-1194 (2007).
[CrossRef]

X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurement of nonuniform temperature distributions using line-of-sight absorption spectroscopy,” AIAA J. 45, 411-419 (2007).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052-1060 (2006).
[CrossRef]

J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701-6711 (2005).
[CrossRef]

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78, 503-511 (2004).
[CrossRef]

S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight gas temperature distributions,” Appl. Opt. 40, 4404-4415 (2001).
[CrossRef]

L. C. Philippe and R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090-6103 (1993).
[CrossRef]

R. K. Hanson and P. K. Falcone, “Temperature measurement technique for high temperature gases using a tunable diode laser,” Appl. Opt. 17, 2477-2480 (1978).
[CrossRef]

M. R. Gruber, C. D. Carter, M. Ryan, G. B. Rieker, J. B. Jeffries, R. K. Hanson, J. Liu, and T. Mathur, “Laser-based measurements of OH, temperature, and water vapor concentration in a hydrocarbon-fueled scramjet,” in Proceedings of Forty-Fourth American Institute of Aeronautics and Astronautics/American Society of Mechanical Engineers/Society of Automotive Engineers/American Society for Engineering Education Joint Propulsion Conference and Exhibit, AIAA 2008-5070 (American Institute of Aeronautics and Astronautics, 2008).

R. K. Hanson and J. B. Jeffries, “Diode laser sensors for ground testing,” in Proceedings of the Twenty-Fifth American Institute of Aeronautics and Astronautics Aerodynamic Measurement Technology and Ground Testing Conference, AIAA 2006-3441 (American Institute of Aeronautics and Astronautics, 2006).

Hartmann, J. M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Henningsen, J.

J. Henningsen and H. Simonsen, “Quantitative wavelength-modulation without certified gas mixtures,” Appl. Phys. B 70, 627-633 (2000).
[CrossRef]

Hinkley, E. D.

E. D. Hinkley and P. L. Kelley, “Detection of air pollutants with tunable diode lasers,” Science 171, 635-639 (1971).
[CrossRef]

Hunsmann, S.

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 mm,” Appl. Phys. B 92, 393-401 (2008).
[CrossRef]

Iseki, T.

T. Iseki, H. Tai, and K. Kimura, “A portable remote methane sensor using a tunable diode laser,” Meas. Sci. Technol. 11, 594-602 (2000).
[CrossRef]

Jackson, K.

M. R. Gruber, J. Donbar, K. Jackson, T. Mathur, R. Baurle, D. Eklund, and C. Smith, “Newly developed direct-connect high-enthalpy supersonic combustion research facility,” J. Propul. Power 17, 1296-1304 (2001).
[CrossRef]

Jacquemart, D.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Jeffries, J. B.

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 mm and implications on tunable diode laser sensor design,” Appl. Phys. B 94, 51-63 (2009).
[CrossRef]

G. B. Rieker, J. B. Jeffries, R. K. Hanson, T. Mathur, M. R. Gruber, and C. D. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32, 831-838 (2009).
[CrossRef]

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041-3049 (2007).
[CrossRef]

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87, 169-178 (2007).
[CrossRef]

G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195-1204(2007).
[CrossRef]

X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurements of spectral parameters of water-vapour transitions near 1388 and 1345 nm for accurate simulation of high-pressure absorption spectra,” Meas. Sci. Technol. 18, 1185-1194 (2007).
[CrossRef]

X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurement of nonuniform temperature distributions using line-of-sight absorption spectroscopy,” AIAA J. 45, 411-419 (2007).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052-1060 (2006).
[CrossRef]

J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701-6711 (2005).
[CrossRef]

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78, 503-511 (2004).
[CrossRef]

S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight gas temperature distributions,” Appl. Opt. 40, 4404-4415 (2001).
[CrossRef]

M. R. Gruber, C. D. Carter, M. Ryan, G. B. Rieker, J. B. Jeffries, R. K. Hanson, J. Liu, and T. Mathur, “Laser-based measurements of OH, temperature, and water vapor concentration in a hydrocarbon-fueled scramjet,” in Proceedings of Forty-Fourth American Institute of Aeronautics and Astronautics/American Society of Mechanical Engineers/Society of Automotive Engineers/American Society for Engineering Education Joint Propulsion Conference and Exhibit, AIAA 2008-5070 (American Institute of Aeronautics and Astronautics, 2008).

R. K. Hanson and J. B. Jeffries, “Diode laser sensors for ground testing,” in Proceedings of the Twenty-Fifth American Institute of Aeronautics and Astronautics Aerodynamic Measurement Technology and Ground Testing Conference, AIAA 2006-3441 (American Institute of Aeronautics and Astronautics, 2006).

Johnstone, W.

Jucks, K. W.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Kakuho, A.

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041-3049 (2007).
[CrossRef]

Kane, D. J.

J. A. Silver and D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol. 10, 845-852 (1999).
[CrossRef]

Kelley, P. L.

E. D. Hinkley and P. L. Kelley, “Detection of air pollutants with tunable diode lasers,” Science 171, 635-639 (1971).
[CrossRef]

Kimura, K.

T. Iseki, H. Tai, and K. Kimura, “A portable remote methane sensor using a tunable diode laser,” Meas. Sci. Technol. 11, 594-602 (2000).
[CrossRef]

Kindle, H. S.

G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195-1204(2007).
[CrossRef]

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041-3049 (2007).
[CrossRef]

Kluczynski, P.

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavlength modulation absorption spectrometry--an extensive scrutiny of the generation of signals,” Spectrochim. Acta B 56, 1277-1354 (2001).
[CrossRef]

P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803-5815 (1999).
[CrossRef]

Koch, G. J.

G. J. Koch, A. L. Cook, C. M. Fitzgerald, and A. N. Dharamsi, “Frequency stabilization of a diode laser to absorption lines of water vapor in the 944 nm wavelength region,” Opt. Eng. 40, 525-528 (2001).
[CrossRef]

Labrie, D.

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers--comparison of experiment and theory,” Appl. Phys. B 26, 203-210 (1981).
[CrossRef]

Lackner, M.

M. Lackner, “Tunable diode laser spectroscopy (TDLAS) in the process industries--a review,” Rev. Chem. Eng. 23, 65 (2007).

Li, H.

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041-3049 (2007).
[CrossRef]

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87, 169-178 (2007).
[CrossRef]

G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195-1204(2007).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052-1060 (2006).
[CrossRef]

Lindberg, A. M.

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavlength modulation absorption spectrometry--an extensive scrutiny of the generation of signals,” Spectrochim. Acta B 56, 1277-1354 (2001).
[CrossRef]

Liu, J.

M. R. Gruber, C. D. Carter, M. Ryan, G. B. Rieker, J. B. Jeffries, R. K. Hanson, J. Liu, and T. Mathur, “Laser-based measurements of OH, temperature, and water vapor concentration in a hydrocarbon-fueled scramjet,” in Proceedings of Forty-Fourth American Institute of Aeronautics and Astronautics/American Society of Mechanical Engineers/Society of Automotive Engineers/American Society for Engineering Education Joint Propulsion Conference and Exhibit, AIAA 2008-5070 (American Institute of Aeronautics and Astronautics, 2008).

Liu, J. T. C.

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041-3049 (2007).
[CrossRef]

J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701-6711 (2005).
[CrossRef]

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78, 503-511 (2004).
[CrossRef]

Liu, X.

G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195-1204(2007).
[CrossRef]

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87, 169-178 (2007).
[CrossRef]

X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurements of spectral parameters of water-vapour transitions near 1388 and 1345 nm for accurate simulation of high-pressure absorption spectra,” Meas. Sci. Technol. 18, 1185-1194 (2007).
[CrossRef]

X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurement of nonuniform temperature distributions using line-of-sight absorption spectroscopy,” AIAA J. 45, 411-419 (2007).
[CrossRef]

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041-3049 (2007).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052-1060 (2006).
[CrossRef]

Maki, A. G.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Mandin, J. Y.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Martin, P. A.

P. A. Martin, “Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring,” Chem. Soc. Rev. 31, 201-210 (2002).
[CrossRef]

Massie, S. T.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Mathur, T.

G. B. Rieker, J. B. Jeffries, R. K. Hanson, T. Mathur, M. R. Gruber, and C. D. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32, 831-838 (2009).
[CrossRef]

J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701-6711 (2005).
[CrossRef]

M. R. Gruber, J. Donbar, K. Jackson, T. Mathur, R. Baurle, D. Eklund, and C. Smith, “Newly developed direct-connect high-enthalpy supersonic combustion research facility,” J. Propul. Power 17, 1296-1304 (2001).
[CrossRef]

M. R. Gruber, C. D. Carter, M. Ryan, G. B. Rieker, J. B. Jeffries, R. K. Hanson, J. Liu, and T. Mathur, “Laser-based measurements of OH, temperature, and water vapor concentration in a hydrocarbon-fueled scramjet,” in Proceedings of Forty-Fourth American Institute of Aeronautics and Astronautics/American Society of Mechanical Engineers/Society of Automotive Engineers/American Society for Engineering Education Joint Propulsion Conference and Exhibit, AIAA 2008-5070 (American Institute of Aeronautics and Astronautics, 2008).

Matsuura, T.

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041-3049 (2007).
[CrossRef]

Matthey, R.

R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thevenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl. Phys. B 85, 477-485 (2006).
[CrossRef]

McGettrick, A. J.

Mileti, G.

R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thevenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl. Phys. B 85, 477-485 (2006).
[CrossRef]

Moodie, D. G.

Mulhall, P. A.

G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195-1204(2007).
[CrossRef]

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041-3049 (2007).
[CrossRef]

Naper, R.

R. T. Wainner, B. D. Green, M. G. Allen, M. A. White, J. Stafford-Evans, and R. Naper, “Handheld, battery-powered near-IR TDL sensor for stand-off detection of gas and vapor plumes,” Appl. Phys. B 75, 249-254 (2002).
[CrossRef]

Oh, D. B.

Omenetto, N.

O. Axner, J. Gustafsson, F. M. Schmidt, N. Omenetto, and J. D. Winefordner, “A discussion about the significance of absorbance and sample optical thickness in conventional spectrometry and wavelength-modulated laser absorption spectrometry,” Spectrochim. Acta B Spectrochim. Acta B 58, 1997-2014 (2003).
[CrossRef]

Orphal, J.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Paige, M. E.

Perrin, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Philippe, L. C.

Rascher, U.

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 mm,” Appl. Phys. B 92, 393-401 (2008).
[CrossRef]

Reid, J.

D. T. Cassidy and J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185-1190 (1982).
[CrossRef]

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers--comparison of experiment and theory,” Appl. Phys. B 26, 203-210 (1981).
[CrossRef]

Rieker, G. B.

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 mm and implications on tunable diode laser sensor design,” Appl. Phys. B 94, 51-63 (2009).
[CrossRef]

G. B. Rieker, J. B. Jeffries, R. K. Hanson, T. Mathur, M. R. Gruber, and C. D. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32, 831-838 (2009).
[CrossRef]

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041-3049 (2007).
[CrossRef]

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87, 169-178 (2007).
[CrossRef]

G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195-1204(2007).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052-1060 (2006).
[CrossRef]

J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701-6711 (2005).
[CrossRef]

M. R. Gruber, C. D. Carter, M. Ryan, G. B. Rieker, J. B. Jeffries, R. K. Hanson, J. Liu, and T. Mathur, “Laser-based measurements of OH, temperature, and water vapor concentration in a hydrocarbon-fueled scramjet,” in Proceedings of Forty-Fourth American Institute of Aeronautics and Astronautics/American Society of Mechanical Engineers/Society of Automotive Engineers/American Society for Engineering Education Joint Propulsion Conference and Exhibit, AIAA 2008-5070 (American Institute of Aeronautics and Astronautics, 2008).

Rinsland, C. P.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Robert, P.

Rothman, L. S.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Ryan, M.

M. R. Gruber, C. D. Carter, M. Ryan, G. B. Rieker, J. B. Jeffries, R. K. Hanson, J. Liu, and T. Mathur, “Laser-based measurements of OH, temperature, and water vapor concentration in a hydrocarbon-fueled scramjet,” in Proceedings of Forty-Fourth American Institute of Aeronautics and Astronautics/American Society of Mechanical Engineers/Society of Automotive Engineers/American Society for Engineering Education Joint Propulsion Conference and Exhibit, AIAA 2008-5070 (American Institute of Aeronautics and Astronautics, 2008).

Sanders, S. T.

Schilt, S.

R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thevenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl. Phys. B 85, 477-485 (2006).
[CrossRef]

S. Schilt, L. Thevenaz, and P. Robert, “Wavelength modulation spectroscopy: combined frequency and intensity laser modulation,” Appl. Opt. 42, 6728-6738 (2003).
[CrossRef]

Schmidt, F. M.

O. Axner, J. Gustafsson, F. M. Schmidt, N. Omenetto, and J. D. Winefordner, “A discussion about the significance of absorbance and sample optical thickness in conventional spectrometry and wavelength-modulated laser absorption spectrometry,” Spectrochim. Acta B Spectrochim. Acta B 58, 1997-2014 (2003).
[CrossRef]

Schurr, U.

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 mm,” Appl. Phys. B 92, 393-401 (2008).
[CrossRef]

Scofield, J. H.

J. H. Scofield, “A frequency-domain description of a lock-in amplifier,” Am. J. Phys. 62, 129-133 (1994).
[CrossRef]

Scully, B. T.

J. M. Seitzman and B. T. Scully, “Broadband infrared absorption sensor for high-pressure combustor control,” J. Propul. Power 16, 994-1001 (2000).
[CrossRef]

Seitzman, J. M.

J. M. Seitzman and B. T. Scully, “Broadband infrared absorption sensor for high-pressure combustor control,” J. Propul. Power 16, 994-1001 (2000).
[CrossRef]

Sholes, K. R.

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041-3049 (2007).
[CrossRef]

Silver, J. A.

Simonsen, H.

J. Henningsen and H. Simonsen, “Quantitative wavelength-modulation without certified gas mixtures,” Appl. Phys. B 70, 627-633 (2000).
[CrossRef]

Smith, C.

M. R. Gruber, J. Donbar, K. Jackson, T. Mathur, R. Baurle, D. Eklund, and C. Smith, “Newly developed direct-connect high-enthalpy supersonic combustion research facility,” J. Propul. Power 17, 1296-1304 (2001).
[CrossRef]

Smith, M. A. H.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Stafford-Evans, J.

R. T. Wainner, B. D. Green, M. G. Allen, M. A. White, J. Stafford-Evans, and R. Naper, “Handheld, battery-powered near-IR TDL sensor for stand-off detection of gas and vapor plumes,” Appl. Phys. B 75, 249-254 (2002).
[CrossRef]

Stanton, A. C.

Stewart, G.

Tai, H.

T. Iseki, H. Tai, and K. Kimura, “A portable remote methane sensor using a tunable diode laser,” Meas. Sci. Technol. 11, 594-602 (2000).
[CrossRef]

K. Uehara and H. Tai, “Remote detection of methane with a 1.66 μm diode laser,” Appl. Opt. 31, 809-814 (1992).
[CrossRef]

Takatani, S.

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041-3049 (2007).
[CrossRef]

Teichert, H.

T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B 75, 229-236 (2002).
[CrossRef]

Tennyson, J.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Thevenaz, L.

R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thevenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl. Phys. B 85, 477-485 (2006).
[CrossRef]

S. Schilt, L. Thevenaz, and P. Robert, “Wavelength modulation spectroscopy: combined frequency and intensity laser modulation,” Appl. Opt. 42, 6728-6738 (2003).
[CrossRef]

Tolchenov, R. N.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Toth, R. A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Uehara, K.

Vander Auwera, J.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Varanasi, P.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Wagner, G.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Wagner, S.

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 mm,” Appl. Phys. B 92, 393-401 (2008).
[CrossRef]

Wainner, R. T.

R. T. Wainner, B. D. Green, M. G. Allen, M. A. White, J. Stafford-Evans, and R. Naper, “Handheld, battery-powered near-IR TDL sensor for stand-off detection of gas and vapor plumes,” Appl. Phys. B 75, 249-254 (2002).
[CrossRef]

Wang, J.

Wehe, S. D.

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041-3049 (2007).
[CrossRef]

G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195-1204(2007).
[CrossRef]

Werle, P.

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta 54, 197-236 (1998).
[CrossRef]

Werner, D.

R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thevenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl. Phys. B 85, 477-485 (2006).
[CrossRef]

White, M. A.

R. T. Wainner, B. D. Green, M. G. Allen, M. A. White, J. Stafford-Evans, and R. Naper, “Handheld, battery-powered near-IR TDL sensor for stand-off detection of gas and vapor plumes,” Appl. Phys. B 75, 249-254 (2002).
[CrossRef]

Winefordner, J. D.

O. Axner, J. Gustafsson, F. M. Schmidt, N. Omenetto, and J. D. Winefordner, “A discussion about the significance of absorbance and sample optical thickness in conventional spectrometry and wavelength-modulated laser absorption spectrometry,” Spectrochim. Acta B Spectrochim. Acta B 58, 1997-2014 (2003).
[CrossRef]

Wunderle, K.

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 mm,” Appl. Phys. B 92, 393-401 (2008).
[CrossRef]

AIAA J. (1)

X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurement of nonuniform temperature distributions using line-of-sight absorption spectroscopy,” AIAA J. 45, 411-419 (2007).
[CrossRef]

Am. J. Phys. (1)

J. H. Scofield, “A frequency-domain description of a lock-in amplifier,” Am. J. Phys. 62, 129-133 (1994).
[CrossRef]

Appl. Opt. (12)

D. T. Cassidy and J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185-1190 (1982).
[CrossRef]

J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707-717 (1992).
[CrossRef]

D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718-731 (1992).
[CrossRef]

K. Uehara and H. Tai, “Remote detection of methane with a 1.66 μm diode laser,” Appl. Opt. 31, 809-814 (1992).
[CrossRef]

L. C. Philippe and R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090-6103 (1993).
[CrossRef]

D. B. Oh, M. E. Paige, and D. S. Bomse, “Frequency modulation multiplexing for simultaneous detection of multiple gases by use of wavelength modulation spectroscopy with diode lasers,” Appl. Opt. 37, 2499-2501 (1998).
[CrossRef]

P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803-5815 (1999).
[CrossRef]

S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight gas temperature distributions,” Appl. Opt. 40, 4404-4415 (2001).
[CrossRef]

S. Schilt, L. Thevenaz, and P. Robert, “Wavelength modulation spectroscopy: combined frequency and intensity laser modulation,” Appl. Opt. 42, 6728-6738 (2003).
[CrossRef]

J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701-6711 (2005).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052-1060 (2006).
[CrossRef]

R. K. Hanson and P. K. Falcone, “Temperature measurement technique for high temperature gases using a tunable diode laser,” Appl. Opt. 17, 2477-2480 (1978).
[CrossRef]

Appl. Phys. B (9)

R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thevenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl. Phys. B 85, 477-485 (2006).
[CrossRef]

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers--comparison of experiment and theory,” Appl. Phys. B 26, 203-210 (1981).
[CrossRef]

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78, 503-511 (2004).
[CrossRef]

R. T. Wainner, B. D. Green, M. G. Allen, M. A. White, J. Stafford-Evans, and R. Naper, “Handheld, battery-powered near-IR TDL sensor for stand-off detection of gas and vapor plumes,” Appl. Phys. B 75, 249-254 (2002).
[CrossRef]

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 mm,” Appl. Phys. B 92, 393-401 (2008).
[CrossRef]

J. Henningsen and H. Simonsen, “Quantitative wavelength-modulation without certified gas mixtures,” Appl. Phys. B 70, 627-633 (2000).
[CrossRef]

T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B 75, 229-236 (2002).
[CrossRef]

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87, 169-178 (2007).
[CrossRef]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 mm and implications on tunable diode laser sensor design,” Appl. Phys. B 94, 51-63 (2009).
[CrossRef]

Chem. Soc. Rev. (1)

P. A. Martin, “Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring,” Chem. Soc. Rev. 31, 201-210 (2002).
[CrossRef]

J. Lightwave Technol. (2)

J. Propul. Power (2)

M. R. Gruber, J. Donbar, K. Jackson, T. Mathur, R. Baurle, D. Eklund, and C. Smith, “Newly developed direct-connect high-enthalpy supersonic combustion research facility,” J. Propul. Power 17, 1296-1304 (2001).
[CrossRef]

J. M. Seitzman and B. T. Scully, “Broadband infrared absorption sensor for high-pressure combustor control,” J. Propul. Power 16, 994-1001 (2000).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Meas. Sci. Technol. (5)

G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195-1204(2007).
[CrossRef]

T. Iseki, H. Tai, and K. Kimura, “A portable remote methane sensor using a tunable diode laser,” Meas. Sci. Technol. 11, 594-602 (2000).
[CrossRef]

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545-562 (1998).
[CrossRef]

J. A. Silver and D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol. 10, 845-852 (1999).
[CrossRef]

X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurements of spectral parameters of water-vapour transitions near 1388 and 1345 nm for accurate simulation of high-pressure absorption spectra,” Meas. Sci. Technol. 18, 1185-1194 (2007).
[CrossRef]

Opt. Eng. (1)

G. J. Koch, A. L. Cook, C. M. Fitzgerald, and A. N. Dharamsi, “Frequency stabilization of a diode laser to absorption lines of water vapor in the 944 nm wavelength region,” Opt. Eng. 40, 525-528 (2001).
[CrossRef]

Proc. Combust. Inst. (2)

G. B. Rieker, J. B. Jeffries, R. K. Hanson, T. Mathur, M. R. Gruber, and C. D. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32, 831-838 (2009).
[CrossRef]

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041-3049 (2007).
[CrossRef]

Rev. Chem. Eng. (1)

M. Lackner, “Tunable diode laser spectroscopy (TDLAS) in the process industries--a review,” Rev. Chem. Eng. 23, 65 (2007).

Science (1)

E. D. Hinkley and P. L. Kelley, “Detection of air pollutants with tunable diode lasers,” Science 171, 635-639 (1971).
[CrossRef]

Spectrochim. Acta (1)

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta 54, 197-236 (1998).
[CrossRef]

Spectrochim. Acta B (3)

J. Gustafsson, N. Chekalin, and O. Axner, “Improved detectability of wavelength modulation diode laser absorption spectrometry applied to window-equipped graphite furnaces by 4th and 6th harmonic detection,” Spectrochim. Acta B 58, 111-122 (2003).
[CrossRef]

O. Axner, J. Gustafsson, F. M. Schmidt, N. Omenetto, and J. D. Winefordner, “A discussion about the significance of absorbance and sample optical thickness in conventional spectrometry and wavelength-modulated laser absorption spectrometry,” Spectrochim. Acta B Spectrochim. Acta B 58, 1997-2014 (2003).
[CrossRef]

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavlength modulation absorption spectrometry--an extensive scrutiny of the generation of signals,” Spectrochim. Acta B 56, 1277-1354 (2001).
[CrossRef]

Other (4)

cos (α) represents a frequency component of the detector signal and cos (β) represents the reference sinusoid. If β is chosen to be 2πfot, where fo=2f, then the frequency components of the detector signal with αβ (i.e., components near 2f) will be shifted to αβ≈0, and become the DC output of the lock-in.

R. K. Hanson and J. B. Jeffries, “Diode laser sensors for ground testing,” in Proceedings of the Twenty-Fifth American Institute of Aeronautics and Astronautics Aerodynamic Measurement Technology and Ground Testing Conference, AIAA 2006-3441 (American Institute of Aeronautics and Astronautics, 2006).

We refer here to the frequency of the modulation sinusoid, not the modulation amplitude (which is sometimes also reported in frequency units).

M. R. Gruber, C. D. Carter, M. Ryan, G. B. Rieker, J. B. Jeffries, R. K. Hanson, J. Liu, and T. Mathur, “Laser-based measurements of OH, temperature, and water vapor concentration in a hydrocarbon-fueled scramjet,” in Proceedings of Forty-Fourth American Institute of Aeronautics and Astronautics/American Society of Mechanical Engineers/Society of Automotive Engineers/American Society for Engineering Education Joint Propulsion Conference and Exhibit, AIAA 2008-5070 (American Institute of Aeronautics and Astronautics, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of WMS ( 1 f -normalized, WMS- 2 f ). Example data is water-vapor absorption measured in the scramjet combustor at WPAFB (see Sections 5, 6). The 2 f signal is always positive due to the phase-insensitive lock-in approach taken in these experiments (described in Subsection 2A). The slight distortion on the left side of the primary absorption feature is caused by a second, smaller absorption feature.

Fig. 2
Fig. 2

2 f Voigt line-shape integral from Eq. (10) for various Lorentzian-width/Doppler-width ( L / D ) ratios. Though the peak signal is achieved near m = 2.2 for all line-shape profiles, the magnitude of the signals varies significantly.

Fig. 3
Fig. 3

Percent difference in 2 f line-shape integral for a 5 % change in pressure. L / D = Lorentzian-width/Doppler-width. For isolated, optically thin absorption transitions, this translates directly into percent difference in the 2 f signal.

Fig. 4
Fig. 4

Percent difference in the ratio of 2 f line-shape integrals for two absorption features for a 5 % change in pressure. L / D Ratio is defined as ( ( L / D ) feature   1 / [ ( L / D ) feature 2 = 1 ] .

Fig. 5
Fig. 5

Error induced in partial pressure measurement using Eq. (12) due to deviation between the true partial pressure and the simulated partial pressure as a function of absorbance (optical depth). Error increases as the true condition deviates from the simulated condition used to calculate the measured partial pressure, and as optical depth increases. Simulation conditions: H 2 O absorption feature at 7185.6 cm 1 when the simulated H 2 O mole fraction is x = 0.010 and the true mole fraction is varied between x = 0.010 and x = 0.012 (holding the total pressure constant).

Fig. 6
Fig. 6

Schematic of hybrid-demultiplexing system configured for the scramjet experiments at AFRL/WPAFB.

Fig. 7
Fig. 7

Fourier transform of detector signals with (a) one laser scanning fully across one absorption feature using a linear ramp waveform, (b) one laser scanning fully across one using a sine waveform, and (c) two lasers scanning across only the peak of two absorption features using a sine waveform. Note in (c) that each laser is modulated at a different frequency so that the harmonic signals for each can be distinguished.

Fig. 8
Fig. 8

Comparison of direct absorption and 2 f signals and CO 2 partial pressure measurements in a vitiated supersonic flow using an absorption feature of CO 2 near 1997 nm . The left panels show single-scan data with (a) the WMS- 2 f and (c) direct-absorption techniques, along with the peak or Voigt fit values that are used to calculate the CO 2 concentration (the wavelength scales are different for the two figures). The right panels show the measured CO 2 partial pressure at 4 kHz using (b)  2 f peak magnitudes and (d) integrated absorbances.

Fig. 9
Fig. 9

Static temperature and H 2 O partial pressure for different vertical locations in the scramjet combustor during full operation on ethylene and air. Each point is the LOS laser-measured value for the experiment (solid squares) and the expected LOS laser-measured value from the CFD-calculated flow field (open circles). The gray curve (no symbols) represents the path-average temperature from the CFD-calculated flow field.

Tables (2)

Tables Icon

Table 1 Summary of Potential Sources of Uncertainty in Calibration-Free WMS

Tables Icon

Table 2 Estimated Uncertainty for Calibration-Free Wavelength-Modulation Spectroscopy Measurements in the Scramjet Combustor at AFRL/WPAFB

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

2 f / 1 f = [ ( X 2 f R 1 f ) raw ( X 2 f R 1 f ) bg ] 2 + [ ( Y 2 f R 1 f ) raw ( Y 2 f R 1 f ) bg ] 2 .
I 0 ( t ) = I ¯ 0 [ 1 + i 0 cos ( ω t + ψ 1 ) + i 2 cos ( 2 ω t + ψ 2 ) ] ,
τ ( ν ( t ) ) = k = 0 k = + H k ( ν ¯ , a ) cos ( k ω t ) ,
H 0 ( T , P i , v ¯ , a ) = 1 2 π - π π exp { j S j ( T ) · ϕ j ( T , P , x , v ¯ + a cos θ ) · P · x i · L } d θ ,
H k ( T , P i , v ¯ , a ) = 1 π - π π exp { j S j ( T ) · ϕ j ( T , P , x , v ¯ + a cos θ ) · P · x i · L } cos k θ d θ ,
X 2 f = G I ¯ o 2 ( H 2 + i o 2 ( H 1 + H 3 ) cos ψ 1 + i 2 ( H o + H 4 2 ) cos ψ 2 ) ,
Y 2 f = G I ¯ o 2 ( i o 2 ( H 1 H 3 ) sin ψ 1 + i 2 ( H o H 4 2 ) sin ψ 2 ) .
X 1 f = G I ¯ o 2 [ H 1 + i o ( H 0 + H 2 2 ) cos ψ 1 + i 2 2 ( H 1 + H 3 ) cos ψ 2 ] ,
Y 1 f = G I ¯ o 2 [ i 0 ( H 0 H 2 2 ) sin ψ 1 + i 2 2 ( H 1 H 3 ) sin ψ 2 ] .
R 1 f = X 1 f 2 + Y 1 f 2 .
2 f / 1 f H 2 i 0 = S ( T ) · P · x i · L i 0 · π π π ϕ ( υ ¯ peak + a cos θ ) cos 2 θ d θ .
Ratio = i 0 , 2 i 0 , 1 S ( T ) 1 S ( T ) 2 π π ϕ 1 ( υ ¯ peak + a cos θ ) cos 2 θ d θ π π ϕ 2 ( υ ¯ peak + a cos θ ) cos 2 θ d θ .
P i , meas . = ( 2 f / 1 f ) meas . ( 2 f / 1 f ) sim . · P i , sim .
L / D ratio = ( L / D ) feature 1 ( L / D ) feature 2 = 1 .

Metrics