Abstract

The tunable, continuous-wave terahertz (THz) radiation generated by mixing of two near-infrared laser lines in an antenna-coupled photomixer is compared with the monochromatic beam of backward-wave oscillators. The electromagnetic radiation of the different THz sources is characterized with respect to intensity, linewidth, degree of linear polarization, angular characteristic, beam quality, and M2 value. The results are discussed with respect to applications in THz spectroscopy and imaging.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. P. Gorshunov, A. Volkov, J. Spektor, A. S. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, and A. Loidl, “Terahertz BWO spectroscopy,” Int. J. Infrared Millimeter Waves 26, 1217-1240 (2005).
    [CrossRef]
  2. G. Kozlov and A. Volkov, “Coherent source submillimeter wave spectroscopy,” in Millimeter and Submillimeter Wave Spectroscopy of Solids, G. Grüner, ed. (Springer-Verlag, 1998), pp. 51-110
    [CrossRef]
  3. A. Dobroiu, M. Yamashita, Y. N. Ohshima, and Y. Morita, “Terahertz imaging system based on a backward-wave oscillator,” Appl. Opt. 43, 5637-5646 (2004).
    [CrossRef] [PubMed]
  4. B. Gompf, N. Gebert, H. Heer, and M. Dressel, “Polarization contrast terahertz-near-field imaging of anisotropic conductors,” Appl. Phys. Lett. 90, 082104 (2007).
    [CrossRef]
  5. B. Gompf and M. Dressel, “THz-micro-spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 14, 470-475 (2008).
    [CrossRef]
  6. M. Dressel, N. Drichko, B. P. Gorshunov, and A. Pimenov, “THz spectroscopy of superconductors,” IEEE J. Sel. Top. Quantum Electron. 14, 399-406 (2008).
    [CrossRef]
  7. J. H. Smet, B. P. Gorshunov, C. Jiang, L. Pfeiffer, K. West, V. Umanksy, M. Dressel, R. Meisels, F. Kuchar, and K. von Klitzing,“Circular-polarization-dependent study of the microwave photoconductivity in a two-dimensional electron system,” Phys. Rev. Lett. 95, 116804 (2005).
    [CrossRef] [PubMed]
  8. C.-L. Wang and C.-L. Pan, “Tunable multiterahertz beat signal generation from a two-wavelength laser-diode array,” Opt. Lett. 20, 1292-1294 (1995).
    [CrossRef] [PubMed]
  9. J. Struckmeier, A. Eutenneuer, B. Smarsly, M. Breede, M. Born, and M. Hofmann, “Electronically tunable external-cavity laser diode,” Opt. Lett. 24, 1573-1574 (1999).
    [CrossRef]
  10. S. Matsuura, M. Tani, K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559-561 (1997).
    [CrossRef]
  11. S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. 49, 1032-1038 (2001).
    [CrossRef]
  12. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1999).
  13. T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci Instrum. 77, 063902 (2006).
    [CrossRef]
  14. A. E. Siegman, Lasers (University Science Books, 1986).
  15. A. E. Siegman, M. W. Sasnett, and T. F. Johnston, “Choice of clip levels for beam width mearsurementts using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098-1104(1991).
    [CrossRef]
  16. A. E. Siegman, “Defining the effective radius of curvature for a nonideal optial beam,” IEEE J. Quantum Electron. 27, 1146-1148 (1991).
    [CrossRef]
  17. P. A. Bélanger, “Beam propagation and the ABCD ray matrices,” Opt. Lett. 16, 196-198 (1991).
    [CrossRef] [PubMed]
  18. ISO 11146, http://www.iso.org/iso/catalogue_detail.htm?csnumber=33626
  19. K. Steinberg, M. Scheffler, and M. Dressel, “Quasiparticle response of superconducting aluminum to electromagnetic radiation,” Phys. Rev. B 77, 214517 (2008).
    [CrossRef]
  20. A. Matei, N. Drichko, B. Gompf, and M. Dressel, “Far-infrared spectra of amino acids,” J. Chem. Phys. 316, 61-71 (2005).
    [CrossRef]
  21. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553-556(1994).
    [CrossRef] [PubMed]
  22. C. Kremser, W. Heiss, K. Unterrainer, E. Gornik, E. E. Haller, and W. K. Hansen, “Stimulated emission from p-Ge due to transitions between light-hole Landau levels and excited states of shallow impurities,” Appl. Phys. Lett. 60, 1785-1787(1992).
    [CrossRef]

2008 (3)

B. Gompf and M. Dressel, “THz-micro-spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 14, 470-475 (2008).
[CrossRef]

M. Dressel, N. Drichko, B. P. Gorshunov, and A. Pimenov, “THz spectroscopy of superconductors,” IEEE J. Sel. Top. Quantum Electron. 14, 399-406 (2008).
[CrossRef]

K. Steinberg, M. Scheffler, and M. Dressel, “Quasiparticle response of superconducting aluminum to electromagnetic radiation,” Phys. Rev. B 77, 214517 (2008).
[CrossRef]

2007 (1)

B. Gompf, N. Gebert, H. Heer, and M. Dressel, “Polarization contrast terahertz-near-field imaging of anisotropic conductors,” Appl. Phys. Lett. 90, 082104 (2007).
[CrossRef]

2006 (1)

T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci Instrum. 77, 063902 (2006).
[CrossRef]

2005 (3)

J. H. Smet, B. P. Gorshunov, C. Jiang, L. Pfeiffer, K. West, V. Umanksy, M. Dressel, R. Meisels, F. Kuchar, and K. von Klitzing,“Circular-polarization-dependent study of the microwave photoconductivity in a two-dimensional electron system,” Phys. Rev. Lett. 95, 116804 (2005).
[CrossRef] [PubMed]

A. Matei, N. Drichko, B. Gompf, and M. Dressel, “Far-infrared spectra of amino acids,” J. Chem. Phys. 316, 61-71 (2005).
[CrossRef]

B. P. Gorshunov, A. Volkov, J. Spektor, A. S. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, and A. Loidl, “Terahertz BWO spectroscopy,” Int. J. Infrared Millimeter Waves 26, 1217-1240 (2005).
[CrossRef]

2004 (1)

2001 (1)

S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. 49, 1032-1038 (2001).
[CrossRef]

1999 (1)

1997 (1)

S. Matsuura, M. Tani, K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559-561 (1997).
[CrossRef]

1995 (1)

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553-556(1994).
[CrossRef] [PubMed]

1992 (1)

C. Kremser, W. Heiss, K. Unterrainer, E. Gornik, E. E. Haller, and W. K. Hansen, “Stimulated emission from p-Ge due to transitions between light-hole Landau levels and excited states of shallow impurities,” Appl. Phys. Lett. 60, 1785-1787(1992).
[CrossRef]

1991 (3)

P. A. Bélanger, “Beam propagation and the ABCD ray matrices,” Opt. Lett. 16, 196-198 (1991).
[CrossRef] [PubMed]

A. E. Siegman, M. W. Sasnett, and T. F. Johnston, “Choice of clip levels for beam width mearsurementts using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098-1104(1991).
[CrossRef]

A. E. Siegman, “Defining the effective radius of curvature for a nonideal optial beam,” IEEE J. Quantum Electron. 27, 1146-1148 (1991).
[CrossRef]

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1999).

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1999).

Bélanger, P. A.

Born, M.

Breede, M.

Capasso, F.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553-556(1994).
[CrossRef] [PubMed]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553-556(1994).
[CrossRef] [PubMed]

Dobroiu, A.

Dressel, M.

B. Gompf and M. Dressel, “THz-micro-spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 14, 470-475 (2008).
[CrossRef]

M. Dressel, N. Drichko, B. P. Gorshunov, and A. Pimenov, “THz spectroscopy of superconductors,” IEEE J. Sel. Top. Quantum Electron. 14, 399-406 (2008).
[CrossRef]

K. Steinberg, M. Scheffler, and M. Dressel, “Quasiparticle response of superconducting aluminum to electromagnetic radiation,” Phys. Rev. B 77, 214517 (2008).
[CrossRef]

B. Gompf, N. Gebert, H. Heer, and M. Dressel, “Polarization contrast terahertz-near-field imaging of anisotropic conductors,” Appl. Phys. Lett. 90, 082104 (2007).
[CrossRef]

B. P. Gorshunov, A. Volkov, J. Spektor, A. S. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, and A. Loidl, “Terahertz BWO spectroscopy,” Int. J. Infrared Millimeter Waves 26, 1217-1240 (2005).
[CrossRef]

A. Matei, N. Drichko, B. Gompf, and M. Dressel, “Far-infrared spectra of amino acids,” J. Chem. Phys. 316, 61-71 (2005).
[CrossRef]

J. H. Smet, B. P. Gorshunov, C. Jiang, L. Pfeiffer, K. West, V. Umanksy, M. Dressel, R. Meisels, F. Kuchar, and K. von Klitzing,“Circular-polarization-dependent study of the microwave photoconductivity in a two-dimensional electron system,” Phys. Rev. Lett. 95, 116804 (2005).
[CrossRef] [PubMed]

Drichko, N.

M. Dressel, N. Drichko, B. P. Gorshunov, and A. Pimenov, “THz spectroscopy of superconductors,” IEEE J. Sel. Top. Quantum Electron. 14, 399-406 (2008).
[CrossRef]

A. Matei, N. Drichko, B. Gompf, and M. Dressel, “Far-infrared spectra of amino acids,” J. Chem. Phys. 316, 61-71 (2005).
[CrossRef]

Duffy, S. M.

S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. 49, 1032-1038 (2001).
[CrossRef]

Esquinazi, P.

T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci Instrum. 77, 063902 (2006).
[CrossRef]

Eutenneuer, A.

Faist, J.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553-556(1994).
[CrossRef] [PubMed]

Gebert, N.

B. Gompf, N. Gebert, H. Heer, and M. Dressel, “Polarization contrast terahertz-near-field imaging of anisotropic conductors,” Appl. Phys. Lett. 90, 082104 (2007).
[CrossRef]

Gompf, B.

B. Gompf and M. Dressel, “THz-micro-spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 14, 470-475 (2008).
[CrossRef]

B. Gompf, N. Gebert, H. Heer, and M. Dressel, “Polarization contrast terahertz-near-field imaging of anisotropic conductors,” Appl. Phys. Lett. 90, 082104 (2007).
[CrossRef]

A. Matei, N. Drichko, B. Gompf, and M. Dressel, “Far-infrared spectra of amino acids,” J. Chem. Phys. 316, 61-71 (2005).
[CrossRef]

Gornik, E.

C. Kremser, W. Heiss, K. Unterrainer, E. Gornik, E. E. Haller, and W. K. Hansen, “Stimulated emission from p-Ge due to transitions between light-hole Landau levels and excited states of shallow impurities,” Appl. Phys. Lett. 60, 1785-1787(1992).
[CrossRef]

Gorshunov, B. P.

M. Dressel, N. Drichko, B. P. Gorshunov, and A. Pimenov, “THz spectroscopy of superconductors,” IEEE J. Sel. Top. Quantum Electron. 14, 399-406 (2008).
[CrossRef]

B. P. Gorshunov, A. Volkov, J. Spektor, A. S. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, and A. Loidl, “Terahertz BWO spectroscopy,” Int. J. Infrared Millimeter Waves 26, 1217-1240 (2005).
[CrossRef]

J. H. Smet, B. P. Gorshunov, C. Jiang, L. Pfeiffer, K. West, V. Umanksy, M. Dressel, R. Meisels, F. Kuchar, and K. von Klitzing,“Circular-polarization-dependent study of the microwave photoconductivity in a two-dimensional electron system,” Phys. Rev. Lett. 95, 116804 (2005).
[CrossRef] [PubMed]

Gossard, A. C.

S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. 49, 1032-1038 (2001).
[CrossRef]

Haller, E. E.

C. Kremser, W. Heiss, K. Unterrainer, E. Gornik, E. E. Haller, and W. K. Hansen, “Stimulated emission from p-Ge due to transitions between light-hole Landau levels and excited states of shallow impurities,” Appl. Phys. Lett. 60, 1785-1787(1992).
[CrossRef]

Hansen, W. K.

C. Kremser, W. Heiss, K. Unterrainer, E. Gornik, E. E. Haller, and W. K. Hansen, “Stimulated emission from p-Ge due to transitions between light-hole Landau levels and excited states of shallow impurities,” Appl. Phys. Lett. 60, 1785-1787(1992).
[CrossRef]

Heer, H.

B. Gompf, N. Gebert, H. Heer, and M. Dressel, “Polarization contrast terahertz-near-field imaging of anisotropic conductors,” Appl. Phys. Lett. 90, 082104 (2007).
[CrossRef]

Heiss, W.

C. Kremser, W. Heiss, K. Unterrainer, E. Gornik, E. E. Haller, and W. K. Hansen, “Stimulated emission from p-Ge due to transitions between light-hole Landau levels and excited states of shallow impurities,” Appl. Phys. Lett. 60, 1785-1787(1992).
[CrossRef]

Herzinger, C. M.

T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci Instrum. 77, 063902 (2006).
[CrossRef]

Hofmann, M.

Hofmann, T.

T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci Instrum. 77, 063902 (2006).
[CrossRef]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553-556(1994).
[CrossRef] [PubMed]

Jackson, A.

S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. 49, 1032-1038 (2001).
[CrossRef]

Jiang, C.

J. H. Smet, B. P. Gorshunov, C. Jiang, L. Pfeiffer, K. West, V. Umanksy, M. Dressel, R. Meisels, F. Kuchar, and K. von Klitzing,“Circular-polarization-dependent study of the microwave photoconductivity in a two-dimensional electron system,” Phys. Rev. Lett. 95, 116804 (2005).
[CrossRef] [PubMed]

Johnston, T. F.

A. E. Siegman, M. W. Sasnett, and T. F. Johnston, “Choice of clip levels for beam width mearsurementts using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098-1104(1991).
[CrossRef]

Kozlov, G.

G. Kozlov and A. Volkov, “Coherent source submillimeter wave spectroscopy,” in Millimeter and Submillimeter Wave Spectroscopy of Solids, G. Grüner, ed. (Springer-Verlag, 1998), pp. 51-110
[CrossRef]

Kremser, C.

C. Kremser, W. Heiss, K. Unterrainer, E. Gornik, E. E. Haller, and W. K. Hansen, “Stimulated emission from p-Ge due to transitions between light-hole Landau levels and excited states of shallow impurities,” Appl. Phys. Lett. 60, 1785-1787(1992).
[CrossRef]

Kuchar, F.

J. H. Smet, B. P. Gorshunov, C. Jiang, L. Pfeiffer, K. West, V. Umanksy, M. Dressel, R. Meisels, F. Kuchar, and K. von Klitzing,“Circular-polarization-dependent study of the microwave photoconductivity in a two-dimensional electron system,” Phys. Rev. Lett. 95, 116804 (2005).
[CrossRef] [PubMed]

Loidl, A.

B. P. Gorshunov, A. Volkov, J. Spektor, A. S. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, and A. Loidl, “Terahertz BWO spectroscopy,” Int. J. Infrared Millimeter Waves 26, 1217-1240 (2005).
[CrossRef]

Matei, A.

A. Matei, N. Drichko, B. Gompf, and M. Dressel, “Far-infrared spectra of amino acids,” J. Chem. Phys. 316, 61-71 (2005).
[CrossRef]

Matsuura, S.

S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. 49, 1032-1038 (2001).
[CrossRef]

S. Matsuura, M. Tani, K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559-561 (1997).
[CrossRef]

McIntosh, A.

S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. 49, 1032-1038 (2001).
[CrossRef]

Meisels, R.

J. H. Smet, B. P. Gorshunov, C. Jiang, L. Pfeiffer, K. West, V. Umanksy, M. Dressel, R. Meisels, F. Kuchar, and K. von Klitzing,“Circular-polarization-dependent study of the microwave photoconductivity in a two-dimensional electron system,” Phys. Rev. Lett. 95, 116804 (2005).
[CrossRef] [PubMed]

Morita, Y.

Mukhin, A.

B. P. Gorshunov, A. Volkov, J. Spektor, A. S. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, and A. Loidl, “Terahertz BWO spectroscopy,” Int. J. Infrared Millimeter Waves 26, 1217-1240 (2005).
[CrossRef]

Ohshima, Y. N.

Pan, C.-L.

Pfeiffer, L.

J. H. Smet, B. P. Gorshunov, C. Jiang, L. Pfeiffer, K. West, V. Umanksy, M. Dressel, R. Meisels, F. Kuchar, and K. von Klitzing,“Circular-polarization-dependent study of the microwave photoconductivity in a two-dimensional electron system,” Phys. Rev. Lett. 95, 116804 (2005).
[CrossRef] [PubMed]

Pimenov, A.

M. Dressel, N. Drichko, B. P. Gorshunov, and A. Pimenov, “THz spectroscopy of superconductors,” IEEE J. Sel. Top. Quantum Electron. 14, 399-406 (2008).
[CrossRef]

Prokhorov, A. S.

B. P. Gorshunov, A. Volkov, J. Spektor, A. S. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, and A. Loidl, “Terahertz BWO spectroscopy,” Int. J. Infrared Millimeter Waves 26, 1217-1240 (2005).
[CrossRef]

Sakai, K.

S. Matsuura, M. Tani, K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559-561 (1997).
[CrossRef]

Sasnett, M. W.

A. E. Siegman, M. W. Sasnett, and T. F. Johnston, “Choice of clip levels for beam width mearsurementts using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098-1104(1991).
[CrossRef]

Schade, U.

T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci Instrum. 77, 063902 (2006).
[CrossRef]

Scheffler, M.

K. Steinberg, M. Scheffler, and M. Dressel, “Quasiparticle response of superconducting aluminum to electromagnetic radiation,” Phys. Rev. B 77, 214517 (2008).
[CrossRef]

Schubert, M.

T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci Instrum. 77, 063902 (2006).
[CrossRef]

Siegman, A. E.

A. E. Siegman, “Defining the effective radius of curvature for a nonideal optial beam,” IEEE J. Quantum Electron. 27, 1146-1148 (1991).
[CrossRef]

A. E. Siegman, M. W. Sasnett, and T. F. Johnston, “Choice of clip levels for beam width mearsurementts using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098-1104(1991).
[CrossRef]

A. E. Siegman, Lasers (University Science Books, 1986).

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553-556(1994).
[CrossRef] [PubMed]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553-556(1994).
[CrossRef] [PubMed]

Smarsly, B.

Smet, J. H.

J. H. Smet, B. P. Gorshunov, C. Jiang, L. Pfeiffer, K. West, V. Umanksy, M. Dressel, R. Meisels, F. Kuchar, and K. von Klitzing,“Circular-polarization-dependent study of the microwave photoconductivity in a two-dimensional electron system,” Phys. Rev. Lett. 95, 116804 (2005).
[CrossRef] [PubMed]

Spektor, J.

B. P. Gorshunov, A. Volkov, J. Spektor, A. S. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, and A. Loidl, “Terahertz BWO spectroscopy,” Int. J. Infrared Millimeter Waves 26, 1217-1240 (2005).
[CrossRef]

Steinberg, K.

K. Steinberg, M. Scheffler, and M. Dressel, “Quasiparticle response of superconducting aluminum to electromagnetic radiation,” Phys. Rev. B 77, 214517 (2008).
[CrossRef]

Struckmeier, J.

Tani, M.

S. Matsuura, M. Tani, K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559-561 (1997).
[CrossRef]

Uchida, S.

B. P. Gorshunov, A. Volkov, J. Spektor, A. S. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, and A. Loidl, “Terahertz BWO spectroscopy,” Int. J. Infrared Millimeter Waves 26, 1217-1240 (2005).
[CrossRef]

Umanksy, V.

J. H. Smet, B. P. Gorshunov, C. Jiang, L. Pfeiffer, K. West, V. Umanksy, M. Dressel, R. Meisels, F. Kuchar, and K. von Klitzing,“Circular-polarization-dependent study of the microwave photoconductivity in a two-dimensional electron system,” Phys. Rev. Lett. 95, 116804 (2005).
[CrossRef] [PubMed]

Unterrainer, K.

C. Kremser, W. Heiss, K. Unterrainer, E. Gornik, E. E. Haller, and W. K. Hansen, “Stimulated emission from p-Ge due to transitions between light-hole Landau levels and excited states of shallow impurities,” Appl. Phys. Lett. 60, 1785-1787(1992).
[CrossRef]

Verghese, S.

S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. 49, 1032-1038 (2001).
[CrossRef]

Volkov, A.

B. P. Gorshunov, A. Volkov, J. Spektor, A. S. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, and A. Loidl, “Terahertz BWO spectroscopy,” Int. J. Infrared Millimeter Waves 26, 1217-1240 (2005).
[CrossRef]

G. Kozlov and A. Volkov, “Coherent source submillimeter wave spectroscopy,” in Millimeter and Submillimeter Wave Spectroscopy of Solids, G. Grüner, ed. (Springer-Verlag, 1998), pp. 51-110
[CrossRef]

von Klitzing, K.

J. H. Smet, B. P. Gorshunov, C. Jiang, L. Pfeiffer, K. West, V. Umanksy, M. Dressel, R. Meisels, F. Kuchar, and K. von Klitzing,“Circular-polarization-dependent study of the microwave photoconductivity in a two-dimensional electron system,” Phys. Rev. Lett. 95, 116804 (2005).
[CrossRef] [PubMed]

Wang, C.-L.

West, K.

J. H. Smet, B. P. Gorshunov, C. Jiang, L. Pfeiffer, K. West, V. Umanksy, M. Dressel, R. Meisels, F. Kuchar, and K. von Klitzing,“Circular-polarization-dependent study of the microwave photoconductivity in a two-dimensional electron system,” Phys. Rev. Lett. 95, 116804 (2005).
[CrossRef] [PubMed]

Yamashita, M.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

S. Matsuura, M. Tani, K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559-561 (1997).
[CrossRef]

B. Gompf, N. Gebert, H. Heer, and M. Dressel, “Polarization contrast terahertz-near-field imaging of anisotropic conductors,” Appl. Phys. Lett. 90, 082104 (2007).
[CrossRef]

C. Kremser, W. Heiss, K. Unterrainer, E. Gornik, E. E. Haller, and W. K. Hansen, “Stimulated emission from p-Ge due to transitions between light-hole Landau levels and excited states of shallow impurities,” Appl. Phys. Lett. 60, 1785-1787(1992).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. E. Siegman, M. W. Sasnett, and T. F. Johnston, “Choice of clip levels for beam width mearsurementts using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098-1104(1991).
[CrossRef]

A. E. Siegman, “Defining the effective radius of curvature for a nonideal optial beam,” IEEE J. Quantum Electron. 27, 1146-1148 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

B. Gompf and M. Dressel, “THz-micro-spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 14, 470-475 (2008).
[CrossRef]

M. Dressel, N. Drichko, B. P. Gorshunov, and A. Pimenov, “THz spectroscopy of superconductors,” IEEE J. Sel. Top. Quantum Electron. 14, 399-406 (2008).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. 49, 1032-1038 (2001).
[CrossRef]

Int. J. Infrared Millimeter Waves (1)

B. P. Gorshunov, A. Volkov, J. Spektor, A. S. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, and A. Loidl, “Terahertz BWO spectroscopy,” Int. J. Infrared Millimeter Waves 26, 1217-1240 (2005).
[CrossRef]

J. Chem. Phys. (1)

A. Matei, N. Drichko, B. Gompf, and M. Dressel, “Far-infrared spectra of amino acids,” J. Chem. Phys. 316, 61-71 (2005).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. B (1)

K. Steinberg, M. Scheffler, and M. Dressel, “Quasiparticle response of superconducting aluminum to electromagnetic radiation,” Phys. Rev. B 77, 214517 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

J. H. Smet, B. P. Gorshunov, C. Jiang, L. Pfeiffer, K. West, V. Umanksy, M. Dressel, R. Meisels, F. Kuchar, and K. von Klitzing,“Circular-polarization-dependent study of the microwave photoconductivity in a two-dimensional electron system,” Phys. Rev. Lett. 95, 116804 (2005).
[CrossRef] [PubMed]

Rev. Sci Instrum. (1)

T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci Instrum. 77, 063902 (2006).
[CrossRef]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553-556(1994).
[CrossRef] [PubMed]

Other (4)

G. Kozlov and A. Volkov, “Coherent source submillimeter wave spectroscopy,” in Millimeter and Submillimeter Wave Spectroscopy of Solids, G. Grüner, ed. (Springer-Verlag, 1998), pp. 51-110
[CrossRef]

A. E. Siegman, Lasers (University Science Books, 1986).

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1999).

ISO 11146, http://www.iso.org/iso/catalogue_detail.htm?csnumber=33626

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Emission spectrum of a BWO. The strong intensity variations in the emitted power between 8 and 17 cm 1 ( 240 510 GHz ) are highly reproducible, as can be seen from the shown 100% line recorded by dividing two sequential scans.

Fig. 2
Fig. 2

Emitted intensity versus antenna voltage. Between 10 and 30 V the emitted THz intensity increases linearly with the applied voltage.

Fig. 3
Fig. 3

Transmitted intensity at 460 GHz through one wire grid versus angle. From the analysis described in the text one obtain a degree of linear polarization for the BWO of more than 98%, whereas the photomixed radiation is only up to about 75% polarized.

Fig. 4
Fig. 4

Normalized BWO intensity through a polarizer in dependence on frequency and polarizer angle. Jumps of the polarization plane of up to 60 ° can be observed.

Fig. 5
Fig. 5

Fabry–Perot interferograms for BWO and photomixed THz radiation at about 460 GHz measured as a function of mirror distance l. A fit to the measured data shows that the linewidth of the BWO is smaller than the resolution of the Fabry–Perot (about 1 GHz ), whereas the photomixed radiation exhibit a much larger linewidth of about 10 GHz .

Fig. 6
Fig. 6

Horizontal and vertical scans through photomixed and BWO beams at 460 GHz with fits to Gaussian and top-hat shapes. Under most conditions the beam profiles are nearly perfect Gaussian-shaped.

Fig. 7
Fig. 7

Position and width of the BWO generated beam along x and y directions. The position of the beam in the x direction is more or less stable, and the width decreases with increasing frequency, but less than expected from diffraction. In the y direction the position and width of the beam are strongly frequency dependent. The width can fluctuate by about a factor of two, and the position can change up to 15 mm .

Fig. 8
Fig. 8

Directional characteristic of the antenna-generated THz radiation vertical and horizontal to the antenna axis. The intensities are normalized to the 0 ° direction. The parallel direction is broader, leading to a elliptical beam profile. The sidelobes are most likely due to internal reflections in the LT-GaAs substrate and the Si lens.

Fig. 9
Fig. 9

Color-coded intensity in dependence on frequency and angle of the BWO generated THz radiation with the electric field parallel and perpendicular to the detector plane. The measured intensities are normalized to the 0 ° direction. At each frequency different modes develop in the oversized waveguide, leading to a complex spatial emission pattern.

Fig. 10
Fig. 10

Measured beam width and fit for a scan parallel to the antenna axis. The frequency was 559 GHz , and the fit result corresponds to a M 2 value of 1.0 ± 15 % .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I out 1 P lin P diag P circ = R β P R β R α P R α I in 1 P lin 0 P circ .
P lin = I 0 ° I 90 ° I 0 ° + I 90 ° ; P diag = I 45 ° I 135 ° I 45 ° + I 135 ° ; P circ = I right I left I right + I left .
P = 1 2 ( T L + T H ) ( T L T H ) 0 0 ( T L T H ) ( T L + T H ) 0 0 0 0 2 T L T H 0 0 0 0 2 T L T H .
I out I in = 1 4 ( T L + T H ) 2 + ( T L T H ) 2 cos ( 2 β 2 α ) + P lin ( T L T H ) { ( T L + T H ) cos 2 α [ 1 + cos ( 2 β 2 α ) ] 2 T L T H sin 2 α sin ( 2 β - 2 α ) } .
d ( z ) = d 0 1 + z 2 z r 2 , z r = π d 0 2 4 λ
d ( z ) = M d 0 1 + z 2 z r 2 .

Metrics