Abstract

Dual-wavelength radiation around 1044nm and 1070nm has been generated directly from a cladding pumped Yb-doped fiber laser. Outputs of the two wavelengths exhibit sustained relaxation oscillation with anticorrelated dynamics. Modeling of the transient built up of the free-running laser shows the two-wavelength behavior can be attributed to the existence of two gain peaks of Yb-doped fiber under intermediate pump conditions.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Poustie, N. Finlayson, and P. Harper, “Multiwavelength fiber laser using a spatial mode beating filter,” Opt. Lett. 19, 716-718 (1994).
    [CrossRef] [PubMed]
  2. C. Tu, W. Guo, Y. Li, S. Zhang, and F. Lu, “Stable multiwavelength and passively mode-locked Yb-doped fiber laser based on nonlinear polarization rotation,” Opt. Commun. 280, 448-452 (2007).
    [CrossRef]
  3. L. Pan, I. Utkin, and R. Fedosejevs, “Two-wavelength passively Q-switched ytterbium doped fiber laser,” Opt. Express 16, 11858-11870 (2008).
    [CrossRef] [PubMed]
  4. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Eelectron. 33, 1049-1056 (1997).
    [CrossRef]
  5. A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311-317 (2000).
    [CrossRef]
  6. J. L. Li, K. I. Ueda, M. Musha, and A. Shirakawa, “Residual pump light as a probe of self-pulsing instability in an ytterbium-doped fiber laser,” Opt. Lett. 31, 1450-1452 (2006).
    [CrossRef] [PubMed]
  7. A. M. Rios, I. T. Go'mez, G. A. Sanchez, and R. S. Aguilar, “Self-pulsing in a double-clad ytterbium fiber laser induced by high scattering loss,” Opt. Commun. 281, 663-667 (2008).
    [CrossRef]
  8. M. Salhi, A. Hideur, T. Chartier, M. Brunel, G. Martel, C. Ozkul, and F. Sanchez, “Evidence of Brillouin scattering in an ytterbium-doped double-clad fiber laser,” Opt. Lett. 27, 1294-1296 (2002).
    [CrossRef]
  9. A. V. Kir'yanov and Y. O. Barmenkov, “Self-Q-switched ytterbium-doped all-fiber laser,” Laser Phys. Lett. 3, 498-502 (2006).
    [CrossRef]
  10. A. V. Kir'yanov, Y. O. Barmenkov, I. L. Martinez, A. S. Kurkov, and E. M. Dianov, “Cooperative luminescence and absorption in Ytterbium-doped silica fiber and the fiber nonlinear transmission coefficient at λ=980 nm with a regard to the Ytterbium ion-pairs effect,” Opt. Express 14, 3981-3992 (2006).
    [CrossRef] [PubMed]
  11. J. Kong, D. Y. Tang, J. Lu, and K. Ueda, “Random-wavelength solid-state laser,” Opt. Lett. 29, 65-67 (2004).
    [CrossRef] [PubMed]
  12. D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+-doped fibers and fibre lasers,” Quantum Electron. 34, 579-582 (2004).
    [CrossRef]
  13. T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273, 256-259 (2007).
    [CrossRef]

2008

L. Pan, I. Utkin, and R. Fedosejevs, “Two-wavelength passively Q-switched ytterbium doped fiber laser,” Opt. Express 16, 11858-11870 (2008).
[CrossRef] [PubMed]

A. M. Rios, I. T. Go'mez, G. A. Sanchez, and R. S. Aguilar, “Self-pulsing in a double-clad ytterbium fiber laser induced by high scattering loss,” Opt. Commun. 281, 663-667 (2008).
[CrossRef]

2007

C. Tu, W. Guo, Y. Li, S. Zhang, and F. Lu, “Stable multiwavelength and passively mode-locked Yb-doped fiber laser based on nonlinear polarization rotation,” Opt. Commun. 280, 448-452 (2007).
[CrossRef]

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273, 256-259 (2007).
[CrossRef]

2006

2004

J. Kong, D. Y. Tang, J. Lu, and K. Ueda, “Random-wavelength solid-state laser,” Opt. Lett. 29, 65-67 (2004).
[CrossRef] [PubMed]

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+-doped fibers and fibre lasers,” Quantum Electron. 34, 579-582 (2004).
[CrossRef]

2002

2000

A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311-317 (2000).
[CrossRef]

1997

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Eelectron. 33, 1049-1056 (1997).
[CrossRef]

1994

Aguilar, R. S.

A. M. Rios, I. T. Go'mez, G. A. Sanchez, and R. S. Aguilar, “Self-pulsing in a double-clad ytterbium fiber laser induced by high scattering loss,” Opt. Commun. 281, 663-667 (2008).
[CrossRef]

Barmenkov, Y. O.

Brunel, M.

Chartier, T.

M. Salhi, A. Hideur, T. Chartier, M. Brunel, G. Martel, C. Ozkul, and F. Sanchez, “Evidence of Brillouin scattering in an ytterbium-doped double-clad fiber laser,” Opt. Lett. 27, 1294-1296 (2002).
[CrossRef]

A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311-317 (2000).
[CrossRef]

Dianov, E. M.

Fedosejevs, R.

Finlayson, N.

Gavrielides, A.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273, 256-259 (2007).
[CrossRef]

Go'mez, I. T.

A. M. Rios, I. T. Go'mez, G. A. Sanchez, and R. S. Aguilar, “Self-pulsing in a double-clad ytterbium fiber laser induced by high scattering loss,” Opt. Commun. 281, 663-667 (2008).
[CrossRef]

Grukh, D. A.

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+-doped fibers and fibre lasers,” Quantum Electron. 34, 579-582 (2004).
[CrossRef]

Guo, W.

C. Tu, W. Guo, Y. Li, S. Zhang, and F. Lu, “Stable multiwavelength and passively mode-locked Yb-doped fiber laser based on nonlinear polarization rotation,” Opt. Commun. 280, 448-452 (2007).
[CrossRef]

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Eelectron. 33, 1049-1056 (1997).
[CrossRef]

Harper, P.

Hideur, A.

M. Salhi, A. Hideur, T. Chartier, M. Brunel, G. Martel, C. Ozkul, and F. Sanchez, “Evidence of Brillouin scattering in an ytterbium-doped double-clad fiber laser,” Opt. Lett. 27, 1294-1296 (2002).
[CrossRef]

A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311-317 (2000).
[CrossRef]

Kir'yanov, A. V.

Kong, J.

Kurkov, A. S.

Li, J. L.

Li, Y.

C. Tu, W. Guo, Y. Li, S. Zhang, and F. Lu, “Stable multiwavelength and passively mode-locked Yb-doped fiber laser based on nonlinear polarization rotation,” Opt. Commun. 280, 448-452 (2007).
[CrossRef]

Lu, F.

C. Tu, W. Guo, Y. Li, S. Zhang, and F. Lu, “Stable multiwavelength and passively mode-locked Yb-doped fiber laser based on nonlinear polarization rotation,” Opt. Commun. 280, 448-452 (2007).
[CrossRef]

Lu, J.

Martel, G.

Martinez, I. L.

Musha, M.

Newell, T. C.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273, 256-259 (2007).
[CrossRef]

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Eelectron. 33, 1049-1056 (1997).
[CrossRef]

Ozkul, C.

M. Salhi, A. Hideur, T. Chartier, M. Brunel, G. Martel, C. Ozkul, and F. Sanchez, “Evidence of Brillouin scattering in an ytterbium-doped double-clad fiber laser,” Opt. Lett. 27, 1294-1296 (2002).
[CrossRef]

A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311-317 (2000).
[CrossRef]

Pan, L.

Paramonov, V. M.

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+-doped fibers and fibre lasers,” Quantum Electron. 34, 579-582 (2004).
[CrossRef]

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Eelectron. 33, 1049-1056 (1997).
[CrossRef]

Peterson, P.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273, 256-259 (2007).
[CrossRef]

Poustie, A. J.

Rios, A. M.

A. M. Rios, I. T. Go'mez, G. A. Sanchez, and R. S. Aguilar, “Self-pulsing in a double-clad ytterbium fiber laser induced by high scattering loss,” Opt. Commun. 281, 663-667 (2008).
[CrossRef]

Salhi, M.

Sanchez, F.

M. Salhi, A. Hideur, T. Chartier, M. Brunel, G. Martel, C. Ozkul, and F. Sanchez, “Evidence of Brillouin scattering in an ytterbium-doped double-clad fiber laser,” Opt. Lett. 27, 1294-1296 (2002).
[CrossRef]

A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311-317 (2000).
[CrossRef]

Sanchez, G. A.

A. M. Rios, I. T. Go'mez, G. A. Sanchez, and R. S. Aguilar, “Self-pulsing in a double-clad ytterbium fiber laser induced by high scattering loss,” Opt. Commun. 281, 663-667 (2008).
[CrossRef]

Sharma, M. P.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273, 256-259 (2007).
[CrossRef]

Shirakawa, A.

Tang, D. Y.

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Eelectron. 33, 1049-1056 (1997).
[CrossRef]

Tu, C.

C. Tu, W. Guo, Y. Li, S. Zhang, and F. Lu, “Stable multiwavelength and passively mode-locked Yb-doped fiber laser based on nonlinear polarization rotation,” Opt. Commun. 280, 448-452 (2007).
[CrossRef]

Ueda, K.

Ueda, K. I.

Utkin, I.

Zhang, S.

C. Tu, W. Guo, Y. Li, S. Zhang, and F. Lu, “Stable multiwavelength and passively mode-locked Yb-doped fiber laser based on nonlinear polarization rotation,” Opt. Commun. 280, 448-452 (2007).
[CrossRef]

IEEE J. Quantum Eelectron.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Eelectron. 33, 1049-1056 (1997).
[CrossRef]

Laser Phys. Lett.

A. V. Kir'yanov and Y. O. Barmenkov, “Self-Q-switched ytterbium-doped all-fiber laser,” Laser Phys. Lett. 3, 498-502 (2006).
[CrossRef]

Opt. Commun.

A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311-317 (2000).
[CrossRef]

C. Tu, W. Guo, Y. Li, S. Zhang, and F. Lu, “Stable multiwavelength and passively mode-locked Yb-doped fiber laser based on nonlinear polarization rotation,” Opt. Commun. 280, 448-452 (2007).
[CrossRef]

A. M. Rios, I. T. Go'mez, G. A. Sanchez, and R. S. Aguilar, “Self-pulsing in a double-clad ytterbium fiber laser induced by high scattering loss,” Opt. Commun. 281, 663-667 (2008).
[CrossRef]

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273, 256-259 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Quantum Electron.

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+-doped fibers and fibre lasers,” Quantum Electron. 34, 579-582 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experiment setup: HR, high reflection mirror; Yb fiber, Yb doped single-mode double-clad fiber; DM, dichroic mirror; L1, L2, and L3, focusing or imaging lenses; LD, fiber coupled pump laser diode; BS, beam splitter; PD1, PD2, photodiodes; OC, output coupling mirror 4% reflection; arrow (→), direction convention for distance x in the theoretical simulation.

Fig. 2
Fig. 2

Dependences of total average power and 1044 nm and 1070 nm power on pump power.

Fig. 3
Fig. 3

Laser output spectrum measured at different pump powers.

Fig. 4
Fig. 4

Two-wavelength output dynamics at different pump power with a fiber length of 190 cm .

Fig. 5
Fig. 5

Yb fiber gain profile (net double pass gain) at different upper-state densities N ̲ 2 ( t ) with an overall doping level 9.0 × 10 19 / cm 3 ; L = 190 cm .

Fig. 6
Fig. 6

Simulated evolution of the amplifies spontaneous emission spectrum during the early time start of the free-running relaxation oscillation for different fiber lengths at pump powers of 6 W : (a)  145 cm , (b)  157 cm , (c)  165 cm . The output power at each time is marked at the left side of the curve, and the intensities have been normalized by the 1048 nm or 1074 nm peak for convenience of viewing.

Fig. 7
Fig. 7

Simulated (a) upper-state population density and (b) two-wavelength relaxation oscillations and inversion number dynamics for a fiber length 1.57 m and a pump power 6 W ; the baselines for 1048 nm and 1074 nm output have been shifted as shown.

Fig. 8
Fig. 8

Simulated (a) upper-state population density, (b) two-wavelength relaxation oscillations and (c) two-wavelength relaxation oscillations with emission cross section of 1074 nm radiation increased by 0.1%; fiber length 1.57 m and pump power 10 W ; the baselines for 1048 nm and 1074 nm output have been shifted as shown.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

N ̲ 2 ( t ) = 0 L N 2 ( x , t ) d x / L ,
g k ( t ) = 2 · L · Γ k · [ σ e k N ̲ 2 ( t ) σ α k ( N 0 N ̲ 2 ( t ) ) ] ,
N 0 = N 1 + N 2 ,
N 2 t = Γ p λ p h c A c o [ σ α p N 1 σ e p N 2 ] P p + k Γ k λ k h c A c o [ σ α k N 1 σ e k N 2 ] ( P k + + P k ) N 2 τ ,
P p x + 1 v p P p t = Γ p [ σ e p N 2 σ α p N 1 ] P p α p · P p ,
± P k ± x + 1 v k P k ± t = Γ k [ σ e k N 2 σ α k N 1 ] P k ± α k · P k ± + 2 Γ k σ e k N 2 h c 2 λ k 3 Δ λ k k = 1 , K ,
P p ( L ) = P 0 ,
P k ( L , t ) = P k + ( L , t ) R o c ,
P k + ( 0 , t ) = P k ( 0 , t ) ( 1 η ) 2 ,

Metrics