Abstract

We characterize the nonlinear propagation of picosecond pulses in chalcogenide As2S3 single-mode fiber using a pump-probe technique. The cross-phase modulation (XPM)-induced sideband broadening and stimulated Raman scattering (SRS)-induced sideband amplification are measured in order to map out the Raman gain spectrum of this glass across the C-band. We extract the Raman response function from the Raman gain spectrum and determine the power and polarization dependence of the SRS. In contrast to previous work using As2Se3 fiber, we find that the As2S3 fiber does not suffer from large two-photon absorption (TPA) in the wavelength range of the telecommunications band. We achieved a 20dB peak Raman gain at a Stokes shift of 350cm1 in a 205mm length of As2S3 single-mode fiber. The Raman gain coefficient is estimated to be 4.3×1012m/W and the threshold pump peak power is estimated to be 16.2W for the 205mm As2S3 fiber. We also demonstrate that we can infer the dispersion of the As2S3 fiber and justify the Raman response function by comparing simulation and experimental results.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Frerichs, “New optical glasses with good transparency in the infrared,” J. Opt. Soc. Am. 43, 1153-1157 (1953).
    [CrossRef]
  2. W. S. Rodney, I. H. Malitson and T. A. King, “Refractive index of arsenic trisulfide,” J. Opt. Soc. Am. 48, 633-636 (1958).
    [CrossRef]
  3. G. Lucovsky, “Optic modes in amorphous As2S3 and As2Se3,” Phys. Rev. B 6, 1480-1489 (1972).
    [CrossRef]
  4. R. J. Kobliska and S. A. Solin, “Temperature dependence of the Raman spectrum and the depolarization spectrum of amorphous As2S3,” Phys. Rev. B 8, 756-768 (1973).
    [CrossRef]
  5. R. L. Fork, C. V. Shank, A. M. Glass, A. Migus, M. A. Bosch, and J. Shah, “Picosecond dynamics of optically induced absorption in the band gap of As2S3,” Phys. Rev. Lett. 43, 394-398 (1979).
    [CrossRef]
  6. H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “Third-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73, 1794-1796 (1990).
    [CrossRef]
  7. M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation,” Appl. Phys. Lett. 60, 1153-1154 (1992).
    [CrossRef]
  8. H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683-3687 (1993).
    [CrossRef]
  9. M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third-order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77, 5518-5523 (1995).
    [CrossRef]
  10. H. Kanbara, S. Fujiwara, K. Tanaka, H. Nasu, and K. Hirao, “Third-order nonlinear optical properties of chalcogenide glasses,” Appl. Phys. Lett. 70, 925-927 (1997).
    [CrossRef]
  11. M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142-148 (1997).
    [CrossRef]
  12. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256, 6-16 (1999).
    [CrossRef]
  13. K. Tanaka, “Two-photon absorption spectroscopy of As2S3 glass,” Appl. Phys. Lett. 80, 177-179 (2002).
    [CrossRef]
  14. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1-12 (2003).
    [CrossRef]
  15. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146-1155 (2004).
    [CrossRef]
  16. W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98, 053503 (2005).
    [CrossRef]
  17. O. P. Kulkarni, C. Xia, D. J. Lee, M. Kumar, A. Kuditcher, M. N. Islam, F. L. Terry, Jr., B. G. Aitken, S. C. Currie, J. E. McCarthy, M. L. Powley, and D. A. Nolan, “Third order cascaded Raman wavelength shifting in chalcogenide fibers and determination of Raman gain coefficient,” Opt. Express 14, 7924-7930 (2006).
    [CrossRef]
  18. A. Tuniz, G. Brawley, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 16, 18524-18534 (2008).
    [CrossRef]
  19. T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” IEEE J. Lightwave Technol. 2, 607-613 (1984).
    [CrossRef]
  20. J. S. Sanghera, L. E. Busse, and I. D. Aggatwal, “Effect of scattering centers on the optical loss of As2S3 glass fibers in the infrared,” J. Appl. Phys. 75, 4885-4891 (1994).
    [CrossRef]
  21. J. S. Sanghera and I. D. Aggarwal, “Development of chalcogenide glass fiber optics at NRL,” J. Non-Cryst. Solids 213, 63-67(1997).
    [CrossRef]
  22. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627-640 (2001).
  23. K. Tanaka, N. Toyosawa, and H. Hisakuni, “Photoinduced Bragg gratings in As2S3 optical fibers,” Opt. Lett. 20, 1976-1978 (1995).
    [CrossRef]
  24. G. A. Brawley, V. G. Ta'eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44, 846-847(2008).
    [CrossRef]
  25. M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photonics Technol. Lett. 4, 362-365 (1992).
    [CrossRef]
  26. M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325-2333 (1993).
    [CrossRef]
  27. M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966-1968(1993).
    [CrossRef]
  28. M. Asobe, H. Kobayashi, and H. Itoh, “Laser-diode-driven ultrafast all-optical switching by using highly nonlinear chalcogenide glass fiber,” Opt. Lett. 18, 1056-1058 (1993).
    [CrossRef]
  29. S. D. Jackson and G. Anzueto-Sánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88, 221106 (2006).
    [CrossRef]
  30. Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Express 12, 5140-5145 (2004).
    [CrossRef]
  31. S. J. Madden, D-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15, 14414-14421 (2007).
    [CrossRef]
  32. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15, 10324-10329 (2007).
    [CrossRef]
  33. V. G. Ta'eed, M. D. Pelusi, B. J. Eggleton, D-Y. Choi, S. Madden, D. Bulla, and B. Luther-Davies, “Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3planar waveguides,” Opt. Express 15, 15047-15052 (2007).
    [CrossRef]
  34. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16, 20374-20381 (2008).
    [CrossRef]
  35. F. Luan, M. D. Pelusi, M. R. E. Lamont, D-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17, 3514-3520 (2009).
    [CrossRef]
  36. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ=10/W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938-14944 (2008).
    [CrossRef]
  37. D. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660-662 (2008).
    [CrossRef]
  38. M. D. Pelusi, F. Luan, E. Magi, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16, 11506-11512 (2008).
    [CrossRef]
  39. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. doi:10.1038/nphoton.2009.001 (2009).
    [CrossRef]
  40. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, Elsevier, 2006).
  41. Q. Lin and Govind P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31, 3086-3088 (2006).
    [CrossRef]
  42. Y. Ruan, B. Luther-Davies, W. Li, A. Rode, V. Kolev, and S. Madden, “Large phase shifts in As2S3 waveguides for all-optical processing devices,” Opt. Lett. 30, 2605-2607 (2005).
    [CrossRef]

2009 (2)

F. Luan, M. D. Pelusi, M. R. E. Lamont, D-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17, 3514-3520 (2009).
[CrossRef]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. doi:10.1038/nphoton.2009.001 (2009).
[CrossRef]

2008 (6)

2007 (3)

2006 (3)

2005 (2)

Y. Ruan, B. Luther-Davies, W. Li, A. Rode, V. Kolev, and S. Madden, “Large phase shifts in As2S3 waveguides for all-optical processing devices,” Opt. Lett. 30, 2605-2607 (2005).
[CrossRef]

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98, 053503 (2005).
[CrossRef]

2004 (2)

2003 (1)

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1-12 (2003).
[CrossRef]

2002 (1)

K. Tanaka, “Two-photon absorption spectroscopy of As2S3 glass,” Appl. Phys. Lett. 80, 177-179 (2002).
[CrossRef]

2001 (1)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627-640 (2001).

1999 (1)

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256, 6-16 (1999).
[CrossRef]

1997 (3)

H. Kanbara, S. Fujiwara, K. Tanaka, H. Nasu, and K. Hirao, “Third-order nonlinear optical properties of chalcogenide glasses,” Appl. Phys. Lett. 70, 925-927 (1997).
[CrossRef]

M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142-148 (1997).
[CrossRef]

J. S. Sanghera and I. D. Aggarwal, “Development of chalcogenide glass fiber optics at NRL,” J. Non-Cryst. Solids 213, 63-67(1997).
[CrossRef]

1995 (2)

K. Tanaka, N. Toyosawa, and H. Hisakuni, “Photoinduced Bragg gratings in As2S3 optical fibers,” Opt. Lett. 20, 1976-1978 (1995).
[CrossRef]

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third-order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77, 5518-5523 (1995).
[CrossRef]

1994 (1)

J. S. Sanghera, L. E. Busse, and I. D. Aggatwal, “Effect of scattering centers on the optical loss of As2S3 glass fibers in the infrared,” J. Appl. Phys. 75, 4885-4891 (1994).
[CrossRef]

1993 (4)

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325-2333 (1993).
[CrossRef]

M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966-1968(1993).
[CrossRef]

M. Asobe, H. Kobayashi, and H. Itoh, “Laser-diode-driven ultrafast all-optical switching by using highly nonlinear chalcogenide glass fiber,” Opt. Lett. 18, 1056-1058 (1993).
[CrossRef]

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683-3687 (1993).
[CrossRef]

1992 (2)

M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation,” Appl. Phys. Lett. 60, 1153-1154 (1992).
[CrossRef]

M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photonics Technol. Lett. 4, 362-365 (1992).
[CrossRef]

1990 (1)

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “Third-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73, 1794-1796 (1990).
[CrossRef]

1984 (1)

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” IEEE J. Lightwave Technol. 2, 607-613 (1984).
[CrossRef]

1979 (1)

R. L. Fork, C. V. Shank, A. M. Glass, A. Migus, M. A. Bosch, and J. Shah, “Picosecond dynamics of optically induced absorption in the band gap of As2S3,” Phys. Rev. Lett. 43, 394-398 (1979).
[CrossRef]

1973 (1)

R. J. Kobliska and S. A. Solin, “Temperature dependence of the Raman spectrum and the depolarization spectrum of amorphous As2S3,” Phys. Rev. B 8, 756-768 (1973).
[CrossRef]

1972 (1)

G. Lucovsky, “Optic modes in amorphous As2S3 and As2Se3,” Phys. Rev. B 6, 1480-1489 (1972).
[CrossRef]

1958 (1)

1953 (1)

Aggarwal, I.

G. A. Brawley, V. G. Ta'eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44, 846-847(2008).
[CrossRef]

Aggarwal, I. D.

M. D. Pelusi, F. Luan, E. Magi, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16, 11506-11512 (2008).
[CrossRef]

R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146-1155 (2004).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627-640 (2001).

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256, 6-16 (1999).
[CrossRef]

J. S. Sanghera and I. D. Aggarwal, “Development of chalcogenide glass fiber optics at NRL,” J. Non-Cryst. Solids 213, 63-67(1997).
[CrossRef]

Aggatwal, I. D.

J. S. Sanghera, L. E. Busse, and I. D. Aggatwal, “Effect of scattering centers on the optical loss of As2S3 glass fibers in the infrared,” J. Appl. Phys. 75, 4885-4891 (1994).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, Elsevier, 2006).

Agrawal, Govind P.

Aitken, B. G.

Antoine, K.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98, 053503 (2005).
[CrossRef]

Anzueto-Sánchez, G.

S. D. Jackson and G. Anzueto-Sánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88, 221106 (2006).
[CrossRef]

Asobe, M.

M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142-148 (1997).
[CrossRef]

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third-order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77, 5518-5523 (1995).
[CrossRef]

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325-2333 (1993).
[CrossRef]

M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966-1968(1993).
[CrossRef]

M. Asobe, H. Kobayashi, and H. Itoh, “Laser-diode-driven ultrafast all-optical switching by using highly nonlinear chalcogenide glass fiber,” Opt. Lett. 18, 1056-1058 (1993).
[CrossRef]

M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photonics Technol. Lett. 4, 362-365 (1992).
[CrossRef]

M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation,” Appl. Phys. Lett. 60, 1153-1154 (1992).
[CrossRef]

Bayya, S.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627-640 (2001).

Bolger, J. A.

G. A. Brawley, V. G. Ta'eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44, 846-847(2008).
[CrossRef]

Bosch, M. A.

R. L. Fork, C. V. Shank, A. M. Glass, A. Migus, M. A. Bosch, and J. Shah, “Picosecond dynamics of optically induced absorption in the band gap of As2S3,” Phys. Rev. Lett. 43, 394-398 (1979).
[CrossRef]

Brawley, G.

Brawley, G. A.

G. A. Brawley, V. G. Ta'eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44, 846-847(2008).
[CrossRef]

Bulla, D.

Bulla, D. A.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. doi:10.1038/nphoton.2009.001 (2009).
[CrossRef]

S. J. Madden, D-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15, 14414-14421 (2007).
[CrossRef]

Busse, L. E.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627-640 (2001).

J. S. Sanghera, L. E. Busse, and I. D. Aggatwal, “Effect of scattering centers on the optical loss of As2S3 glass fibers in the infrared,” J. Appl. Phys. 75, 4885-4891 (1994).
[CrossRef]

Choi, D. Y.

Choi, D.-Y.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. doi:10.1038/nphoton.2009.001 (2009).
[CrossRef]

Choi, D-Y.

Currie, S. C.

Eggleton, B. J.

F. Luan, M. D. Pelusi, M. R. E. Lamont, D-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17, 3514-3520 (2009).
[CrossRef]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. doi:10.1038/nphoton.2009.001 (2009).
[CrossRef]

M. D. Pelusi, F. Luan, E. Magi, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16, 11506-11512 (2008).
[CrossRef]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ=10/W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938-14944 (2008).
[CrossRef]

D. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660-662 (2008).
[CrossRef]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16, 20374-20381 (2008).
[CrossRef]

A. Tuniz, G. Brawley, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 16, 18524-18534 (2008).
[CrossRef]

G. A. Brawley, V. G. Ta'eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44, 846-847(2008).
[CrossRef]

S. J. Madden, D-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15, 14414-14421 (2007).
[CrossRef]

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15, 10324-10329 (2007).
[CrossRef]

V. G. Ta'eed, M. D. Pelusi, B. J. Eggleton, D-Y. Choi, S. Madden, D. Bulla, and B. Luther-Davies, “Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3planar waveguides,” Opt. Express 15, 15047-15052 (2007).
[CrossRef]

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1-12 (2003).
[CrossRef]

Fork, R. L.

R. L. Fork, C. V. Shank, A. M. Glass, A. Migus, M. A. Bosch, and J. Shah, “Picosecond dynamics of optically induced absorption in the band gap of As2S3,” Phys. Rev. Lett. 43, 394-398 (1979).
[CrossRef]

Frerichs, R.

Fu, L.

Fu, L. B.

Fujiwara, S.

H. Kanbara, S. Fujiwara, K. Tanaka, H. Nasu, and K. Hirao, “Third-order nonlinear optical properties of chalcogenide glasses,” Appl. Phys. Lett. 70, 925-927 (1997).
[CrossRef]

Gai, X.

Glass, A. M.

R. L. Fork, C. V. Shank, A. M. Glass, A. Migus, M. A. Bosch, and J. Shah, “Picosecond dynamics of optically induced absorption in the band gap of As2S3,” Phys. Rev. Lett. 43, 394-398 (1979).
[CrossRef]

Hirao, K.

H. Kanbara, S. Fujiwara, K. Tanaka, H. Nasu, and K. Hirao, “Third-order nonlinear optical properties of chalcogenide glasses,” Appl. Phys. Lett. 70, 925-927 (1997).
[CrossRef]

Hisakuni, H.

Hodelin, J.

Islam, M. N.

Itoh, H.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third-order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77, 5518-5523 (1995).
[CrossRef]

M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966-1968(1993).
[CrossRef]

M. Asobe, H. Kobayashi, and H. Itoh, “Laser-diode-driven ultrafast all-optical switching by using highly nonlinear chalcogenide glass fiber,” Opt. Lett. 18, 1056-1058 (1993).
[CrossRef]

Jackson, S. D.

S. D. Jackson and G. Anzueto-Sánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88, 221106 (2006).
[CrossRef]

Jain, H.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98, 053503 (2005).
[CrossRef]

Jarvis, R.

Kaino, T.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third-order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77, 5518-5523 (1995).
[CrossRef]

Kamiya, K.

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “Third-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73, 1794-1796 (1990).
[CrossRef]

Kanamori, T.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third-order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77, 5518-5523 (1995).
[CrossRef]

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325-2333 (1993).
[CrossRef]

M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966-1968(1993).
[CrossRef]

M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photonics Technol. Lett. 4, 362-365 (1992).
[CrossRef]

M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation,” Appl. Phys. Lett. 60, 1153-1154 (1992).
[CrossRef]

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” IEEE J. Lightwave Technol. 2, 607-613 (1984).
[CrossRef]

Kanbara, H.

H. Kanbara, S. Fujiwara, K. Tanaka, H. Nasu, and K. Hirao, “Third-order nonlinear optical properties of chalcogenide glasses,” Appl. Phys. Lett. 70, 925-927 (1997).
[CrossRef]

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683-3687 (1993).
[CrossRef]

King, T. A.

Kobayashi, H.

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683-3687 (1993).
[CrossRef]

M. Asobe, H. Kobayashi, and H. Itoh, “Laser-diode-driven ultrafast all-optical switching by using highly nonlinear chalcogenide glass fiber,” Opt. Lett. 18, 1056-1058 (1993).
[CrossRef]

Kobayashi, M.

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “Third-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73, 1794-1796 (1990).
[CrossRef]

Kobliska, R. J.

R. J. Kobliska and S. A. Solin, “Temperature dependence of the Raman spectrum and the depolarization spectrum of amorphous As2S3,” Phys. Rev. B 8, 756-768 (1973).
[CrossRef]

Koga, M.

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683-3687 (1993).
[CrossRef]

Kolev, V.

Kubodera, K.

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683-3687 (1993).
[CrossRef]

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325-2333 (1993).
[CrossRef]

M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photonics Technol. Lett. 4, 362-365 (1992).
[CrossRef]

M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation,” Appl. Phys. Lett. 60, 1153-1154 (1992).
[CrossRef]

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “Third-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73, 1794-1796 (1990).
[CrossRef]

Kuditcher, A.

Kulkarni, O. P.

Kumar, M.

Kung, F.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627-640 (2001).

Lamont, M. R. E.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. doi:10.1038/nphoton.2009.001 (2009).
[CrossRef]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17, 3514-3520 (2009).
[CrossRef]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16, 20374-20381 (2008).
[CrossRef]

M. D. Pelusi, F. Luan, E. Magi, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16, 11506-11512 (2008).
[CrossRef]

D. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660-662 (2008).
[CrossRef]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ=10/W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938-14944 (2008).
[CrossRef]

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15, 10324-10329 (2007).
[CrossRef]

Lee, D. J.

Lenz, G.

Li, W.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98, 053503 (2005).
[CrossRef]

Y. Ruan, B. Luther-Davies, W. Li, A. Rode, V. Kolev, and S. Madden, “Large phase shifts in As2S3 waveguides for all-optical processing devices,” Opt. Lett. 30, 2605-2607 (2005).
[CrossRef]

Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Express 12, 5140-5145 (2004).
[CrossRef]

Lin, Q.

Lopez, C.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98, 053503 (2005).
[CrossRef]

Luan, F.

Lucovsky, G.

G. Lucovsky, “Optic modes in amorphous As2S3 and As2Se3,” Phys. Rev. B 6, 1480-1489 (1972).
[CrossRef]

Luther-Davies, B.

F. Luan, M. D. Pelusi, M. R. E. Lamont, D-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17, 3514-3520 (2009).
[CrossRef]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. doi:10.1038/nphoton.2009.001 (2009).
[CrossRef]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16, 20374-20381 (2008).
[CrossRef]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ=10/W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938-14944 (2008).
[CrossRef]

V. G. Ta'eed, M. D. Pelusi, B. J. Eggleton, D-Y. Choi, S. Madden, D. Bulla, and B. Luther-Davies, “Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3planar waveguides,” Opt. Express 15, 15047-15052 (2007).
[CrossRef]

S. J. Madden, D-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15, 14414-14421 (2007).
[CrossRef]

Y. Ruan, B. Luther-Davies, W. Li, A. Rode, V. Kolev, and S. Madden, “Large phase shifts in As2S3 waveguides for all-optical processing devices,” Opt. Lett. 30, 2605-2607 (2005).
[CrossRef]

Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Express 12, 5140-5145 (2004).
[CrossRef]

Madden, S.

Madden, S. J.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. doi:10.1038/nphoton.2009.001 (2009).
[CrossRef]

S. J. Madden, D-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15, 14414-14421 (2007).
[CrossRef]

Madsen, N.

Magi, E.

Mägi, E. C.

Malitson, I. H.

McCarthy, J. E.

Migus, A.

R. L. Fork, C. V. Shank, A. M. Glass, A. Migus, M. A. Bosch, and J. Shah, “Picosecond dynamics of optically induced absorption in the band gap of As2S3,” Phys. Rev. Lett. 43, 394-398 (1979).
[CrossRef]

Miller, A. C.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98, 053503 (2005).
[CrossRef]

Miyashita, T.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” IEEE J. Lightwave Technol. 2, 607-613 (1984).
[CrossRef]

Miyazawa, T.

M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966-1968(1993).
[CrossRef]

Moss, D. J.

Myneni, S.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98, 053503 (2005).
[CrossRef]

Naganuma, K.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third-order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77, 5518-5523 (1995).
[CrossRef]

Nakamura, M.

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “Third-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73, 1794-1796 (1990).
[CrossRef]

Nasu, H.

H. Kanbara, S. Fujiwara, K. Tanaka, H. Nasu, and K. Hirao, “Third-order nonlinear optical properties of chalcogenide glasses,” Appl. Phys. Lett. 70, 925-927 (1997).
[CrossRef]

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “Third-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73, 1794-1796 (1990).
[CrossRef]

Nguyen, H. C.

Nguyen, V.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627-640 (2001).

Nolan, D. A.

Pelusi, M.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. doi:10.1038/nphoton.2009.001 (2009).
[CrossRef]

Pelusi, M. D.

Pope, A.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98, 053503 (2005).
[CrossRef]

Powley, M. L.

Pureza, P.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627-640 (2001).

Richardson, K.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98, 053503 (2005).
[CrossRef]

Rivero, C.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98, 053503 (2005).
[CrossRef]

Rode, A.

Rode, A. V.

Rodney, W. S.

Roelens, M. A. F.

Ruan, Y.

Sanghera, J.

Sanghera, J. S.

G. A. Brawley, V. G. Ta'eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44, 846-847(2008).
[CrossRef]

M. D. Pelusi, F. Luan, E. Magi, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16, 11506-11512 (2008).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627-640 (2001).

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256, 6-16 (1999).
[CrossRef]

J. S. Sanghera and I. D. Aggarwal, “Development of chalcogenide glass fiber optics at NRL,” J. Non-Cryst. Solids 213, 63-67(1997).
[CrossRef]

J. S. Sanghera, L. E. Busse, and I. D. Aggatwal, “Effect of scattering centers on the optical loss of As2S3 glass fibers in the infrared,” J. Appl. Phys. 75, 4885-4891 (1994).
[CrossRef]

Schulte, A.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98, 053503 (2005).
[CrossRef]

Seal, S.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98, 053503 (2005).
[CrossRef]

Shah, J.

R. L. Fork, C. V. Shank, A. M. Glass, A. Migus, M. A. Bosch, and J. Shah, “Picosecond dynamics of optically induced absorption in the band gap of As2S3,” Phys. Rev. Lett. 43, 394-398 (1979).
[CrossRef]

Shank, C. V.

R. L. Fork, C. V. Shank, A. M. Glass, A. Migus, M. A. Bosch, and J. Shah, “Picosecond dynamics of optically induced absorption in the band gap of As2S3,” Phys. Rev. Lett. 43, 394-398 (1979).
[CrossRef]

Shaw, L. B.

Slusher, R. E.

Solin, S. A.

R. J. Kobliska and S. A. Solin, “Temperature dependence of the Raman spectrum and the depolarization spectrum of amorphous As2S3,” Phys. Rev. B 8, 756-768 (1973).
[CrossRef]

Suzuki, K.

M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation,” Appl. Phys. Lett. 60, 1153-1154 (1992).
[CrossRef]

Ta'eed, V. G.

Takahashi, S.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” IEEE J. Lightwave Technol. 2, 607-613 (1984).
[CrossRef]

Tanaka, K.

K. Tanaka, “Two-photon absorption spectroscopy of As2S3 glass,” Appl. Phys. Lett. 80, 177-179 (2002).
[CrossRef]

H. Kanbara, S. Fujiwara, K. Tanaka, H. Nasu, and K. Hirao, “Third-order nonlinear optical properties of chalcogenide glasses,” Appl. Phys. Lett. 70, 925-927 (1997).
[CrossRef]

K. Tanaka, N. Toyosawa, and H. Hisakuni, “Photoinduced Bragg gratings in As2S3 optical fibers,” Opt. Lett. 20, 1976-1978 (1995).
[CrossRef]

Terry, F. L.

Terunuma, Y.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” IEEE J. Lightwave Technol. 2, 607-613 (1984).
[CrossRef]

Thielen, P.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627-640 (2001).

Toyosawa, N.

Tuniz, A.

Vo, T. D.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. doi:10.1038/nphoton.2009.001 (2009).
[CrossRef]

Xia, C.

Yeom, D.

Yeom, D. I.

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1-12 (2003).
[CrossRef]

Appl. Phys. Lett. (4)

M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation,” Appl. Phys. Lett. 60, 1153-1154 (1992).
[CrossRef]

H. Kanbara, S. Fujiwara, K. Tanaka, H. Nasu, and K. Hirao, “Third-order nonlinear optical properties of chalcogenide glasses,” Appl. Phys. Lett. 70, 925-927 (1997).
[CrossRef]

K. Tanaka, “Two-photon absorption spectroscopy of As2S3 glass,” Appl. Phys. Lett. 80, 177-179 (2002).
[CrossRef]

S. D. Jackson and G. Anzueto-Sánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88, 221106 (2006).
[CrossRef]

Electron. Lett. (2)

G. A. Brawley, V. G. Ta'eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44, 846-847(2008).
[CrossRef]

M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966-1968(1993).
[CrossRef]

IEEE J. Lightwave Technol. (1)

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” IEEE J. Lightwave Technol. 2, 607-613 (1984).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325-2333 (1993).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photonics Technol. Lett. 4, 362-365 (1992).
[CrossRef]

J. Am. Ceram. Soc. (1)

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “Third-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73, 1794-1796 (1990).
[CrossRef]

J. Appl. Phys. (4)

J. S. Sanghera, L. E. Busse, and I. D. Aggatwal, “Effect of scattering centers on the optical loss of As2S3 glass fibers in the infrared,” J. Appl. Phys. 75, 4885-4891 (1994).
[CrossRef]

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683-3687 (1993).
[CrossRef]

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third-order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77, 5518-5523 (1995).
[CrossRef]

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98, 053503 (2005).
[CrossRef]

J. Non-Cryst. Solids (3)

J. S. Sanghera and I. D. Aggarwal, “Development of chalcogenide glass fiber optics at NRL,” J. Non-Cryst. Solids 213, 63-67(1997).
[CrossRef]

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256, 6-16 (1999).
[CrossRef]

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1-12 (2003).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (1)

J. Optoelectron. Adv. Mater. (1)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627-640 (2001).

Nat. Photon. (1)

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. doi:10.1038/nphoton.2009.001 (2009).
[CrossRef]

Opt. Express (10)

O. P. Kulkarni, C. Xia, D. J. Lee, M. Kumar, A. Kuditcher, M. N. Islam, F. L. Terry, Jr., B. G. Aitken, S. C. Currie, J. E. McCarthy, M. L. Powley, and D. A. Nolan, “Third order cascaded Raman wavelength shifting in chalcogenide fibers and determination of Raman gain coefficient,” Opt. Express 14, 7924-7930 (2006).
[CrossRef]

A. Tuniz, G. Brawley, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 16, 18524-18534 (2008).
[CrossRef]

M. D. Pelusi, F. Luan, E. Magi, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16, 11506-11512 (2008).
[CrossRef]

Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Express 12, 5140-5145 (2004).
[CrossRef]

S. J. Madden, D-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15, 14414-14421 (2007).
[CrossRef]

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15, 10324-10329 (2007).
[CrossRef]

V. G. Ta'eed, M. D. Pelusi, B. J. Eggleton, D-Y. Choi, S. Madden, D. Bulla, and B. Luther-Davies, “Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3planar waveguides,” Opt. Express 15, 15047-15052 (2007).
[CrossRef]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16, 20374-20381 (2008).
[CrossRef]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17, 3514-3520 (2009).
[CrossRef]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ=10/W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938-14944 (2008).
[CrossRef]

Opt. Fiber Technol. (1)

M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142-148 (1997).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. B (2)

G. Lucovsky, “Optic modes in amorphous As2S3 and As2Se3,” Phys. Rev. B 6, 1480-1489 (1972).
[CrossRef]

R. J. Kobliska and S. A. Solin, “Temperature dependence of the Raman spectrum and the depolarization spectrum of amorphous As2S3,” Phys. Rev. B 8, 756-768 (1973).
[CrossRef]

Phys. Rev. Lett. (1)

R. L. Fork, C. V. Shank, A. M. Glass, A. Migus, M. A. Bosch, and J. Shah, “Picosecond dynamics of optically induced absorption in the band gap of As2S3,” Phys. Rev. Lett. 43, 394-398 (1979).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, Elsevier, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup. VA, variable attenuator; PC, polarization controller; Pol, polarizer; OSA, optical spectrum analyzer.

Fig. 2
Fig. 2

Walk-off length between the 1472 nm pump ( 10 ps pulse width) and the probe sideband.

Fig. 3
Fig. 3

Experimentally measured spectra with varying probe wavelengths ( λ s ) for a pump wavelength of 1472 nm ( λ p ). The spectral broadening and amplification are due to XPM and Raman gain, respectively. The black solid curve schematically indicates the profile of the Raman gain spectrum. It should be noted that the real spectra at adjacent probe wavelengths have overlaps in bandwidth. We manually squeeze them in the figure for a clearer illustration of the Raman gain profile.

Fig. 4
Fig. 4

Raman gain spectra in the case of parallel polarization (circles) and orthogonal polarization (stars) of pump and probe. The Stokes frequency shift ( f p f s ) is shown along the x axis.

Fig. 5
Fig. 5

Calculated Raman gain spectrum (solid curve) from the fitted Lorentzian profile Raman response function Eq. (1) and the measured Raman gain spectrum (circles) for the parallel polarization case.

Fig. 6
Fig. 6

Power transfer curve for λ p = 1472 nm (squares) and 1490 nm (circles). The dashed and solid lines are linear fits to the experimental data. The inset shows the measured nonlinear phase shift in the pump power range we investigated at λ p = 1472 nm , which indicates that the power transmission is still linear even with 3.5 π nonlinear phase shift.

Fig. 7
Fig. 7

Pump power dependence of Raman peak gain (CW probe at 1570 nm , probe power is 52 μW ) for λ p = 1490 nm . Circles indicate the experimental data and the solid line is a linear fit to the experimental data.

Fig. 8
Fig. 8

Simulations (dashed curves) show the GVD effects on XPM-induced spectral broadening (pump wavelength 1472 nm ). Each row plots the results at the same probe wavelength but with different GVD. Each column plots the results at different probe wavelengths (1550 and 1560 nm ) but with the same GVD. The dispersion for the simulation is set to 172 , 461 , and 868 ps / ( nm km ) for the first, second, and third columns, respectively. Solid curves are the experimental spectra.

Fig. 9
Fig. 9

Comparison of simulation (dashed curves) and experimental (solid curves) results (pump wavelength 1472 nm ) by varying GVD with 10% in simulations. Each row plots the results at the same probe wavelength but with different GVD. Each column plots the results at different probe wavelengths (1542, 1550, and 1560 nm ) but with the same GVD. The dispersion for the simulation is set to 415 , 461 , and 507 ps / nm km ) for the first, second, and third columns, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

h R ( t ) = τ 1 2 + τ 2 2 τ 1 τ 2 2 exp ( t / τ 2 ) sin ( t / τ 1 ) ,
g R dB = 4.343 g R L eff A eff ( P 0 P th ) ,
z A ( z , t ) = α 2 A β 1 t A ( z , t ) i β 2 2 ! 2 t 2 A ( z , t ) + β 3 3 ! 3 t 3 A ( z , t ) + i β 4 4 ! 4 t 4 A ( z , t ) + i ( γ + i α 2 2 A eff ) ( 1 + i ϖ 0 t ) ( A ( z , t ) R ( t ) | A ( z , t t ) | 2 d t ) ,

Metrics