Abstract

An interrogation technique for fiber Bragg grating (FBG) strain sensors with dynamic temperature compensation using a single-multiple-single-mode (SMS) fiber filter as a temperature compensating element is presented. Experimental results show that this technique offers a resolution of better than 3.4με for strain measurements in the range from 0 to 1667με, and the temperature induced error is as low as 34με in the temperature range from 10 to 60°C. The temperature induced error could be further reduced if the temperature sensitivity (the rate of temperature induced wavelength shift) of the SMS filter was closer to that of the FBG sensor. This can be achieved by selecting a multimode fiber for the SMS filter with appropriate parameters. The proposed technique can be modified for simultaneous measurements of strain and temperature with an experimentally achieved resolution of better than 1°C.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. B. Lin, C. L. Pan, Y. H. Kuo, K. C. Chang, and J. C. Chern, “Online monitoring of highway bridge construction using fiber Bragg grating sensors,” Smart Mater. Struct. 14, 1075-1082(2005).
    [CrossRef]
  2. A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Struct. Control Health Monitor. 12, 269-282(2005).
    [CrossRef]
  3. G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144, 156-161(1997).
    [CrossRef]
  4. F. M. Hanran, J. K. Rew, and P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, 1163-1166 (1998).
    [CrossRef]
  5. L. Lin, W. G. Zhang, H. Zhang, B. Liu, H. Zhao, Q. C. Tu, G. Y. Kai, and X. Y. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18, 154-156 (2006).
    [CrossRef]
  6. L. Y. Shao, X. Y. Dong, A. P. Zhang, H. Y. Tam, and S. L. He, “High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 19, 1598-1600 (2007).
    [CrossRef]
  7. L. V. Nguyen, D. Hwang, D. S. Moon, and Y. Chung, “Simultaneous measurement of temperature and strain using a Lyot fiber filter incorporated with a fiber Bragg grating in a linear configuration,” Meas. Sci. Technol. 20, 034006 (2009).
    [CrossRef]
  8. S. M. Melle, K. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516-518(1992).
    [CrossRef]
  9. G. Dooly, C. Fitzpatrick, and E. Lewis, “Deep UV based DOAS system for the monitoring of nitric oxide using ratiometric separation techniques,” Sens. Actuators B 134, 317-323(2008).
    [CrossRef]
  10. Y. P. Miao, B. Liu, W. H. Zhang, B. Dong, H. B. Zhou, and Q. D. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber Bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393-1395 (2008).
    [CrossRef]
  11. D. P. Zhou, L. Wei, W. K. Liu, and J. W. Y. Lit, “Simultaneous strain and temperature measurement with fiber Bragg grating and multimode fibers using an intensity-based interrogation method,” IEEE Photon. Technol. Lett. 21, 468-470(2009).
    [CrossRef]
  12. Q. Wang, G. Farrell, and W. Yan, “Investigation on singlemode-multimode- singlemode fiber structure,” J. Lightwave Technol. 26, 512-519 (2008).
    [CrossRef]
  13. W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31, 2547-2549(2006).
    [CrossRef] [PubMed]
  14. A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
    [CrossRef]
  15. E. Li, “Temperature compensation of multimode interference-based fiber devices,” Opt. Lett. 32, 2064-2066 (2007).
    [CrossRef] [PubMed]

2009 (2)

L. V. Nguyen, D. Hwang, D. S. Moon, and Y. Chung, “Simultaneous measurement of temperature and strain using a Lyot fiber filter incorporated with a fiber Bragg grating in a linear configuration,” Meas. Sci. Technol. 20, 034006 (2009).
[CrossRef]

D. P. Zhou, L. Wei, W. K. Liu, and J. W. Y. Lit, “Simultaneous strain and temperature measurement with fiber Bragg grating and multimode fibers using an intensity-based interrogation method,” IEEE Photon. Technol. Lett. 21, 468-470(2009).
[CrossRef]

2008 (4)

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

Q. Wang, G. Farrell, and W. Yan, “Investigation on singlemode-multimode- singlemode fiber structure,” J. Lightwave Technol. 26, 512-519 (2008).
[CrossRef]

G. Dooly, C. Fitzpatrick, and E. Lewis, “Deep UV based DOAS system for the monitoring of nitric oxide using ratiometric separation techniques,” Sens. Actuators B 134, 317-323(2008).
[CrossRef]

Y. P. Miao, B. Liu, W. H. Zhang, B. Dong, H. B. Zhou, and Q. D. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber Bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393-1395 (2008).
[CrossRef]

2007 (2)

L. Y. Shao, X. Y. Dong, A. P. Zhang, H. Y. Tam, and S. L. He, “High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 19, 1598-1600 (2007).
[CrossRef]

E. Li, “Temperature compensation of multimode interference-based fiber devices,” Opt. Lett. 32, 2064-2066 (2007).
[CrossRef] [PubMed]

2006 (2)

W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31, 2547-2549(2006).
[CrossRef] [PubMed]

L. Lin, W. G. Zhang, H. Zhang, B. Liu, H. Zhao, Q. C. Tu, G. Y. Kai, and X. Y. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18, 154-156 (2006).
[CrossRef]

2005 (2)

Y. B. Lin, C. L. Pan, Y. H. Kuo, K. C. Chang, and J. C. Chern, “Online monitoring of highway bridge construction using fiber Bragg grating sensors,” Smart Mater. Struct. 14, 1075-1082(2005).
[CrossRef]

A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Struct. Control Health Monitor. 12, 269-282(2005).
[CrossRef]

1998 (1)

F. M. Hanran, J. K. Rew, and P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, 1163-1166 (1998).
[CrossRef]

1992 (1)

S. M. Melle, K. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516-518(1992).
[CrossRef]

Archambault, J. L.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144, 156-161(1997).
[CrossRef]

Brady, G. P.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144, 156-161(1997).
[CrossRef]

Chang, K. C.

Y. B. Lin, C. L. Pan, Y. H. Kuo, K. C. Chang, and J. C. Chern, “Online monitoring of highway bridge construction using fiber Bragg grating sensors,” Smart Mater. Struct. 14, 1075-1082(2005).
[CrossRef]

Chern, J. C.

Y. B. Lin, C. L. Pan, Y. H. Kuo, K. C. Chang, and J. C. Chern, “Online monitoring of highway bridge construction using fiber Bragg grating sensors,” Smart Mater. Struct. 14, 1075-1082(2005).
[CrossRef]

Chung, Y.

L. V. Nguyen, D. Hwang, D. S. Moon, and Y. Chung, “Simultaneous measurement of temperature and strain using a Lyot fiber filter incorporated with a fiber Bragg grating in a linear configuration,” Meas. Sci. Technol. 20, 034006 (2009).
[CrossRef]

Dong, B.

Y. P. Miao, B. Liu, W. H. Zhang, B. Dong, H. B. Zhou, and Q. D. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber Bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393-1395 (2008).
[CrossRef]

Dong, X. Y.

L. Y. Shao, X. Y. Dong, A. P. Zhang, H. Y. Tam, and S. L. He, “High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 19, 1598-1600 (2007).
[CrossRef]

L. Lin, W. G. Zhang, H. Zhang, B. Liu, H. Zhao, Q. C. Tu, G. Y. Kai, and X. Y. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18, 154-156 (2006).
[CrossRef]

Dooly, G.

G. Dooly, C. Fitzpatrick, and E. Lewis, “Deep UV based DOAS system for the monitoring of nitric oxide using ratiometric separation techniques,” Sens. Actuators B 134, 317-323(2008).
[CrossRef]

Farrell, G.

Q. Wang, G. Farrell, and W. Yan, “Investigation on singlemode-multimode- singlemode fiber structure,” J. Lightwave Technol. 26, 512-519 (2008).
[CrossRef]

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

Fitzpatrick, C.

G. Dooly, C. Fitzpatrick, and E. Lewis, “Deep UV based DOAS system for the monitoring of nitric oxide using ratiometric separation techniques,” Sens. Actuators B 134, 317-323(2008).
[CrossRef]

Foote, P. D.

F. M. Hanran, J. K. Rew, and P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, 1163-1166 (1998).
[CrossRef]

Gu, X.

Hanran, F. M.

F. M. Hanran, J. K. Rew, and P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, 1163-1166 (1998).
[CrossRef]

Hatta, A. M.

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

He, S. L.

L. Y. Shao, X. Y. Dong, A. P. Zhang, H. Y. Tam, and S. L. He, “High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 19, 1598-1600 (2007).
[CrossRef]

Hongo, A.

A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Struct. Control Health Monitor. 12, 269-282(2005).
[CrossRef]

Hwang, D.

L. V. Nguyen, D. Hwang, D. S. Moon, and Y. Chung, “Simultaneous measurement of temperature and strain using a Lyot fiber filter incorporated with a fiber Bragg grating in a linear configuration,” Meas. Sci. Technol. 20, 034006 (2009).
[CrossRef]

Jackson, D. A.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144, 156-161(1997).
[CrossRef]

Kai, G. Y.

L. Lin, W. G. Zhang, H. Zhang, B. Liu, H. Zhao, Q. C. Tu, G. Y. Kai, and X. Y. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18, 154-156 (2006).
[CrossRef]

Kalli, K.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144, 156-161(1997).
[CrossRef]

Kojima, S.

A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Struct. Control Health Monitor. 12, 269-282(2005).
[CrossRef]

Komatsuzaki, S.

A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Struct. Control Health Monitor. 12, 269-282(2005).
[CrossRef]

Kuo, Y. H.

Y. B. Lin, C. L. Pan, Y. H. Kuo, K. C. Chang, and J. C. Chern, “Online monitoring of highway bridge construction using fiber Bragg grating sensors,” Smart Mater. Struct. 14, 1075-1082(2005).
[CrossRef]

Lewis, E.

G. Dooly, C. Fitzpatrick, and E. Lewis, “Deep UV based DOAS system for the monitoring of nitric oxide using ratiometric separation techniques,” Sens. Actuators B 134, 317-323(2008).
[CrossRef]

Li, E.

Lin, L.

L. Lin, W. G. Zhang, H. Zhang, B. Liu, H. Zhao, Q. C. Tu, G. Y. Kai, and X. Y. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18, 154-156 (2006).
[CrossRef]

Lin, Y. B.

Y. B. Lin, C. L. Pan, Y. H. Kuo, K. C. Chang, and J. C. Chern, “Online monitoring of highway bridge construction using fiber Bragg grating sensors,” Smart Mater. Struct. 14, 1075-1082(2005).
[CrossRef]

Lit, J. W. Y.

D. P. Zhou, L. Wei, W. K. Liu, and J. W. Y. Lit, “Simultaneous strain and temperature measurement with fiber Bragg grating and multimode fibers using an intensity-based interrogation method,” IEEE Photon. Technol. Lett. 21, 468-470(2009).
[CrossRef]

Liu, B.

Y. P. Miao, B. Liu, W. H. Zhang, B. Dong, H. B. Zhou, and Q. D. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber Bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393-1395 (2008).
[CrossRef]

L. Lin, W. G. Zhang, H. Zhang, B. Liu, H. Zhao, Q. C. Tu, G. Y. Kai, and X. Y. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18, 154-156 (2006).
[CrossRef]

Liu, K.

S. M. Melle, K. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516-518(1992).
[CrossRef]

Liu, W. K.

D. P. Zhou, L. Wei, W. K. Liu, and J. W. Y. Lit, “Simultaneous strain and temperature measurement with fiber Bragg grating and multimode fibers using an intensity-based interrogation method,” IEEE Photon. Technol. Lett. 21, 468-470(2009).
[CrossRef]

Measures, R. M.

S. M. Melle, K. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516-518(1992).
[CrossRef]

Melle, S. M.

S. M. Melle, K. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516-518(1992).
[CrossRef]

Miao, Y. P.

Y. P. Miao, B. Liu, W. H. Zhang, B. Dong, H. B. Zhou, and Q. D. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber Bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393-1395 (2008).
[CrossRef]

Mohammed, W. S.

Moon, D. S.

L. V. Nguyen, D. Hwang, D. S. Moon, and Y. Chung, “Simultaneous measurement of temperature and strain using a Lyot fiber filter incorporated with a fiber Bragg grating in a linear configuration,” Meas. Sci. Technol. 20, 034006 (2009).
[CrossRef]

Nguyen, L. V.

L. V. Nguyen, D. Hwang, D. S. Moon, and Y. Chung, “Simultaneous measurement of temperature and strain using a Lyot fiber filter incorporated with a fiber Bragg grating in a linear configuration,” Meas. Sci. Technol. 20, 034006 (2009).
[CrossRef]

Pan, C. L.

Y. B. Lin, C. L. Pan, Y. H. Kuo, K. C. Chang, and J. C. Chern, “Online monitoring of highway bridge construction using fiber Bragg grating sensors,” Smart Mater. Struct. 14, 1075-1082(2005).
[CrossRef]

Rajan, G.

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

Reekie, L.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144, 156-161(1997).
[CrossRef]

Rew, J. K.

F. M. Hanran, J. K. Rew, and P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, 1163-1166 (1998).
[CrossRef]

Semenova, Y.

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

Shao, L. Y.

L. Y. Shao, X. Y. Dong, A. P. Zhang, H. Y. Tam, and S. L. He, “High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 19, 1598-1600 (2007).
[CrossRef]

Smith, P. W. E.

Tam, H. Y.

L. Y. Shao, X. Y. Dong, A. P. Zhang, H. Y. Tam, and S. L. He, “High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 19, 1598-1600 (2007).
[CrossRef]

Tu, Q. C.

L. Lin, W. G. Zhang, H. Zhang, B. Liu, H. Zhao, Q. C. Tu, G. Y. Kai, and X. Y. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18, 154-156 (2006).
[CrossRef]

Wang, P.

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

Wang, Q.

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

Q. Wang, G. Farrell, and W. Yan, “Investigation on singlemode-multimode- singlemode fiber structure,” J. Lightwave Technol. 26, 512-519 (2008).
[CrossRef]

Webb, D. J.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144, 156-161(1997).
[CrossRef]

Wei, L.

D. P. Zhou, L. Wei, W. K. Liu, and J. W. Y. Lit, “Simultaneous strain and temperature measurement with fiber Bragg grating and multimode fibers using an intensity-based interrogation method,” IEEE Photon. Technol. Lett. 21, 468-470(2009).
[CrossRef]

Yan, W.

Zhang, A. P.

L. Y. Shao, X. Y. Dong, A. P. Zhang, H. Y. Tam, and S. L. He, “High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 19, 1598-1600 (2007).
[CrossRef]

Zhang, H.

L. Lin, W. G. Zhang, H. Zhang, B. Liu, H. Zhao, Q. C. Tu, G. Y. Kai, and X. Y. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18, 154-156 (2006).
[CrossRef]

Zhang, W. G.

L. Lin, W. G. Zhang, H. Zhang, B. Liu, H. Zhao, Q. C. Tu, G. Y. Kai, and X. Y. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18, 154-156 (2006).
[CrossRef]

Zhang, W. H.

Y. P. Miao, B. Liu, W. H. Zhang, B. Dong, H. B. Zhou, and Q. D. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber Bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393-1395 (2008).
[CrossRef]

Zhao, H.

L. Lin, W. G. Zhang, H. Zhang, B. Liu, H. Zhao, Q. C. Tu, G. Y. Kai, and X. Y. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18, 154-156 (2006).
[CrossRef]

Zhao, Q. D.

Y. P. Miao, B. Liu, W. H. Zhang, B. Dong, H. B. Zhou, and Q. D. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber Bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393-1395 (2008).
[CrossRef]

Zhou, D. P.

D. P. Zhou, L. Wei, W. K. Liu, and J. W. Y. Lit, “Simultaneous strain and temperature measurement with fiber Bragg grating and multimode fibers using an intensity-based interrogation method,” IEEE Photon. Technol. Lett. 21, 468-470(2009).
[CrossRef]

Zhou, H. B.

Y. P. Miao, B. Liu, W. H. Zhang, B. Dong, H. B. Zhou, and Q. D. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber Bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393-1395 (2008).
[CrossRef]

IEE Proc. Optoelectron. (1)

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144, 156-161(1997).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

L. Lin, W. G. Zhang, H. Zhang, B. Liu, H. Zhao, Q. C. Tu, G. Y. Kai, and X. Y. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18, 154-156 (2006).
[CrossRef]

L. Y. Shao, X. Y. Dong, A. P. Zhang, H. Y. Tam, and S. L. He, “High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 19, 1598-1600 (2007).
[CrossRef]

S. M. Melle, K. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516-518(1992).
[CrossRef]

Y. P. Miao, B. Liu, W. H. Zhang, B. Dong, H. B. Zhou, and Q. D. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber Bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393-1395 (2008).
[CrossRef]

D. P. Zhou, L. Wei, W. K. Liu, and J. W. Y. Lit, “Simultaneous strain and temperature measurement with fiber Bragg grating and multimode fibers using an intensity-based interrogation method,” IEEE Photon. Technol. Lett. 21, 468-470(2009).
[CrossRef]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (2)

L. V. Nguyen, D. Hwang, D. S. Moon, and Y. Chung, “Simultaneous measurement of temperature and strain using a Lyot fiber filter incorporated with a fiber Bragg grating in a linear configuration,” Meas. Sci. Technol. 20, 034006 (2009).
[CrossRef]

F. M. Hanran, J. K. Rew, and P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, 1163-1166 (1998).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

Opt. Lett. (2)

Sens. Actuators B (1)

G. Dooly, C. Fitzpatrick, and E. Lewis, “Deep UV based DOAS system for the monitoring of nitric oxide using ratiometric separation techniques,” Sens. Actuators B 134, 317-323(2008).
[CrossRef]

Smart Mater. Struct. (1)

Y. B. Lin, C. L. Pan, Y. H. Kuo, K. C. Chang, and J. C. Chern, “Online monitoring of highway bridge construction using fiber Bragg grating sensors,” Smart Mater. Struct. 14, 1075-1082(2005).
[CrossRef]

Struct. Control Health Monitor. (1)

A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Struct. Control Health Monitor. 12, 269-282(2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic diagram of the temperature compensating ratiometric interrogation system.

Fig. 2
Fig. 2

Spectra response of a FBG and a SMS filter at temperatures of 20 ° C and 60 ° C .

Fig. 3
Fig. 3

Schematic diagram of an SMS fiber structure.

Fig. 4
Fig. 4

Wavelength shift rate for different (a) MMF core diameter and NA and (b) TEC and TOC; (c) calculated spectral response of an SMS filter; (d) wavelength shift versus temperature.

Fig. 5
Fig. 5

Spectral responses of the FBG and the SMS filter at temperatures of 20 ° C and 60 ° C .

Fig. 6
Fig. 6

Measured wavelength shifts versus temperature.

Fig. 7
Fig. 7

Measured ratio versus strain at room temperature (bottom axis) and measured ratio versus temperature at fixed strain (top axis).

Fig. 8
Fig. 8

Measured ratio variations versus time with step change of (a)  67 με from 0 to 1667 με and (b)  6.7 με from 0 to 20 με .

Fig. 9
Fig. 9

Schematic diagram of the temperature compensated interrogation system for simultaneous measurements of strain and temperature.

Fig. 10
Fig. 10

Measured ratio R 1 versus strain at room temperature (bottom axis) and measured ratio versus temperature at fixed strain of 0, 667, and 1667 με (top axis).

Fig. 11
Fig. 11

Measured R 1 ratio variations versus time with step change of (a)  67 με from 0 to 1667 με and (b)  6.7 με from 0 to 20 με .

Fig. 12
Fig. 12

Measured ratio R 2 versus temperature.

Fig. 13
Fig. 13

R 2 versus time with step changes of 5 ° C .

Fig. 14
Fig. 14

Measured signal, reference, and R 2 ratio variations versus temperature for system configurations as in (a) Fig. 1 and in (b) Fig. 9.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E ( r , 0 ) = ν = 1 m c ν F ν ( r ) ,
c ν = 0 E ( r , 0 ) F ν ( r ) r d r 0 F ν ( r , 0 ) F ν ( r ) r d r .
E ( r , z ) = ν = 1 m c ν F ν ( r ) exp ( j β ν z ) ,
L s ( z ) = 10 · log 10 ( | 0 E ( r , z ) E 0 ( r ) r d r | 2 0 | E ( r , z ) | 2 r d r 0 | E 0 ( r ) | 2 r d r ) .
R ( smf , mmf ) T = R ( smf , mmf ) 0 + α · R ( smf , mmf ) 0 · Δ T ,
L T = L 0 + α · L 0 · Δ T ,
n ( core , clad ) T = n ( core , clad ) 0 + ξ · n ( core , clad ) 0 · Δ T ,

Metrics