Abstract

Future solar experiments designed to perform solar plasma diagnostics will also be based on extreme-ultravilet observations. Multilayer (ML) optics are essential in this spectral region since these coatings have high reflectivity at normal incidence. Typically, the reflectivity curve of a ML coating has a small but finite bandwidth, and this can be a serious drawback when several spectral lines fall within the bandwidth. In fact, spectral lines emitted by different ion species can correspond to different plasma conditions. We present the design, realization, and characterization of an innovative ML structure with high reflectivity coupled with a strong rejection ratio for two adjacent spectral features. The key element is an optimized capping layer structure deposited on top of the ML that preserves the performance reflectance at the target wavelength and at the same time suppresses the reflectance at specific adjacent wavelengths. Application to the Fe xv 3×106K coronal emission line at 28.4nm with rejection of the He ii Lyman-α line at 30.4nm is presented.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Spiller, Soft X-Ray Optics (SPIE Press, 1994), Chap. 8.
    [CrossRef]
  2. http://umbra.nascom.nasa.gov/eit/
  3. http://trace.lmsal.com/
  4. B. J. Zhu, Z. Wang, Z. Zhang, F. Wang, H. Wang, W. Wu, S. Zhang, D. Xu, L. Chen, H. Zhou, T. Huo, M. Cui, and Y. Zhao, “High reflectivity multilayer for He-II radiation at 30.4 nm,” Appl. Opt. 47, C310-C314 (2008).
    [CrossRef] [PubMed]
  5. S. Zuccon, D. Garoli, M. G. Pelizzo, P. Nicolosi, S. Fineschi, and D. Windt, “Multilayer coating for multiband spectral observations,” in Proceedings of the International Conference on Space Optics (European Space Agency, 2006).
  6. J. Gautier, F. Delmotte, M. Roulliay, F. Bridou, M. F. Ravet, and A. Jérome, “Study of normal incidence of three-component multilayer mirrors in the range 20-40 nm,” Appl. Opt. 44, 384-390 (2005).
    [CrossRef] [PubMed]
  7. A. D. Rousseau, D. L. Windt, B. Winter, L. Harra, H. Lamoureux, and F. Eriksson, “Stability of EUV multilayers to long-term heating, and to energetic protons and neutrons, for extreme solar missions,” Proc. SPIE 5900, 590004(2005).
    [CrossRef]
  8. S. Bajt, N. V. Edwards, and T. E. Madey, “Properties of ultrathin films appropriate for optics capping layers exposed to high energy photon irradiation,” Surf. Sci. Rep. 63, 73-99(2008).
    [CrossRef]
  9. M. G. Pelizzo, D. Gardiol, P. Nicolosi, A. Patelli, and V. Rigato “Design, deposition, and characterization of multilayer coatings for the Ultraviolet and Visible-Light Coronagraphic Imager,” Appl. Opt. 43, 2661-2669 (2004).
    [CrossRef] [PubMed]
  10. M. Suman, M. G. Pelizzo, D. L. Windt, G. Monaco, S. Zuccon and P. Nicolosi, “Innovative design of EUV multilayer reflective coating for improved spectral filtering in solar imaging,” in Proceedings of the International Conference on Space Optics (European Space Agency, 2008).
  11. M. Suman, M.-G. Pelizzo, P. Nicolosi, and D. L. Windt, “Aperiodic multilayers with enhanced reflectivity for extreme ultraviolet lithography,” Appl. Opt. 47, 2906-2914 (2008).
    [CrossRef] [PubMed]
  12. D. L. Windt, “IMD: Software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360-370(1998).
    [CrossRef]
  13. C. Tarrio, R. N. Watts, T. B. Lucatorto, J. M. Slaughter, and C. M. Falco, “Optical constants of in situ-deposited films of important extreme-ultraviolet multilayer mirror materials,” Appl. Opt. 37, 4100-4104 (1998).
    [CrossRef]
  14. D. L. Windt and W. K. Waskiewicz, “Multilayer facilities for EUV lithography,” J. Vac. Sci. Technol. B 12, 3826-3832(1994).
    [CrossRef]
  15. www.rxollc.com/
  16. http://www.als.lbl.gov/als/techspecs/bl6.3.2.html

2008 (3)

2005 (2)

J. Gautier, F. Delmotte, M. Roulliay, F. Bridou, M. F. Ravet, and A. Jérome, “Study of normal incidence of three-component multilayer mirrors in the range 20-40 nm,” Appl. Opt. 44, 384-390 (2005).
[CrossRef] [PubMed]

A. D. Rousseau, D. L. Windt, B. Winter, L. Harra, H. Lamoureux, and F. Eriksson, “Stability of EUV multilayers to long-term heating, and to energetic protons and neutrons, for extreme solar missions,” Proc. SPIE 5900, 590004(2005).
[CrossRef]

2004 (1)

1998 (2)

1994 (1)

D. L. Windt and W. K. Waskiewicz, “Multilayer facilities for EUV lithography,” J. Vac. Sci. Technol. B 12, 3826-3832(1994).
[CrossRef]

Bajt, S.

S. Bajt, N. V. Edwards, and T. E. Madey, “Properties of ultrathin films appropriate for optics capping layers exposed to high energy photon irradiation,” Surf. Sci. Rep. 63, 73-99(2008).
[CrossRef]

Bridou, F.

Chen, L.

Cui, M.

Delmotte, F.

Edwards, N. V.

S. Bajt, N. V. Edwards, and T. E. Madey, “Properties of ultrathin films appropriate for optics capping layers exposed to high energy photon irradiation,” Surf. Sci. Rep. 63, 73-99(2008).
[CrossRef]

Eriksson, F.

A. D. Rousseau, D. L. Windt, B. Winter, L. Harra, H. Lamoureux, and F. Eriksson, “Stability of EUV multilayers to long-term heating, and to energetic protons and neutrons, for extreme solar missions,” Proc. SPIE 5900, 590004(2005).
[CrossRef]

Falco, C. M.

Fineschi, S.

S. Zuccon, D. Garoli, M. G. Pelizzo, P. Nicolosi, S. Fineschi, and D. Windt, “Multilayer coating for multiband spectral observations,” in Proceedings of the International Conference on Space Optics (European Space Agency, 2006).

Gardiol, D.

Garoli, D.

S. Zuccon, D. Garoli, M. G. Pelizzo, P. Nicolosi, S. Fineschi, and D. Windt, “Multilayer coating for multiband spectral observations,” in Proceedings of the International Conference on Space Optics (European Space Agency, 2006).

Gautier, J.

Harra, L.

A. D. Rousseau, D. L. Windt, B. Winter, L. Harra, H. Lamoureux, and F. Eriksson, “Stability of EUV multilayers to long-term heating, and to energetic protons and neutrons, for extreme solar missions,” Proc. SPIE 5900, 590004(2005).
[CrossRef]

Huo, T.

Jérome, A.

Lamoureux, H.

A. D. Rousseau, D. L. Windt, B. Winter, L. Harra, H. Lamoureux, and F. Eriksson, “Stability of EUV multilayers to long-term heating, and to energetic protons and neutrons, for extreme solar missions,” Proc. SPIE 5900, 590004(2005).
[CrossRef]

Lucatorto, T. B.

Madey, T. E.

S. Bajt, N. V. Edwards, and T. E. Madey, “Properties of ultrathin films appropriate for optics capping layers exposed to high energy photon irradiation,” Surf. Sci. Rep. 63, 73-99(2008).
[CrossRef]

Monaco, G.

M. Suman, M. G. Pelizzo, D. L. Windt, G. Monaco, S. Zuccon and P. Nicolosi, “Innovative design of EUV multilayer reflective coating for improved spectral filtering in solar imaging,” in Proceedings of the International Conference on Space Optics (European Space Agency, 2008).

Nicolosi, P.

M. Suman, M.-G. Pelizzo, P. Nicolosi, and D. L. Windt, “Aperiodic multilayers with enhanced reflectivity for extreme ultraviolet lithography,” Appl. Opt. 47, 2906-2914 (2008).
[CrossRef] [PubMed]

M. G. Pelizzo, D. Gardiol, P. Nicolosi, A. Patelli, and V. Rigato “Design, deposition, and characterization of multilayer coatings for the Ultraviolet and Visible-Light Coronagraphic Imager,” Appl. Opt. 43, 2661-2669 (2004).
[CrossRef] [PubMed]

M. Suman, M. G. Pelizzo, D. L. Windt, G. Monaco, S. Zuccon and P. Nicolosi, “Innovative design of EUV multilayer reflective coating for improved spectral filtering in solar imaging,” in Proceedings of the International Conference on Space Optics (European Space Agency, 2008).

S. Zuccon, D. Garoli, M. G. Pelizzo, P. Nicolosi, S. Fineschi, and D. Windt, “Multilayer coating for multiband spectral observations,” in Proceedings of the International Conference on Space Optics (European Space Agency, 2006).

Patelli, A.

Pelizzo, M. G.

M. G. Pelizzo, D. Gardiol, P. Nicolosi, A. Patelli, and V. Rigato “Design, deposition, and characterization of multilayer coatings for the Ultraviolet and Visible-Light Coronagraphic Imager,” Appl. Opt. 43, 2661-2669 (2004).
[CrossRef] [PubMed]

M. Suman, M. G. Pelizzo, D. L. Windt, G. Monaco, S. Zuccon and P. Nicolosi, “Innovative design of EUV multilayer reflective coating for improved spectral filtering in solar imaging,” in Proceedings of the International Conference on Space Optics (European Space Agency, 2008).

S. Zuccon, D. Garoli, M. G. Pelizzo, P. Nicolosi, S. Fineschi, and D. Windt, “Multilayer coating for multiband spectral observations,” in Proceedings of the International Conference on Space Optics (European Space Agency, 2006).

Pelizzo, M.-G.

Ravet, M. F.

Rigato, V.

Roulliay, M.

Rousseau, A. D.

A. D. Rousseau, D. L. Windt, B. Winter, L. Harra, H. Lamoureux, and F. Eriksson, “Stability of EUV multilayers to long-term heating, and to energetic protons and neutrons, for extreme solar missions,” Proc. SPIE 5900, 590004(2005).
[CrossRef]

Slaughter, J. M.

Spiller, E.

E. Spiller, Soft X-Ray Optics (SPIE Press, 1994), Chap. 8.
[CrossRef]

Suman, M.

M. Suman, M.-G. Pelizzo, P. Nicolosi, and D. L. Windt, “Aperiodic multilayers with enhanced reflectivity for extreme ultraviolet lithography,” Appl. Opt. 47, 2906-2914 (2008).
[CrossRef] [PubMed]

M. Suman, M. G. Pelizzo, D. L. Windt, G. Monaco, S. Zuccon and P. Nicolosi, “Innovative design of EUV multilayer reflective coating for improved spectral filtering in solar imaging,” in Proceedings of the International Conference on Space Optics (European Space Agency, 2008).

Tarrio, C.

Wang, F.

Wang, H.

Wang, Z.

Waskiewicz, W. K.

D. L. Windt and W. K. Waskiewicz, “Multilayer facilities for EUV lithography,” J. Vac. Sci. Technol. B 12, 3826-3832(1994).
[CrossRef]

Watts, R. N.

Windt, D.

S. Zuccon, D. Garoli, M. G. Pelizzo, P. Nicolosi, S. Fineschi, and D. Windt, “Multilayer coating for multiband spectral observations,” in Proceedings of the International Conference on Space Optics (European Space Agency, 2006).

Windt, D. L.

M. Suman, M.-G. Pelizzo, P. Nicolosi, and D. L. Windt, “Aperiodic multilayers with enhanced reflectivity for extreme ultraviolet lithography,” Appl. Opt. 47, 2906-2914 (2008).
[CrossRef] [PubMed]

A. D. Rousseau, D. L. Windt, B. Winter, L. Harra, H. Lamoureux, and F. Eriksson, “Stability of EUV multilayers to long-term heating, and to energetic protons and neutrons, for extreme solar missions,” Proc. SPIE 5900, 590004(2005).
[CrossRef]

D. L. Windt, “IMD: Software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360-370(1998).
[CrossRef]

D. L. Windt and W. K. Waskiewicz, “Multilayer facilities for EUV lithography,” J. Vac. Sci. Technol. B 12, 3826-3832(1994).
[CrossRef]

M. Suman, M. G. Pelizzo, D. L. Windt, G. Monaco, S. Zuccon and P. Nicolosi, “Innovative design of EUV multilayer reflective coating for improved spectral filtering in solar imaging,” in Proceedings of the International Conference on Space Optics (European Space Agency, 2008).

Winter, B.

A. D. Rousseau, D. L. Windt, B. Winter, L. Harra, H. Lamoureux, and F. Eriksson, “Stability of EUV multilayers to long-term heating, and to energetic protons and neutrons, for extreme solar missions,” Proc. SPIE 5900, 590004(2005).
[CrossRef]

Wu, W.

Xu, D.

Zhang, S.

Zhang, Z.

Zhao, Y.

Zhou, H.

Zhu, B. J.

Zuccon, S.

S. Zuccon, D. Garoli, M. G. Pelizzo, P. Nicolosi, S. Fineschi, and D. Windt, “Multilayer coating for multiband spectral observations,” in Proceedings of the International Conference on Space Optics (European Space Agency, 2006).

M. Suman, M. G. Pelizzo, D. L. Windt, G. Monaco, S. Zuccon and P. Nicolosi, “Innovative design of EUV multilayer reflective coating for improved spectral filtering in solar imaging,” in Proceedings of the International Conference on Space Optics (European Space Agency, 2008).

Appl. Opt. (5)

Comput. Phys. (1)

D. L. Windt, “IMD: Software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360-370(1998).
[CrossRef]

J. Vac. Sci. Technol. B (1)

D. L. Windt and W. K. Waskiewicz, “Multilayer facilities for EUV lithography,” J. Vac. Sci. Technol. B 12, 3826-3832(1994).
[CrossRef]

Proc. SPIE (1)

A. D. Rousseau, D. L. Windt, B. Winter, L. Harra, H. Lamoureux, and F. Eriksson, “Stability of EUV multilayers to long-term heating, and to energetic protons and neutrons, for extreme solar missions,” Proc. SPIE 5900, 590004(2005).
[CrossRef]

Surf. Sci. Rep. (1)

S. Bajt, N. V. Edwards, and T. E. Madey, “Properties of ultrathin films appropriate for optics capping layers exposed to high energy photon irradiation,” Surf. Sci. Rep. 63, 73-99(2008).
[CrossRef]

Other (7)

M. Suman, M. G. Pelizzo, D. L. Windt, G. Monaco, S. Zuccon and P. Nicolosi, “Innovative design of EUV multilayer reflective coating for improved spectral filtering in solar imaging,” in Proceedings of the International Conference on Space Optics (European Space Agency, 2008).

www.rxollc.com/

http://www.als.lbl.gov/als/techspecs/bl6.3.2.html

E. Spiller, Soft X-Ray Optics (SPIE Press, 1994), Chap. 8.
[CrossRef]

http://umbra.nascom.nasa.gov/eit/

http://trace.lmsal.com/

S. Zuccon, D. Garoli, M. G. Pelizzo, P. Nicolosi, S. Fineschi, and D. Windt, “Multilayer coating for multiband spectral observations,” in Proceedings of the International Conference on Space Optics (European Space Agency, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic representation of a standing wave inside the ML and the four-step optimization.

Fig. 2
Fig. 2

(a) Reflectivity [log scale case, (b)] curve for the structures of Example 1 (dotted curve), Example 2 (solid curve), and a standard periodic structure (dash–dot curve).

Fig. 3
Fig. 3

Standing wave pattern for the Example 1 structure at (a) 28.4 nm and (b) 30.4 nm wavelengths.

Fig. 4
Fig. 4

Imaginary parts of the complex refractive index of (a) a-Si and (b) Mo: solid curve, optical constants from the CXRO database; dotted curve, optical constants from Ref. [13].

Fig. 5
Fig. 5

(a) Dashed curve, reflectivity of the Example 1 structure (Table 1); solid curve, reflectivity of the Example 1B structure (Table 5). (b) Same as (a) but on a logarithmic scale.

Fig. 6
Fig. 6

Reflectivity at (a) 28.4 nm and (b) 30.4 nm as a function of the thickness of the critical a-Si layer. The shaded areas correspond to the a-Si thickness range where the reflectivity at (a) 28.4 nm is higher than 0.125 and (b) 30.4 nm is lower than 2 × 10 2 .

Fig. 7
Fig. 7

Experimental results derived from ALS measurements for the optimized structure of Example 1B in comparison with the theoretical simulation performed taking into account the optical constants of Ref. [13]. (b) Same as (a) but on a logarithmic scale.

Tables (6)

Tables Icon

Table 1 ML with a Mo/a-Si Periodic Structure and a Mo/a-Si CL for Example 1

Tables Icon

Table 2 ML with a Mo/a-Si Periodic Structure and an Al / MgF 2 CL for Example 2

Tables Icon

Table 3 Reflectivity Computed at the λ peak ( 28.4 nm ) and λ noise ( 30.4 nm ) Wavelengths for Examples 1 and 2 for a Standard Periodic a-Si/Mo ML Assuming 0.5 nm and Roughness at Interfaces

Tables Icon

Table 4 Reflectivity Computed at the λ peak ( 28.4 nm ) and λ noise ( 30.4 nm ) Wavelengths for Optimized a-Si/B4C and SiC/Mg MLs and for the Corresponding Standard Periodic MLs

Tables Icon

Table 5 ML Optimized with Ref. [13] Optical Constants for Example 1B

Tables Icon

Table 6 Reflectivity Computed at the λ peak ( 28.4 nm ) and λ noise w ( 30.4 nm ) Wavelengths for the Example 1B Structure and for the Corresponding Standard Periodic ML, Assuming 0.5 nm Roughness at Interfaces

Metrics