Abstract

We demonstrate an active power stabilization of a Nd:YAG laser employing the optical ac-coupling scheme and derive its fundamental quantum limit. This limit is 3dB better than the one encountered in traditional power stabilization schemes. In our experiment, the optical ac coupling improved the shot-noise-limited sensitivity of the stabilization photodetector by a factor of 11.2. With an independent photodetector, we measured a relative power stability of 3.7×109Hz1/2 at frequencies of around 200kHz. A detailed investigation of the performance limit of our experiment revealed a novel noise source that disturbed the fundamental mode field in the optical resonator. This effect could be of relevance to many precision experiments using optical resonators.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription