Abstract

A hollow optical-fiber probe for infrared attenuated total reflection (ATR) spectroscopy is developed. A newly designed ATR prism, optimized for use with hollow optical fibers, is proposed. Results from preliminary experiments show the potential uses of the probe in clinical applications. The probe is appropriate for in vivo applications because it is consists of only nontoxic and chemically durable materials.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Petibois and G. Deleris, “Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology,” Trends Biotechnol. 24, 455-462 (2006).
    [CrossRef] [PubMed]
  2. M. J. Baker, E. Gazi, M. D. Brown, J. H. Shanks, P. Gardner, and N. W. Clarke, “FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer,” Br. J. Cancer 99, 1859-1866 (2008).
    [CrossRef] [PubMed]
  3. D. E. Maziak, M. T. Do, F. M. Shamji, S. R. Sundaresan, G. Perkins, and P. T. T. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer Detect. Prev. 31, 244-253 (2007).
    [CrossRef] [PubMed]
  4. R. Manoharan, J. J. Baraga, R. P. Rava, R. R. Dasari, M. Fitzmaurice, and M. S. Feld, “Biochemical analysis and mapping of atherosclerotic human artery using FT-IR microspectroscopy,” Atherosclerosis 103, 181-193 (1993).
    [CrossRef] [PubMed]
  5. N. I. Afanasyeva, R. Bruch, and A. Katzir, “Infrared fiber optic evanescent wave spectroscopy: application in biology and medicine,” Proc. SPIE 3596, 152-164 (1999).
    [CrossRef]
  6. P. A. West, M. P. G. Bostrom, P. A. Torzilli, and N. P. Camacho, “Fourier transform infrared spectral analysis of degenerative cartilage: an infrared fiber optic probe and imaging study,” Appl. Spectrosc. 58, 376-381 (2004).
    [CrossRef] [PubMed]
  7. Q. Li, Z. Xu, N. Zhang, L. Zhang, F. Wang, L. Yang, J. Wang, S. Zhou, Y. Zhang, X. Zhou, J. Shi, and J. Wu, “In vivo and in situ detection of colorectal cancer using Fourier transform infrared spectroscopy,” World J. Gastroenterol. 11, 327-330(2005).
    [PubMed]
  8. Y. Kanamori, Y. Terunuma, and Y. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607-613 (1984).
    [CrossRef]
  9. A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44-50 (1995).
    [CrossRef]
  10. D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper, and L. M. Hobrock, “Polycrystalline fiber optical waveguides for infrared transmission,” Appl. Phys. Lett. 33, 28-29(1978).
    [CrossRef]
  11. L. Grigorjeva, D. Millers, E. Kotomin, R. Eglitis, and A. A. Lerman, “Optical properties of silver halide fibres: ageing effects,” J. Phys. D 29, 578-583 (1996).
    [CrossRef]
  12. J. A. Harrington, Infrared Fibers and Their Applications (SPIE Press, 2003), pp. 139-194.
  13. S. Kino and Y. Matsuura, “Nontoxic and chemically stable hollow optical fiber probe for Fourier transform infrared spectroscopy,” Appl. Spectrosc. 61, 1334-1337 (2007).
    [CrossRef]
  14. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985), pp. 350-357.
  15. Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” Opt. Laser Technol. 33, 279-283 (2001).
    [CrossRef]
  16. M. J. Van Nortwick, J. Hargrove, R. Wolters, J. M. Crawford, M. Arroyo, M. Mackanos, C. H. Contag, and T. D. Wang, “Fiber optic FTIR instrument for in vivo detection of colonic neoplasia,” Proc. SPIE 7172, 71720K(2009).
    [CrossRef]

2009 (1)

M. J. Van Nortwick, J. Hargrove, R. Wolters, J. M. Crawford, M. Arroyo, M. Mackanos, C. H. Contag, and T. D. Wang, “Fiber optic FTIR instrument for in vivo detection of colonic neoplasia,” Proc. SPIE 7172, 71720K(2009).
[CrossRef]

2008 (1)

M. J. Baker, E. Gazi, M. D. Brown, J. H. Shanks, P. Gardner, and N. W. Clarke, “FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer,” Br. J. Cancer 99, 1859-1866 (2008).
[CrossRef] [PubMed]

2007 (2)

D. E. Maziak, M. T. Do, F. M. Shamji, S. R. Sundaresan, G. Perkins, and P. T. T. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer Detect. Prev. 31, 244-253 (2007).
[CrossRef] [PubMed]

S. Kino and Y. Matsuura, “Nontoxic and chemically stable hollow optical fiber probe for Fourier transform infrared spectroscopy,” Appl. Spectrosc. 61, 1334-1337 (2007).
[CrossRef]

2006 (1)

C. Petibois and G. Deleris, “Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology,” Trends Biotechnol. 24, 455-462 (2006).
[CrossRef] [PubMed]

2005 (1)

Q. Li, Z. Xu, N. Zhang, L. Zhang, F. Wang, L. Yang, J. Wang, S. Zhou, Y. Zhang, X. Zhou, J. Shi, and J. Wu, “In vivo and in situ detection of colorectal cancer using Fourier transform infrared spectroscopy,” World J. Gastroenterol. 11, 327-330(2005).
[PubMed]

2004 (1)

2001 (1)

Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” Opt. Laser Technol. 33, 279-283 (2001).
[CrossRef]

1999 (1)

N. I. Afanasyeva, R. Bruch, and A. Katzir, “Infrared fiber optic evanescent wave spectroscopy: application in biology and medicine,” Proc. SPIE 3596, 152-164 (1999).
[CrossRef]

1996 (1)

L. Grigorjeva, D. Millers, E. Kotomin, R. Eglitis, and A. A. Lerman, “Optical properties of silver halide fibres: ageing effects,” J. Phys. D 29, 578-583 (1996).
[CrossRef]

1995 (1)

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44-50 (1995).
[CrossRef]

1993 (1)

R. Manoharan, J. J. Baraga, R. P. Rava, R. R. Dasari, M. Fitzmaurice, and M. S. Feld, “Biochemical analysis and mapping of atherosclerotic human artery using FT-IR microspectroscopy,” Atherosclerosis 103, 181-193 (1993).
[CrossRef] [PubMed]

1984 (1)

Y. Kanamori, Y. Terunuma, and Y. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607-613 (1984).
[CrossRef]

1978 (1)

D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper, and L. M. Hobrock, “Polycrystalline fiber optical waveguides for infrared transmission,” Appl. Phys. Lett. 33, 28-29(1978).
[CrossRef]

Abe, Y.

Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” Opt. Laser Technol. 33, 279-283 (2001).
[CrossRef]

Afanasyeva, N. I.

N. I. Afanasyeva, R. Bruch, and A. Katzir, “Infrared fiber optic evanescent wave spectroscopy: application in biology and medicine,” Proc. SPIE 3596, 152-164 (1999).
[CrossRef]

Arroyo, M.

M. J. Van Nortwick, J. Hargrove, R. Wolters, J. M. Crawford, M. Arroyo, M. Mackanos, C. H. Contag, and T. D. Wang, “Fiber optic FTIR instrument for in vivo detection of colonic neoplasia,” Proc. SPIE 7172, 71720K(2009).
[CrossRef]

Baker, M. J.

M. J. Baker, E. Gazi, M. D. Brown, J. H. Shanks, P. Gardner, and N. W. Clarke, “FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer,” Br. J. Cancer 99, 1859-1866 (2008).
[CrossRef] [PubMed]

Baraga, J. J.

R. Manoharan, J. J. Baraga, R. P. Rava, R. R. Dasari, M. Fitzmaurice, and M. S. Feld, “Biochemical analysis and mapping of atherosclerotic human artery using FT-IR microspectroscopy,” Atherosclerosis 103, 181-193 (1993).
[CrossRef] [PubMed]

Bostrom, M. P. G.

Brown, M. D.

M. J. Baker, E. Gazi, M. D. Brown, J. H. Shanks, P. Gardner, and N. W. Clarke, “FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer,” Br. J. Cancer 99, 1859-1866 (2008).
[CrossRef] [PubMed]

Bruch, R.

N. I. Afanasyeva, R. Bruch, and A. Katzir, “Infrared fiber optic evanescent wave spectroscopy: application in biology and medicine,” Proc. SPIE 3596, 152-164 (1999).
[CrossRef]

Camacho, N. P.

Clarke, N. W.

M. J. Baker, E. Gazi, M. D. Brown, J. H. Shanks, P. Gardner, and N. W. Clarke, “FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer,” Br. J. Cancer 99, 1859-1866 (2008).
[CrossRef] [PubMed]

Contag, C. H.

M. J. Van Nortwick, J. Hargrove, R. Wolters, J. M. Crawford, M. Arroyo, M. Mackanos, C. H. Contag, and T. D. Wang, “Fiber optic FTIR instrument for in vivo detection of colonic neoplasia,” Proc. SPIE 7172, 71720K(2009).
[CrossRef]

Crawford, J. M.

M. J. Van Nortwick, J. Hargrove, R. Wolters, J. M. Crawford, M. Arroyo, M. Mackanos, C. H. Contag, and T. D. Wang, “Fiber optic FTIR instrument for in vivo detection of colonic neoplasia,” Proc. SPIE 7172, 71720K(2009).
[CrossRef]

Dasari, R. R.

R. Manoharan, J. J. Baraga, R. P. Rava, R. R. Dasari, M. Fitzmaurice, and M. S. Feld, “Biochemical analysis and mapping of atherosclerotic human artery using FT-IR microspectroscopy,” Atherosclerosis 103, 181-193 (1993).
[CrossRef] [PubMed]

Deleris, G.

C. Petibois and G. Deleris, “Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology,” Trends Biotechnol. 24, 455-462 (2006).
[CrossRef] [PubMed]

Do, M. T.

D. E. Maziak, M. T. Do, F. M. Shamji, S. R. Sundaresan, G. Perkins, and P. T. T. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer Detect. Prev. 31, 244-253 (2007).
[CrossRef] [PubMed]

Eglitis, R.

L. Grigorjeva, D. Millers, E. Kotomin, R. Eglitis, and A. A. Lerman, “Optical properties of silver halide fibres: ageing effects,” J. Phys. D 29, 578-583 (1996).
[CrossRef]

Feld, M. S.

R. Manoharan, J. J. Baraga, R. P. Rava, R. R. Dasari, M. Fitzmaurice, and M. S. Feld, “Biochemical analysis and mapping of atherosclerotic human artery using FT-IR microspectroscopy,” Atherosclerosis 103, 181-193 (1993).
[CrossRef] [PubMed]

Fitzmaurice, M.

R. Manoharan, J. J. Baraga, R. P. Rava, R. R. Dasari, M. Fitzmaurice, and M. S. Feld, “Biochemical analysis and mapping of atherosclerotic human artery using FT-IR microspectroscopy,” Atherosclerosis 103, 181-193 (1993).
[CrossRef] [PubMed]

Gardner, P.

M. J. Baker, E. Gazi, M. D. Brown, J. H. Shanks, P. Gardner, and N. W. Clarke, “FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer,” Br. J. Cancer 99, 1859-1866 (2008).
[CrossRef] [PubMed]

Gazi, E.

M. J. Baker, E. Gazi, M. D. Brown, J. H. Shanks, P. Gardner, and N. W. Clarke, “FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer,” Br. J. Cancer 99, 1859-1866 (2008).
[CrossRef] [PubMed]

Gentile, A. L.

D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper, and L. M. Hobrock, “Polycrystalline fiber optical waveguides for infrared transmission,” Appl. Phys. Lett. 33, 28-29(1978).
[CrossRef]

Grigorjeva, L.

L. Grigorjeva, D. Millers, E. Kotomin, R. Eglitis, and A. A. Lerman, “Optical properties of silver halide fibres: ageing effects,” J. Phys. D 29, 578-583 (1996).
[CrossRef]

Hargrove, J.

M. J. Van Nortwick, J. Hargrove, R. Wolters, J. M. Crawford, M. Arroyo, M. Mackanos, C. H. Contag, and T. D. Wang, “Fiber optic FTIR instrument for in vivo detection of colonic neoplasia,” Proc. SPIE 7172, 71720K(2009).
[CrossRef]

Harrington, J. A.

J. A. Harrington, Infrared Fibers and Their Applications (SPIE Press, 2003), pp. 139-194.

Hobrock, L. M.

D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper, and L. M. Hobrock, “Polycrystalline fiber optical waveguides for infrared transmission,” Appl. Phys. Lett. 33, 28-29(1978).
[CrossRef]

Kanamori, Y.

Y. Kanamori, Y. Terunuma, and Y. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607-613 (1984).
[CrossRef]

Katzir, A.

N. I. Afanasyeva, R. Bruch, and A. Katzir, “Infrared fiber optic evanescent wave spectroscopy: application in biology and medicine,” Proc. SPIE 3596, 152-164 (1999).
[CrossRef]

Kino, S.

Kotomin, E.

L. Grigorjeva, D. Millers, E. Kotomin, R. Eglitis, and A. A. Lerman, “Optical properties of silver halide fibres: ageing effects,” J. Phys. D 29, 578-583 (1996).
[CrossRef]

Lerman, A. A.

L. Grigorjeva, D. Millers, E. Kotomin, R. Eglitis, and A. A. Lerman, “Optical properties of silver halide fibres: ageing effects,” J. Phys. D 29, 578-583 (1996).
[CrossRef]

Li, Q.

Q. Li, Z. Xu, N. Zhang, L. Zhang, F. Wang, L. Yang, J. Wang, S. Zhou, Y. Zhang, X. Zhou, J. Shi, and J. Wu, “In vivo and in situ detection of colorectal cancer using Fourier transform infrared spectroscopy,” World J. Gastroenterol. 11, 327-330(2005).
[PubMed]

Mackanos, M.

M. J. Van Nortwick, J. Hargrove, R. Wolters, J. M. Crawford, M. Arroyo, M. Mackanos, C. H. Contag, and T. D. Wang, “Fiber optic FTIR instrument for in vivo detection of colonic neoplasia,” Proc. SPIE 7172, 71720K(2009).
[CrossRef]

Manoharan, R.

R. Manoharan, J. J. Baraga, R. P. Rava, R. R. Dasari, M. Fitzmaurice, and M. S. Feld, “Biochemical analysis and mapping of atherosclerotic human artery using FT-IR microspectroscopy,” Atherosclerosis 103, 181-193 (1993).
[CrossRef] [PubMed]

Matsuura, Y.

S. Kino and Y. Matsuura, “Nontoxic and chemically stable hollow optical fiber probe for Fourier transform infrared spectroscopy,” Appl. Spectrosc. 61, 1334-1337 (2007).
[CrossRef]

Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” Opt. Laser Technol. 33, 279-283 (2001).
[CrossRef]

Maziak, D. E.

D. E. Maziak, M. T. Do, F. M. Shamji, S. R. Sundaresan, G. Perkins, and P. T. T. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer Detect. Prev. 31, 244-253 (2007).
[CrossRef] [PubMed]

Millers, D.

L. Grigorjeva, D. Millers, E. Kotomin, R. Eglitis, and A. A. Lerman, “Optical properties of silver halide fibres: ageing effects,” J. Phys. D 29, 578-583 (1996).
[CrossRef]

Miyagi, M.

Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” Opt. Laser Technol. 33, 279-283 (2001).
[CrossRef]

Miyashita, Y.

Y. Kanamori, Y. Terunuma, and Y. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607-613 (1984).
[CrossRef]

Mohri, S.

Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” Opt. Laser Technol. 33, 279-283 (2001).
[CrossRef]

Perkins, G.

D. E. Maziak, M. T. Do, F. M. Shamji, S. R. Sundaresan, G. Perkins, and P. T. T. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer Detect. Prev. 31, 244-253 (2007).
[CrossRef] [PubMed]

Petibois, C.

C. Petibois and G. Deleris, “Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology,” Trends Biotechnol. 24, 455-462 (2006).
[CrossRef] [PubMed]

Pinnow, D. A.

D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper, and L. M. Hobrock, “Polycrystalline fiber optical waveguides for infrared transmission,” Appl. Phys. Lett. 33, 28-29(1978).
[CrossRef]

Rava, R. P.

R. Manoharan, J. J. Baraga, R. P. Rava, R. R. Dasari, M. Fitzmaurice, and M. S. Feld, “Biochemical analysis and mapping of atherosclerotic human artery using FT-IR microspectroscopy,” Atherosclerosis 103, 181-193 (1993).
[CrossRef] [PubMed]

Seddon, A. B.

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44-50 (1995).
[CrossRef]

Shamji, F. M.

D. E. Maziak, M. T. Do, F. M. Shamji, S. R. Sundaresan, G. Perkins, and P. T. T. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer Detect. Prev. 31, 244-253 (2007).
[CrossRef] [PubMed]

Shanks, J. H.

M. J. Baker, E. Gazi, M. D. Brown, J. H. Shanks, P. Gardner, and N. W. Clarke, “FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer,” Br. J. Cancer 99, 1859-1866 (2008).
[CrossRef] [PubMed]

Shi, J.

Q. Li, Z. Xu, N. Zhang, L. Zhang, F. Wang, L. Yang, J. Wang, S. Zhou, Y. Zhang, X. Zhou, J. Shi, and J. Wu, “In vivo and in situ detection of colorectal cancer using Fourier transform infrared spectroscopy,” World J. Gastroenterol. 11, 327-330(2005).
[PubMed]

Shi, Y.

Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” Opt. Laser Technol. 33, 279-283 (2001).
[CrossRef]

Standlee, A. G.

D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper, and L. M. Hobrock, “Polycrystalline fiber optical waveguides for infrared transmission,” Appl. Phys. Lett. 33, 28-29(1978).
[CrossRef]

Sundaresan, S. R.

D. E. Maziak, M. T. Do, F. M. Shamji, S. R. Sundaresan, G. Perkins, and P. T. T. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer Detect. Prev. 31, 244-253 (2007).
[CrossRef] [PubMed]

Takada, G.

Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” Opt. Laser Technol. 33, 279-283 (2001).
[CrossRef]

Terunuma, Y.

Y. Kanamori, Y. Terunuma, and Y. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607-613 (1984).
[CrossRef]

Timper, A. J.

D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper, and L. M. Hobrock, “Polycrystalline fiber optical waveguides for infrared transmission,” Appl. Phys. Lett. 33, 28-29(1978).
[CrossRef]

Torzilli, P. A.

Van Nortwick, M. J.

M. J. Van Nortwick, J. Hargrove, R. Wolters, J. M. Crawford, M. Arroyo, M. Mackanos, C. H. Contag, and T. D. Wang, “Fiber optic FTIR instrument for in vivo detection of colonic neoplasia,” Proc. SPIE 7172, 71720K(2009).
[CrossRef]

Wang, F.

Q. Li, Z. Xu, N. Zhang, L. Zhang, F. Wang, L. Yang, J. Wang, S. Zhou, Y. Zhang, X. Zhou, J. Shi, and J. Wu, “In vivo and in situ detection of colorectal cancer using Fourier transform infrared spectroscopy,” World J. Gastroenterol. 11, 327-330(2005).
[PubMed]

Wang, J.

Q. Li, Z. Xu, N. Zhang, L. Zhang, F. Wang, L. Yang, J. Wang, S. Zhou, Y. Zhang, X. Zhou, J. Shi, and J. Wu, “In vivo and in situ detection of colorectal cancer using Fourier transform infrared spectroscopy,” World J. Gastroenterol. 11, 327-330(2005).
[PubMed]

Wang, T. D.

M. J. Van Nortwick, J. Hargrove, R. Wolters, J. M. Crawford, M. Arroyo, M. Mackanos, C. H. Contag, and T. D. Wang, “Fiber optic FTIR instrument for in vivo detection of colonic neoplasia,” Proc. SPIE 7172, 71720K(2009).
[CrossRef]

West, P. A.

Wolters, R.

M. J. Van Nortwick, J. Hargrove, R. Wolters, J. M. Crawford, M. Arroyo, M. Mackanos, C. H. Contag, and T. D. Wang, “Fiber optic FTIR instrument for in vivo detection of colonic neoplasia,” Proc. SPIE 7172, 71720K(2009).
[CrossRef]

Wong, P. T. T.

D. E. Maziak, M. T. Do, F. M. Shamji, S. R. Sundaresan, G. Perkins, and P. T. T. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer Detect. Prev. 31, 244-253 (2007).
[CrossRef] [PubMed]

Wu, J.

Q. Li, Z. Xu, N. Zhang, L. Zhang, F. Wang, L. Yang, J. Wang, S. Zhou, Y. Zhang, X. Zhou, J. Shi, and J. Wu, “In vivo and in situ detection of colorectal cancer using Fourier transform infrared spectroscopy,” World J. Gastroenterol. 11, 327-330(2005).
[PubMed]

Xu, Z.

Q. Li, Z. Xu, N. Zhang, L. Zhang, F. Wang, L. Yang, J. Wang, S. Zhou, Y. Zhang, X. Zhou, J. Shi, and J. Wu, “In vivo and in situ detection of colorectal cancer using Fourier transform infrared spectroscopy,” World J. Gastroenterol. 11, 327-330(2005).
[PubMed]

Yaegashi, M.

Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” Opt. Laser Technol. 33, 279-283 (2001).
[CrossRef]

Yang, L.

Q. Li, Z. Xu, N. Zhang, L. Zhang, F. Wang, L. Yang, J. Wang, S. Zhou, Y. Zhang, X. Zhou, J. Shi, and J. Wu, “In vivo and in situ detection of colorectal cancer using Fourier transform infrared spectroscopy,” World J. Gastroenterol. 11, 327-330(2005).
[PubMed]

Zhang, L.

Q. Li, Z. Xu, N. Zhang, L. Zhang, F. Wang, L. Yang, J. Wang, S. Zhou, Y. Zhang, X. Zhou, J. Shi, and J. Wu, “In vivo and in situ detection of colorectal cancer using Fourier transform infrared spectroscopy,” World J. Gastroenterol. 11, 327-330(2005).
[PubMed]

Zhang, N.

Q. Li, Z. Xu, N. Zhang, L. Zhang, F. Wang, L. Yang, J. Wang, S. Zhou, Y. Zhang, X. Zhou, J. Shi, and J. Wu, “In vivo and in situ detection of colorectal cancer using Fourier transform infrared spectroscopy,” World J. Gastroenterol. 11, 327-330(2005).
[PubMed]

Zhang, Y.

Q. Li, Z. Xu, N. Zhang, L. Zhang, F. Wang, L. Yang, J. Wang, S. Zhou, Y. Zhang, X. Zhou, J. Shi, and J. Wu, “In vivo and in situ detection of colorectal cancer using Fourier transform infrared spectroscopy,” World J. Gastroenterol. 11, 327-330(2005).
[PubMed]

Zhou, S.

Q. Li, Z. Xu, N. Zhang, L. Zhang, F. Wang, L. Yang, J. Wang, S. Zhou, Y. Zhang, X. Zhou, J. Shi, and J. Wu, “In vivo and in situ detection of colorectal cancer using Fourier transform infrared spectroscopy,” World J. Gastroenterol. 11, 327-330(2005).
[PubMed]

Zhou, X.

Q. Li, Z. Xu, N. Zhang, L. Zhang, F. Wang, L. Yang, J. Wang, S. Zhou, Y. Zhang, X. Zhou, J. Shi, and J. Wu, “In vivo and in situ detection of colorectal cancer using Fourier transform infrared spectroscopy,” World J. Gastroenterol. 11, 327-330(2005).
[PubMed]

Appl. Phys. Lett. (1)

D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper, and L. M. Hobrock, “Polycrystalline fiber optical waveguides for infrared transmission,” Appl. Phys. Lett. 33, 28-29(1978).
[CrossRef]

Appl. Spectrosc. (2)

Atherosclerosis (1)

R. Manoharan, J. J. Baraga, R. P. Rava, R. R. Dasari, M. Fitzmaurice, and M. S. Feld, “Biochemical analysis and mapping of atherosclerotic human artery using FT-IR microspectroscopy,” Atherosclerosis 103, 181-193 (1993).
[CrossRef] [PubMed]

Br. J. Cancer (1)

M. J. Baker, E. Gazi, M. D. Brown, J. H. Shanks, P. Gardner, and N. W. Clarke, “FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer,” Br. J. Cancer 99, 1859-1866 (2008).
[CrossRef] [PubMed]

Cancer Detect. Prev. (1)

D. E. Maziak, M. T. Do, F. M. Shamji, S. R. Sundaresan, G. Perkins, and P. T. T. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer Detect. Prev. 31, 244-253 (2007).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

Y. Kanamori, Y. Terunuma, and Y. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607-613 (1984).
[CrossRef]

J. Non-Cryst. Solids (1)

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44-50 (1995).
[CrossRef]

J. Phys. D (1)

L. Grigorjeva, D. Millers, E. Kotomin, R. Eglitis, and A. A. Lerman, “Optical properties of silver halide fibres: ageing effects,” J. Phys. D 29, 578-583 (1996).
[CrossRef]

Opt. Laser Technol. (1)

Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” Opt. Laser Technol. 33, 279-283 (2001).
[CrossRef]

Proc. SPIE (2)

M. J. Van Nortwick, J. Hargrove, R. Wolters, J. M. Crawford, M. Arroyo, M. Mackanos, C. H. Contag, and T. D. Wang, “Fiber optic FTIR instrument for in vivo detection of colonic neoplasia,” Proc. SPIE 7172, 71720K(2009).
[CrossRef]

N. I. Afanasyeva, R. Bruch, and A. Katzir, “Infrared fiber optic evanescent wave spectroscopy: application in biology and medicine,” Proc. SPIE 3596, 152-164 (1999).
[CrossRef]

Trends Biotechnol. (1)

C. Petibois and G. Deleris, “Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology,” Trends Biotechnol. 24, 455-462 (2006).
[CrossRef] [PubMed]

World J. Gastroenterol. (1)

Q. Li, Z. Xu, N. Zhang, L. Zhang, F. Wang, L. Yang, J. Wang, S. Zhou, Y. Zhang, X. Zhou, J. Shi, and J. Wu, “In vivo and in situ detection of colorectal cancer using Fourier transform infrared spectroscopy,” World J. Gastroenterol. 11, 327-330(2005).
[PubMed]

Other (2)

J. A. Harrington, Infrared Fibers and Their Applications (SPIE Press, 2003), pp. 139-194.

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985), pp. 350-357.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Configuration of probe ends with a cone-shaped ATR prism with the apex (a)  outside and (b) inside the hollow fiber. Simulated ray trajectories are also shown.

Fig. 2
Fig. 2

Rooftop-shaped prism and ray trajectories in the probe with a prism.

Fig. 3
Fig. 3

Measurement setup with an ATR probe based on hollow optical fiber.

Fig. 4
Fig. 4

Image of a rooftop-shaped ATR prism and fiber end with a prism.

Fig. 5
Fig. 5

Measured loss spectra of hollow optical fibers with and without an inner COP coating. The inner diameter of the fiber is 2 mm and the length is 1 m .

Fig. 6
Fig. 6

Change of measured transmission that is due to bending hollow optical fiber. The inner diameter of the fiber is 2 mm and the length is 1 m .

Fig. 7
Fig. 7

Absorption spectra of the skin of an upper arm with and without sunscreen.

Fig. 8
Fig. 8

Absorption of the skin surface before and after application of moisture.

Fig. 9
Fig. 9

Absorption spectra of the inner wall of an extracted small pig intestine.

Tables (1)

Tables Icon

Table 1 Calculated and Measured Efficiency of a Probe with Three Different ATR Prisms

Metrics