Abstract

We report the ability to spectrally resolve excited-state ensembles of pyranine (Py) utilizing nanometer-thick metal films as a low-cost analytical tool. Surface plasmon coupling allows to mitigate the effect of spectral broadening that is responsible for blurring the emission spectrum at room temperature, a situation common in conventional fluorescence spectroscopy. The approach is especially useful in the case when several excited-state species are present. Fluorescence emission from closely located protonated, deprotonated, and excimer species of Py couple into surface plasmons and are easily separated and observed with 11–14 fold intensity enhancements. Furthermore, the ultranarrowband photon-sorting of emission from microenvironments in a multispecies system is performed in this study using instruments that are readily available in most laboratories without employing any deconvolution procedure and/or additional dispersive optics.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Mayer and S. Neuenhofer, “Luminescent labels--more than just an alternative to radioisotopes?,” Angew. Chem., Int. Ed. 33, 1044-1072 (1994).
    [CrossRef]
  2. A. Thomas, S. Polarz, and M. Antonietti, “Influence of spatial restrictions on equilibrium reactions: a case study about the excimer formation of pyrene,” J. Phys. Chem. B 107, 5081-5087 (2003).
    [CrossRef]
  3. I. Capek, “Fate of excited probes in micellar systems,” Adv. Colloid Interface Sci. 97, 89-147 (2002).
    [CrossRef]
  4. H. Morawetz, “On the versatility of fluorescence techniques in polymer research,” J. Polym. Sci., Part A 37, 1725-1735(1999).
    [CrossRef]
  5. D. Kaya, Ö. Pekcan, and Y. Yilmaz, “Direct test of the critical exponents at the sol-gel transition,” Phys. Rev. E 69, 016117 (2004).
    [CrossRef]
  6. J. I. Zink and B. S. Dunn, “Photonics materials by the sol-gel process: optical materials,” J. Ceram. Soc. Jpn. 99, 878-893(1991).
  7. H. R. Kermis, Y. Kostov, and G. Rao, “Rapid method for the preparation of a robust optical pH sensor,” Analyst 128, 1181-1186 (2003).
  8. O. S. Wolfbeis, E. Fuerlinger, H. Kroneis, and H. Marsoner, “Fluorimetric analysis. 1. A study on fluorescent indicators for measuring near neutral (“physiological”) pH values,” Fresenius' J. Anal. Chem. 314, 119-124 (1983).
    [CrossRef]
  9. Z. Zhujun and W. R. Seitz, “A fluorescence sensor for quantifying pH in the range from 6.5 to 8.5,” Anal. Chim. Acta 160, 47-55 (1984).
    [CrossRef]
  10. J. L. Gehrich, D. W. Lubbers, N. Opitz, D. R. Hansmann, W. W. Miller, J. K. Tusa, and M. Yafuso, “Optical fluorescence and its application to an intravascular blood gas monitoring system,” IEEE Trans. Bio-med. Eng. BME-33, 117-132(1986).
    [CrossRef]
  11. S. Zhang, S. Tanaka, Y. A. B. D. Wickramasinghe, and P. Rolfe, “Fibre-optical sensor based on fluorescent indicator for monitoring physiological pH values,” Med. Bio. Eng. Comput. 33, 152-156 (1995).
    [CrossRef]
  12. X. Ge, Y. Kostov, and G. Rao, “High-stability non-invasive autoclavable naked optical CO2 sensor,” Biosens. Bioelectron. 18, 857-865 (2003).
    [CrossRef]
  13. X. Ge, Y. Kostov, and G. Rao, “Low-cost noninvasive optical CO2 sensing system for fermentation and cell culture,” Biotechnol. Bioeng. 89, 329-334 (2005).
    [CrossRef]
  14. A. Mills and Q. Chang, “Fluorescence plastic thin-film sensor for carbon dioxide,” Analyst 118, 839-843(1993).
  15. M. Uttamlal and D. R. Walt, “A fiberoptic carbon-dioxide sensor for fermentation monitoring,” Bio/Technology 13, 597-601 (1995).
    [CrossRef]
  16. R. N. Pattison, J. Swamy, B. Mendenhall, C. Hwang, and B. Frohlich, “Measurement and control of dissolved carbon dioxide in mammalian cell culture processes using an in situ fiber optic chemical sensor,” Biotechnol. Prog. 16, 769-774(2000).
    [CrossRef]
  17. M. Rini, B. Z. Magnes, E. Pines, and E. T. J. Nibbering, “Real-time observation of bimodal proton transfer in acid-base pairs in water,” Science 301, 349-352 (2003).
    [CrossRef]
  18. R. P. Haugland, The Handbook: A Guide to Fluorescent Probes and Labeling Technologies (Invitrogen Corporation, 2005).
  19. Y. Yilmaz, N. Uysal, A. Gelir, O. Guney, D. K. Aktas, S. Gogebakan, and A. Oner, “Elucidation of multiple-point interactions of pyranine fluoroprobe during the gelation,” Spectrochim. Acta. A 72, 332-338 (2009).
    [CrossRef]
  20. S. Ghosh, S. Dey, U. Mandal, A. Adhikari, S. K. Mondal, and K. Bhattacharyya, “Ultrafast proton transfer of pyranine in a supramolecular assembly: PEO−PPO−PEO triblock copolymer and CTAC,” J. Phys. Chem. B 111, 13504-13510 (2007).
    [CrossRef]
  21. R. Barnabas-Rodriguez and J. Estelrich, “Photophysical changes of pyranine induced by surfactants: evidence of premicellar aggregates,” J. Phys. Chem. B 113, 1972-1982 (2009).
    [CrossRef]
  22. S. K. Mondal, K. Sahu, S. Ghosh, P. Sen, and K. Bhattacharyya, “Excited-state proton transfer from pyranine to acetate in γ-cyclodextrin and hydroxypropyl γ-cyclodextrin,” J. Phys. Chem. A 110, 13646-13652 (2006).
    [CrossRef]
  23. R. Gupta and N. K. Chaudhury, “Probing internal environment of sol-gel bulk and thin films using multiple fluorescent probes,” J. Sol-Gel Sci. Technol. 49, 78-87 (2009).
    [CrossRef]
  24. A. Hakonen and S. Hulth, “A high-precision ratiometric fluorosensor for pH: Implementing time-dependent non-linear calibration protocols for drift compensation,” Anal. Chim. Acta 606, 63-71 (2008).
    [CrossRef]
  25. O. Tsukamoto, M. Villeneuve, A. Sakamoto, and H. Nakahara, “Change in the orientation and packing upon adsorption of pyranine molecules onto cationic langmuir monolayers and Langmuir-Blodgett films,” Bull. Chem. Soc. Jpn. 80, 1723-1730 (2007).
    [CrossRef]
  26. R. M. Wightman, P. Runnels, and Kevin Troyer, “Analysis of chemical dynamics in microenvironments,” Anal. Chim. Acta 400, 5-12 (1999).
    [CrossRef]
  27. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  28. J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324, 153-169 (2004).
    [CrossRef]
  29. H. M. Hiep, M. Fujii, and S. Hayashi, “Effects of molecular orientation on surface-plasmon-coupled emission patterns,” Appl. Phys. Lett. 91, 183110 (2007).
    [CrossRef]
  30. D. S. Smith, Y. Kostov, and G. Rao, “Signal enhancement of surface plasmon-coupled directional emission by a conical mirror,” Appl. Opt. 47, 5229-5234 (2008).
    [CrossRef]
  31. W. H. Weber and C. F. Eagen, “Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal,” Opt. Lett. 4, 236-238 (1979).
    [CrossRef]
  32. R. E. Benner, R. Dornhaus, and R. K. Chang, “Angular emission profiles of dye molecules excited by surface plasmon waves at a metal surface,” Opt. Commun. 30, 145-149(1979).
    [CrossRef]
  33. I. Pockrand and A. Brillante, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499-504 (1980).
    [CrossRef]
  34. M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. Maccraith, “Experimental and theoretical evaluation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13, 054021 (2008).
    [CrossRef]
  35. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115-130(2000).
    [CrossRef]
  36. E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M. P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92, 2150-2161 (2007).
    [CrossRef]
  37. E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal coated surfaces in optically dense samples utilizing directional surface plasmon coupled emission,” J. Fluoresc. 15, 865-871 (2005).
    [CrossRef]
  38. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem. 324, 170-182 (2004).
    [CrossRef]
  39. F. Kaneko, T. Nakano, M. Terakado, K. Shinbo, K. Kato, T. Kawakami, and T. Wakamatsu, “Emission light from prism/silver/ rhodamine-B LB film and multiple surface plasmon excitations in the ATR Kretschmann configuration,” Mater. Sci. Eng. C 22, 409-412 (2002).
    [CrossRef]
  40. T. Nakano, H. Kobayashi, K. Shinbo, K. Kato, F. Kaneko, T. Kawakami, and T. Wakamatsu, “Emission light properties from Ag/rhodamine-B LB films due to surface plasmon excitations in the Kretschmann and reverse configurations,” Mater. Res. Soc. Symp. Proc. 660, JJ8.35.1-JJ8.35.6 (2001).
  41. Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3nm green fluorescent protein monolayer,” Biotechnol. Prog. 21, 1731-1735(2005).
    [CrossRef]
  42. D. S. Smith, Y. Kostov, and G. Rao, “SPCE-based sensors: ultrafast oxygen sensing using surface-plasmon coupled emission from ruthenium probes,” Sens. Actuator B 127, 432-440(2007).
    [CrossRef]
  43. K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Observation of surface plasmon-coupled emission using thin platinum films,” Chem. Phys. Lett. 465, 92-95 (2008).
    [CrossRef]
  44. K. Aslan, K. McDonald, M. J. R. Previte, Y. Zhang, and C. D. Geddes, “Angular dependent metal-enhanced fluorescence from silver island films,” Chem. Phys. Lett. 464, 216-219 (2008).
    [CrossRef]
  45. K. Ray, H. Szmacinski, J. Enderlein, and J. R. Lakowicz, “Distance dependence of surface plasmon-coupled emission observed using Langmuir-Blodgett films,” Appl. Phys. Lett. 90, 251116 (2007).
    [CrossRef]
  46. E. G. Matveeva, Z. Gryczynski, J. Malicka, J. Lukomska, S. Makowiec, K. W. Berndt, J. R. Lakowicz, and I. Gryczynski, “Directional surface plasmon-coupled emission: Application for an immunoassay in whole blood,” Anal. Biochem. 344, 161-167 (2005).
  47. K. Aslan, Y. Zhang, and C. D. Geddes, “Surface plasmon coupled fluorescence in the visible to near-infrared spectral regions using thin nickel films: Application to whole blood assays,” Anal. Chem. 81, 3801-3808 (2009).
    [CrossRef]
  48. J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys J. 91, 2626-2635 (2006).
    [CrossRef]
  49. F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005 (2005).
    [CrossRef]
  50. Z. Gryczynski, I. Gryczynski, E. G. Matveeva, N. Calander, R. Grygorczyk, I. Akopova, S. Bharill, P. Muthu, S. Klidgar, and J. Borejdo, “New surface plasmons approach to single molecule detection (SMD) and fluorescence correlation spectroscopy (FCS),” Proc. SPIE 8, 64440G.1-64440G.11(2007).
  51. A. D. Wellman and M. J. Sepaniak, “Magnetically-assisted transport evanescent field fluoroimmunoassay,” Anal. Chem. 78, 4450-4456 (2006).
    [CrossRef]
  52. T. Bryk and M. Holovko, “Hydration structure of a poly(vinyl alcohol) chain fragment: Ab initio molecular dynamics study,” J. Mol. Liq. 147, 13-16 (2009).
    [CrossRef]
  53. R. Sai Sathish, Y. Kostov, D. S. Smith, and G. Rao, “Solution-deposited thin silver films on plastic surfaces for low-cost applications in plasmon-coupled emission sensors,” Plasmonics 4, 127-133 (2009).
    [CrossRef]
  54. E. Kreschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135-2136 (1968).
  55. D. S. Smith, Y. Kostov, G. Rao, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “First observation of surface plasmon-coupled emission due to LED excitation,” J. Fluoresc. 15, 895-900 (2005).
    [CrossRef]

2009 (6)

Y. Yilmaz, N. Uysal, A. Gelir, O. Guney, D. K. Aktas, S. Gogebakan, and A. Oner, “Elucidation of multiple-point interactions of pyranine fluoroprobe during the gelation,” Spectrochim. Acta. A 72, 332-338 (2009).
[CrossRef]

R. Barnabas-Rodriguez and J. Estelrich, “Photophysical changes of pyranine induced by surfactants: evidence of premicellar aggregates,” J. Phys. Chem. B 113, 1972-1982 (2009).
[CrossRef]

R. Gupta and N. K. Chaudhury, “Probing internal environment of sol-gel bulk and thin films using multiple fluorescent probes,” J. Sol-Gel Sci. Technol. 49, 78-87 (2009).
[CrossRef]

K. Aslan, Y. Zhang, and C. D. Geddes, “Surface plasmon coupled fluorescence in the visible to near-infrared spectral regions using thin nickel films: Application to whole blood assays,” Anal. Chem. 81, 3801-3808 (2009).
[CrossRef]

T. Bryk and M. Holovko, “Hydration structure of a poly(vinyl alcohol) chain fragment: Ab initio molecular dynamics study,” J. Mol. Liq. 147, 13-16 (2009).
[CrossRef]

R. Sai Sathish, Y. Kostov, D. S. Smith, and G. Rao, “Solution-deposited thin silver films on plastic surfaces for low-cost applications in plasmon-coupled emission sensors,” Plasmonics 4, 127-133 (2009).
[CrossRef]

2008 (5)

M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. Maccraith, “Experimental and theoretical evaluation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13, 054021 (2008).
[CrossRef]

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Observation of surface plasmon-coupled emission using thin platinum films,” Chem. Phys. Lett. 465, 92-95 (2008).
[CrossRef]

K. Aslan, K. McDonald, M. J. R. Previte, Y. Zhang, and C. D. Geddes, “Angular dependent metal-enhanced fluorescence from silver island films,” Chem. Phys. Lett. 464, 216-219 (2008).
[CrossRef]

D. S. Smith, Y. Kostov, and G. Rao, “Signal enhancement of surface plasmon-coupled directional emission by a conical mirror,” Appl. Opt. 47, 5229-5234 (2008).
[CrossRef]

A. Hakonen and S. Hulth, “A high-precision ratiometric fluorosensor for pH: Implementing time-dependent non-linear calibration protocols for drift compensation,” Anal. Chim. Acta 606, 63-71 (2008).
[CrossRef]

2007 (7)

O. Tsukamoto, M. Villeneuve, A. Sakamoto, and H. Nakahara, “Change in the orientation and packing upon adsorption of pyranine molecules onto cationic langmuir monolayers and Langmuir-Blodgett films,” Bull. Chem. Soc. Jpn. 80, 1723-1730 (2007).
[CrossRef]

S. Ghosh, S. Dey, U. Mandal, A. Adhikari, S. K. Mondal, and K. Bhattacharyya, “Ultrafast proton transfer of pyranine in a supramolecular assembly: PEO−PPO−PEO triblock copolymer and CTAC,” J. Phys. Chem. B 111, 13504-13510 (2007).
[CrossRef]

H. M. Hiep, M. Fujii, and S. Hayashi, “Effects of molecular orientation on surface-plasmon-coupled emission patterns,” Appl. Phys. Lett. 91, 183110 (2007).
[CrossRef]

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M. P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92, 2150-2161 (2007).
[CrossRef]

K. Ray, H. Szmacinski, J. Enderlein, and J. R. Lakowicz, “Distance dependence of surface plasmon-coupled emission observed using Langmuir-Blodgett films,” Appl. Phys. Lett. 90, 251116 (2007).
[CrossRef]

D. S. Smith, Y. Kostov, and G. Rao, “SPCE-based sensors: ultrafast oxygen sensing using surface-plasmon coupled emission from ruthenium probes,” Sens. Actuator B 127, 432-440(2007).
[CrossRef]

Z. Gryczynski, I. Gryczynski, E. G. Matveeva, N. Calander, R. Grygorczyk, I. Akopova, S. Bharill, P. Muthu, S. Klidgar, and J. Borejdo, “New surface plasmons approach to single molecule detection (SMD) and fluorescence correlation spectroscopy (FCS),” Proc. SPIE 8, 64440G.1-64440G.11(2007).

2006 (3)

A. D. Wellman and M. J. Sepaniak, “Magnetically-assisted transport evanescent field fluoroimmunoassay,” Anal. Chem. 78, 4450-4456 (2006).
[CrossRef]

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys J. 91, 2626-2635 (2006).
[CrossRef]

S. K. Mondal, K. Sahu, S. Ghosh, P. Sen, and K. Bhattacharyya, “Excited-state proton transfer from pyranine to acetate in γ-cyclodextrin and hydroxypropyl γ-cyclodextrin,” J. Phys. Chem. A 110, 13646-13652 (2006).
[CrossRef]

2005 (6)

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal coated surfaces in optically dense samples utilizing directional surface plasmon coupled emission,” J. Fluoresc. 15, 865-871 (2005).
[CrossRef]

X. Ge, Y. Kostov, and G. Rao, “Low-cost noninvasive optical CO2 sensing system for fermentation and cell culture,” Biotechnol. Bioeng. 89, 329-334 (2005).
[CrossRef]

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef]

D. S. Smith, Y. Kostov, G. Rao, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “First observation of surface plasmon-coupled emission due to LED excitation,” J. Fluoresc. 15, 895-900 (2005).
[CrossRef]

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3nm green fluorescent protein monolayer,” Biotechnol. Prog. 21, 1731-1735(2005).
[CrossRef]

E. G. Matveeva, Z. Gryczynski, J. Malicka, J. Lukomska, S. Makowiec, K. W. Berndt, J. R. Lakowicz, and I. Gryczynski, “Directional surface plasmon-coupled emission: Application for an immunoassay in whole blood,” Anal. Biochem. 344, 161-167 (2005).

2004 (3)

D. Kaya, Ö. Pekcan, and Y. Yilmaz, “Direct test of the critical exponents at the sol-gel transition,” Phys. Rev. E 69, 016117 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem. 324, 170-182 (2004).
[CrossRef]

J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324, 153-169 (2004).
[CrossRef]

2003 (4)

A. Thomas, S. Polarz, and M. Antonietti, “Influence of spatial restrictions on equilibrium reactions: a case study about the excimer formation of pyrene,” J. Phys. Chem. B 107, 5081-5087 (2003).
[CrossRef]

H. R. Kermis, Y. Kostov, and G. Rao, “Rapid method for the preparation of a robust optical pH sensor,” Analyst 128, 1181-1186 (2003).

X. Ge, Y. Kostov, and G. Rao, “High-stability non-invasive autoclavable naked optical CO2 sensor,” Biosens. Bioelectron. 18, 857-865 (2003).
[CrossRef]

M. Rini, B. Z. Magnes, E. Pines, and E. T. J. Nibbering, “Real-time observation of bimodal proton transfer in acid-base pairs in water,” Science 301, 349-352 (2003).
[CrossRef]

2002 (2)

I. Capek, “Fate of excited probes in micellar systems,” Adv. Colloid Interface Sci. 97, 89-147 (2002).
[CrossRef]

F. Kaneko, T. Nakano, M. Terakado, K. Shinbo, K. Kato, T. Kawakami, and T. Wakamatsu, “Emission light from prism/silver/ rhodamine-B LB film and multiple surface plasmon excitations in the ATR Kretschmann configuration,” Mater. Sci. Eng. C 22, 409-412 (2002).
[CrossRef]

2001 (1)

T. Nakano, H. Kobayashi, K. Shinbo, K. Kato, F. Kaneko, T. Kawakami, and T. Wakamatsu, “Emission light properties from Ag/rhodamine-B LB films due to surface plasmon excitations in the Kretschmann and reverse configurations,” Mater. Res. Soc. Symp. Proc. 660, JJ8.35.1-JJ8.35.6 (2001).

2000 (2)

R. N. Pattison, J. Swamy, B. Mendenhall, C. Hwang, and B. Frohlich, “Measurement and control of dissolved carbon dioxide in mammalian cell culture processes using an in situ fiber optic chemical sensor,” Biotechnol. Prog. 16, 769-774(2000).
[CrossRef]

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115-130(2000).
[CrossRef]

1999 (2)

H. Morawetz, “On the versatility of fluorescence techniques in polymer research,” J. Polym. Sci., Part A 37, 1725-1735(1999).
[CrossRef]

R. M. Wightman, P. Runnels, and Kevin Troyer, “Analysis of chemical dynamics in microenvironments,” Anal. Chim. Acta 400, 5-12 (1999).
[CrossRef]

1995 (2)

M. Uttamlal and D. R. Walt, “A fiberoptic carbon-dioxide sensor for fermentation monitoring,” Bio/Technology 13, 597-601 (1995).
[CrossRef]

S. Zhang, S. Tanaka, Y. A. B. D. Wickramasinghe, and P. Rolfe, “Fibre-optical sensor based on fluorescent indicator for monitoring physiological pH values,” Med. Bio. Eng. Comput. 33, 152-156 (1995).
[CrossRef]

1994 (1)

A. Mayer and S. Neuenhofer, “Luminescent labels--more than just an alternative to radioisotopes?,” Angew. Chem., Int. Ed. 33, 1044-1072 (1994).
[CrossRef]

1993 (1)

A. Mills and Q. Chang, “Fluorescence plastic thin-film sensor for carbon dioxide,” Analyst 118, 839-843(1993).

1991 (1)

J. I. Zink and B. S. Dunn, “Photonics materials by the sol-gel process: optical materials,” J. Ceram. Soc. Jpn. 99, 878-893(1991).

1986 (1)

J. L. Gehrich, D. W. Lubbers, N. Opitz, D. R. Hansmann, W. W. Miller, J. K. Tusa, and M. Yafuso, “Optical fluorescence and its application to an intravascular blood gas monitoring system,” IEEE Trans. Bio-med. Eng. BME-33, 117-132(1986).
[CrossRef]

1984 (1)

Z. Zhujun and W. R. Seitz, “A fluorescence sensor for quantifying pH in the range from 6.5 to 8.5,” Anal. Chim. Acta 160, 47-55 (1984).
[CrossRef]

1983 (1)

O. S. Wolfbeis, E. Fuerlinger, H. Kroneis, and H. Marsoner, “Fluorimetric analysis. 1. A study on fluorescent indicators for measuring near neutral (“physiological”) pH values,” Fresenius' J. Anal. Chem. 314, 119-124 (1983).
[CrossRef]

1980 (1)

I. Pockrand and A. Brillante, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499-504 (1980).
[CrossRef]

1979 (2)

R. E. Benner, R. Dornhaus, and R. K. Chang, “Angular emission profiles of dye molecules excited by surface plasmon waves at a metal surface,” Opt. Commun. 30, 145-149(1979).
[CrossRef]

W. H. Weber and C. F. Eagen, “Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal,” Opt. Lett. 4, 236-238 (1979).
[CrossRef]

1968 (1)

E. Kreschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135-2136 (1968).

Adhikari, A.

S. Ghosh, S. Dey, U. Mandal, A. Adhikari, S. K. Mondal, and K. Bhattacharyya, “Ultrafast proton transfer of pyranine in a supramolecular assembly: PEO−PPO−PEO triblock copolymer and CTAC,” J. Phys. Chem. B 111, 13504-13510 (2007).
[CrossRef]

Akopova, I.

Z. Gryczynski, I. Gryczynski, E. G. Matveeva, N. Calander, R. Grygorczyk, I. Akopova, S. Bharill, P. Muthu, S. Klidgar, and J. Borejdo, “New surface plasmons approach to single molecule detection (SMD) and fluorescence correlation spectroscopy (FCS),” Proc. SPIE 8, 64440G.1-64440G.11(2007).

Aktas, D. K.

Y. Yilmaz, N. Uysal, A. Gelir, O. Guney, D. K. Aktas, S. Gogebakan, and A. Oner, “Elucidation of multiple-point interactions of pyranine fluoroprobe during the gelation,” Spectrochim. Acta. A 72, 332-338 (2009).
[CrossRef]

Antonietti, M.

A. Thomas, S. Polarz, and M. Antonietti, “Influence of spatial restrictions on equilibrium reactions: a case study about the excimer formation of pyrene,” J. Phys. Chem. B 107, 5081-5087 (2003).
[CrossRef]

Aslan, K.

K. Aslan, Y. Zhang, and C. D. Geddes, “Surface plasmon coupled fluorescence in the visible to near-infrared spectral regions using thin nickel films: Application to whole blood assays,” Anal. Chem. 81, 3801-3808 (2009).
[CrossRef]

K. Aslan, K. McDonald, M. J. R. Previte, Y. Zhang, and C. D. Geddes, “Angular dependent metal-enhanced fluorescence from silver island films,” Chem. Phys. Lett. 464, 216-219 (2008).
[CrossRef]

Barnabas-Rodriguez, R.

R. Barnabas-Rodriguez and J. Estelrich, “Photophysical changes of pyranine induced by surfactants: evidence of premicellar aggregates,” J. Phys. Chem. B 113, 1972-1982 (2009).
[CrossRef]

Benner, R. E.

R. E. Benner, R. Dornhaus, and R. K. Chang, “Angular emission profiles of dye molecules excited by surface plasmon waves at a metal surface,” Opt. Commun. 30, 145-149(1979).
[CrossRef]

Berndt, K. W.

E. G. Matveeva, Z. Gryczynski, J. Malicka, J. Lukomska, S. Makowiec, K. W. Berndt, J. R. Lakowicz, and I. Gryczynski, “Directional surface plasmon-coupled emission: Application for an immunoassay in whole blood,” Anal. Biochem. 344, 161-167 (2005).

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal coated surfaces in optically dense samples utilizing directional surface plasmon coupled emission,” J. Fluoresc. 15, 865-871 (2005).
[CrossRef]

Bharill, S.

Z. Gryczynski, I. Gryczynski, E. G. Matveeva, N. Calander, R. Grygorczyk, I. Akopova, S. Bharill, P. Muthu, S. Klidgar, and J. Borejdo, “New surface plasmons approach to single molecule detection (SMD) and fluorescence correlation spectroscopy (FCS),” Proc. SPIE 8, 64440G.1-64440G.11(2007).

Bhattacharyya, K.

S. Ghosh, S. Dey, U. Mandal, A. Adhikari, S. K. Mondal, and K. Bhattacharyya, “Ultrafast proton transfer of pyranine in a supramolecular assembly: PEO−PPO−PEO triblock copolymer and CTAC,” J. Phys. Chem. B 111, 13504-13510 (2007).
[CrossRef]

S. K. Mondal, K. Sahu, S. Ghosh, P. Sen, and K. Bhattacharyya, “Excited-state proton transfer from pyranine to acetate in γ-cyclodextrin and hydroxypropyl γ-cyclodextrin,” J. Phys. Chem. A 110, 13646-13652 (2006).
[CrossRef]

Bocchio, N.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef]

Borejdo, J.

Z. Gryczynski, I. Gryczynski, E. G. Matveeva, N. Calander, R. Grygorczyk, I. Akopova, S. Bharill, P. Muthu, S. Klidgar, and J. Borejdo, “New surface plasmons approach to single molecule detection (SMD) and fluorescence correlation spectroscopy (FCS),” Proc. SPIE 8, 64440G.1-64440G.11(2007).

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys J. 91, 2626-2635 (2006).
[CrossRef]

Brillante, A.

I. Pockrand and A. Brillante, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499-504 (1980).
[CrossRef]

Bryk, T.

T. Bryk and M. Holovko, “Hydration structure of a poly(vinyl alcohol) chain fragment: Ab initio molecular dynamics study,” J. Mol. Liq. 147, 13-16 (2009).
[CrossRef]

Calander, N.

Z. Gryczynski, I. Gryczynski, E. G. Matveeva, N. Calander, R. Grygorczyk, I. Akopova, S. Bharill, P. Muthu, S. Klidgar, and J. Borejdo, “New surface plasmons approach to single molecule detection (SMD) and fluorescence correlation spectroscopy (FCS),” Proc. SPIE 8, 64440G.1-64440G.11(2007).

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys J. 91, 2626-2635 (2006).
[CrossRef]

Capek, I.

I. Capek, “Fate of excited probes in micellar systems,” Adv. Colloid Interface Sci. 97, 89-147 (2002).
[CrossRef]

Chang, Q.

A. Mills and Q. Chang, “Fluorescence plastic thin-film sensor for carbon dioxide,” Analyst 118, 839-843(1993).

Chang, R. K.

R. E. Benner, R. Dornhaus, and R. K. Chang, “Angular emission profiles of dye molecules excited by surface plasmon waves at a metal surface,” Opt. Commun. 30, 145-149(1979).
[CrossRef]

Chaudhury, N. K.

R. Gupta and N. K. Chaudhury, “Probing internal environment of sol-gel bulk and thin films using multiple fluorescent probes,” J. Sol-Gel Sci. Technol. 49, 78-87 (2009).
[CrossRef]

Chowdhury, M. H.

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Observation of surface plasmon-coupled emission using thin platinum films,” Chem. Phys. Lett. 465, 92-95 (2008).
[CrossRef]

Cordelières, F. P.

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M. P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92, 2150-2161 (2007).
[CrossRef]

Dey, S.

S. Ghosh, S. Dey, U. Mandal, A. Adhikari, S. K. Mondal, and K. Bhattacharyya, “Ultrafast proton transfer of pyranine in a supramolecular assembly: PEO−PPO−PEO triblock copolymer and CTAC,” J. Phys. Chem. B 111, 13504-13510 (2007).
[CrossRef]

Dornhaus, R.

R. E. Benner, R. Dornhaus, and R. K. Chang, “Angular emission profiles of dye molecules excited by surface plasmon waves at a metal surface,” Opt. Commun. 30, 145-149(1979).
[CrossRef]

Dunn, B. S.

J. I. Zink and B. S. Dunn, “Photonics materials by the sol-gel process: optical materials,” J. Ceram. Soc. Jpn. 99, 878-893(1991).

Eagen, C. F.

Enderlein, J.

M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. Maccraith, “Experimental and theoretical evaluation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13, 054021 (2008).
[CrossRef]

K. Ray, H. Szmacinski, J. Enderlein, and J. R. Lakowicz, “Distance dependence of surface plasmon-coupled emission observed using Langmuir-Blodgett films,” Appl. Phys. Lett. 90, 251116 (2007).
[CrossRef]

Estelrich, J.

R. Barnabas-Rodriguez and J. Estelrich, “Photophysical changes of pyranine induced by surfactants: evidence of premicellar aggregates,” J. Phys. Chem. B 113, 1972-1982 (2009).
[CrossRef]

Fontaine-Aupart, M. P.

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M. P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92, 2150-2161 (2007).
[CrossRef]

Fort, E.

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M. P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92, 2150-2161 (2007).
[CrossRef]

Frohlich, B.

R. N. Pattison, J. Swamy, B. Mendenhall, C. Hwang, and B. Frohlich, “Measurement and control of dissolved carbon dioxide in mammalian cell culture processes using an in situ fiber optic chemical sensor,” Biotechnol. Prog. 16, 769-774(2000).
[CrossRef]

Fuerlinger, E.

O. S. Wolfbeis, E. Fuerlinger, H. Kroneis, and H. Marsoner, “Fluorimetric analysis. 1. A study on fluorescent indicators for measuring near neutral (“physiological”) pH values,” Fresenius' J. Anal. Chem. 314, 119-124 (1983).
[CrossRef]

Fujii, M.

H. M. Hiep, M. Fujii, and S. Hayashi, “Effects of molecular orientation on surface-plasmon-coupled emission patterns,” Appl. Phys. Lett. 91, 183110 (2007).
[CrossRef]

Ge, X.

X. Ge, Y. Kostov, and G. Rao, “Low-cost noninvasive optical CO2 sensing system for fermentation and cell culture,” Biotechnol. Bioeng. 89, 329-334 (2005).
[CrossRef]

X. Ge, Y. Kostov, and G. Rao, “High-stability non-invasive autoclavable naked optical CO2 sensor,” Biosens. Bioelectron. 18, 857-865 (2003).
[CrossRef]

Geddes, C. D.

K. Aslan, Y. Zhang, and C. D. Geddes, “Surface plasmon coupled fluorescence in the visible to near-infrared spectral regions using thin nickel films: Application to whole blood assays,” Anal. Chem. 81, 3801-3808 (2009).
[CrossRef]

K. Aslan, K. McDonald, M. J. R. Previte, Y. Zhang, and C. D. Geddes, “Angular dependent metal-enhanced fluorescence from silver island films,” Chem. Phys. Lett. 464, 216-219 (2008).
[CrossRef]

Gehrich, J. L.

J. L. Gehrich, D. W. Lubbers, N. Opitz, D. R. Hansmann, W. W. Miller, J. K. Tusa, and M. Yafuso, “Optical fluorescence and its application to an intravascular blood gas monitoring system,” IEEE Trans. Bio-med. Eng. BME-33, 117-132(1986).
[CrossRef]

Gelir, A.

Y. Yilmaz, N. Uysal, A. Gelir, O. Guney, D. K. Aktas, S. Gogebakan, and A. Oner, “Elucidation of multiple-point interactions of pyranine fluoroprobe during the gelation,” Spectrochim. Acta. A 72, 332-338 (2009).
[CrossRef]

Ghosh, S.

S. Ghosh, S. Dey, U. Mandal, A. Adhikari, S. K. Mondal, and K. Bhattacharyya, “Ultrafast proton transfer of pyranine in a supramolecular assembly: PEO−PPO−PEO triblock copolymer and CTAC,” J. Phys. Chem. B 111, 13504-13510 (2007).
[CrossRef]

S. K. Mondal, K. Sahu, S. Ghosh, P. Sen, and K. Bhattacharyya, “Excited-state proton transfer from pyranine to acetate in γ-cyclodextrin and hydroxypropyl γ-cyclodextrin,” J. Phys. Chem. A 110, 13646-13652 (2006).
[CrossRef]

Gogebakan, S.

Y. Yilmaz, N. Uysal, A. Gelir, O. Guney, D. K. Aktas, S. Gogebakan, and A. Oner, “Elucidation of multiple-point interactions of pyranine fluoroprobe during the gelation,” Spectrochim. Acta. A 72, 332-338 (2009).
[CrossRef]

Goldys, E.

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal coated surfaces in optically dense samples utilizing directional surface plasmon coupled emission,” J. Fluoresc. 15, 865-871 (2005).
[CrossRef]

Gryczynski, I.

Z. Gryczynski, I. Gryczynski, E. G. Matveeva, N. Calander, R. Grygorczyk, I. Akopova, S. Bharill, P. Muthu, S. Klidgar, and J. Borejdo, “New surface plasmons approach to single molecule detection (SMD) and fluorescence correlation spectroscopy (FCS),” Proc. SPIE 8, 64440G.1-64440G.11(2007).

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys J. 91, 2626-2635 (2006).
[CrossRef]

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3nm green fluorescent protein monolayer,” Biotechnol. Prog. 21, 1731-1735(2005).
[CrossRef]

D. S. Smith, Y. Kostov, G. Rao, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “First observation of surface plasmon-coupled emission due to LED excitation,” J. Fluoresc. 15, 895-900 (2005).
[CrossRef]

E. G. Matveeva, Z. Gryczynski, J. Malicka, J. Lukomska, S. Makowiec, K. W. Berndt, J. R. Lakowicz, and I. Gryczynski, “Directional surface plasmon-coupled emission: Application for an immunoassay in whole blood,” Anal. Biochem. 344, 161-167 (2005).

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal coated surfaces in optically dense samples utilizing directional surface plasmon coupled emission,” J. Fluoresc. 15, 865-871 (2005).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem. 324, 170-182 (2004).
[CrossRef]

Gryczynski, Z.

Z. Gryczynski, I. Gryczynski, E. G. Matveeva, N. Calander, R. Grygorczyk, I. Akopova, S. Bharill, P. Muthu, S. Klidgar, and J. Borejdo, “New surface plasmons approach to single molecule detection (SMD) and fluorescence correlation spectroscopy (FCS),” Proc. SPIE 8, 64440G.1-64440G.11(2007).

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys J. 91, 2626-2635 (2006).
[CrossRef]

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3nm green fluorescent protein monolayer,” Biotechnol. Prog. 21, 1731-1735(2005).
[CrossRef]

D. S. Smith, Y. Kostov, G. Rao, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “First observation of surface plasmon-coupled emission due to LED excitation,” J. Fluoresc. 15, 895-900 (2005).
[CrossRef]

E. G. Matveeva, Z. Gryczynski, J. Malicka, J. Lukomska, S. Makowiec, K. W. Berndt, J. R. Lakowicz, and I. Gryczynski, “Directional surface plasmon-coupled emission: Application for an immunoassay in whole blood,” Anal. Biochem. 344, 161-167 (2005).

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal coated surfaces in optically dense samples utilizing directional surface plasmon coupled emission,” J. Fluoresc. 15, 865-871 (2005).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem. 324, 170-182 (2004).
[CrossRef]

Grygorczyk, R.

Z. Gryczynski, I. Gryczynski, E. G. Matveeva, N. Calander, R. Grygorczyk, I. Akopova, S. Bharill, P. Muthu, S. Klidgar, and J. Borejdo, “New surface plasmons approach to single molecule detection (SMD) and fluorescence correlation spectroscopy (FCS),” Proc. SPIE 8, 64440G.1-64440G.11(2007).

Guney, O.

Y. Yilmaz, N. Uysal, A. Gelir, O. Guney, D. K. Aktas, S. Gogebakan, and A. Oner, “Elucidation of multiple-point interactions of pyranine fluoroprobe during the gelation,” Spectrochim. Acta. A 72, 332-338 (2009).
[CrossRef]

Gupta, R.

R. Gupta and N. K. Chaudhury, “Probing internal environment of sol-gel bulk and thin films using multiple fluorescent probes,” J. Sol-Gel Sci. Technol. 49, 78-87 (2009).
[CrossRef]

Hakonen, A.

A. Hakonen and S. Hulth, “A high-precision ratiometric fluorosensor for pH: Implementing time-dependent non-linear calibration protocols for drift compensation,” Anal. Chim. Acta 606, 63-71 (2008).
[CrossRef]

Hansmann, D. R.

J. L. Gehrich, D. W. Lubbers, N. Opitz, D. R. Hansmann, W. W. Miller, J. K. Tusa, and M. Yafuso, “Optical fluorescence and its application to an intravascular blood gas monitoring system,” IEEE Trans. Bio-med. Eng. BME-33, 117-132(1986).
[CrossRef]

Haugland, R. P.

R. P. Haugland, The Handbook: A Guide to Fluorescent Probes and Labeling Technologies (Invitrogen Corporation, 2005).

Hayashi, S.

H. M. Hiep, M. Fujii, and S. Hayashi, “Effects of molecular orientation on surface-plasmon-coupled emission patterns,” Appl. Phys. Lett. 91, 183110 (2007).
[CrossRef]

Hiep, H. M.

H. M. Hiep, M. Fujii, and S. Hayashi, “Effects of molecular orientation on surface-plasmon-coupled emission patterns,” Appl. Phys. Lett. 91, 183110 (2007).
[CrossRef]

Holovko, M.

T. Bryk and M. Holovko, “Hydration structure of a poly(vinyl alcohol) chain fragment: Ab initio molecular dynamics study,” J. Mol. Liq. 147, 13-16 (2009).
[CrossRef]

Howe, J.

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal coated surfaces in optically dense samples utilizing directional surface plasmon coupled emission,” J. Fluoresc. 15, 865-871 (2005).
[CrossRef]

Hulth, S.

A. Hakonen and S. Hulth, “A high-precision ratiometric fluorosensor for pH: Implementing time-dependent non-linear calibration protocols for drift compensation,” Anal. Chim. Acta 606, 63-71 (2008).
[CrossRef]

Hwang, C.

R. N. Pattison, J. Swamy, B. Mendenhall, C. Hwang, and B. Frohlich, “Measurement and control of dissolved carbon dioxide in mammalian cell culture processes using an in situ fiber optic chemical sensor,” Biotechnol. Prog. 16, 769-774(2000).
[CrossRef]

Kaneko, F.

F. Kaneko, T. Nakano, M. Terakado, K. Shinbo, K. Kato, T. Kawakami, and T. Wakamatsu, “Emission light from prism/silver/ rhodamine-B LB film and multiple surface plasmon excitations in the ATR Kretschmann configuration,” Mater. Sci. Eng. C 22, 409-412 (2002).
[CrossRef]

T. Nakano, H. Kobayashi, K. Shinbo, K. Kato, F. Kaneko, T. Kawakami, and T. Wakamatsu, “Emission light properties from Ag/rhodamine-B LB films due to surface plasmon excitations in the Kretschmann and reverse configurations,” Mater. Res. Soc. Symp. Proc. 660, JJ8.35.1-JJ8.35.6 (2001).

Kato, K.

F. Kaneko, T. Nakano, M. Terakado, K. Shinbo, K. Kato, T. Kawakami, and T. Wakamatsu, “Emission light from prism/silver/ rhodamine-B LB film and multiple surface plasmon excitations in the ATR Kretschmann configuration,” Mater. Sci. Eng. C 22, 409-412 (2002).
[CrossRef]

T. Nakano, H. Kobayashi, K. Shinbo, K. Kato, F. Kaneko, T. Kawakami, and T. Wakamatsu, “Emission light properties from Ag/rhodamine-B LB films due to surface plasmon excitations in the Kretschmann and reverse configurations,” Mater. Res. Soc. Symp. Proc. 660, JJ8.35.1-JJ8.35.6 (2001).

Kawakami, T.

F. Kaneko, T. Nakano, M. Terakado, K. Shinbo, K. Kato, T. Kawakami, and T. Wakamatsu, “Emission light from prism/silver/ rhodamine-B LB film and multiple surface plasmon excitations in the ATR Kretschmann configuration,” Mater. Sci. Eng. C 22, 409-412 (2002).
[CrossRef]

T. Nakano, H. Kobayashi, K. Shinbo, K. Kato, F. Kaneko, T. Kawakami, and T. Wakamatsu, “Emission light properties from Ag/rhodamine-B LB films due to surface plasmon excitations in the Kretschmann and reverse configurations,” Mater. Res. Soc. Symp. Proc. 660, JJ8.35.1-JJ8.35.6 (2001).

Kaya, D.

D. Kaya, Ö. Pekcan, and Y. Yilmaz, “Direct test of the critical exponents at the sol-gel transition,” Phys. Rev. E 69, 016117 (2004).
[CrossRef]

Kermis, H. R.

H. R. Kermis, Y. Kostov, and G. Rao, “Rapid method for the preparation of a robust optical pH sensor,” Analyst 128, 1181-1186 (2003).

Klidgar, S.

Z. Gryczynski, I. Gryczynski, E. G. Matveeva, N. Calander, R. Grygorczyk, I. Akopova, S. Bharill, P. Muthu, S. Klidgar, and J. Borejdo, “New surface plasmons approach to single molecule detection (SMD) and fluorescence correlation spectroscopy (FCS),” Proc. SPIE 8, 64440G.1-64440G.11(2007).

Knoll, W.

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115-130(2000).
[CrossRef]

Kobayashi, H.

T. Nakano, H. Kobayashi, K. Shinbo, K. Kato, F. Kaneko, T. Kawakami, and T. Wakamatsu, “Emission light properties from Ag/rhodamine-B LB films due to surface plasmon excitations in the Kretschmann and reverse configurations,” Mater. Res. Soc. Symp. Proc. 660, JJ8.35.1-JJ8.35.6 (2001).

Kostov, Y.

R. Sai Sathish, Y. Kostov, D. S. Smith, and G. Rao, “Solution-deposited thin silver films on plastic surfaces for low-cost applications in plasmon-coupled emission sensors,” Plasmonics 4, 127-133 (2009).
[CrossRef]

D. S. Smith, Y. Kostov, and G. Rao, “Signal enhancement of surface plasmon-coupled directional emission by a conical mirror,” Appl. Opt. 47, 5229-5234 (2008).
[CrossRef]

D. S. Smith, Y. Kostov, and G. Rao, “SPCE-based sensors: ultrafast oxygen sensing using surface-plasmon coupled emission from ruthenium probes,” Sens. Actuator B 127, 432-440(2007).
[CrossRef]

D. S. Smith, Y. Kostov, G. Rao, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “First observation of surface plasmon-coupled emission due to LED excitation,” J. Fluoresc. 15, 895-900 (2005).
[CrossRef]

X. Ge, Y. Kostov, and G. Rao, “Low-cost noninvasive optical CO2 sensing system for fermentation and cell culture,” Biotechnol. Bioeng. 89, 329-334 (2005).
[CrossRef]

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3nm green fluorescent protein monolayer,” Biotechnol. Prog. 21, 1731-1735(2005).
[CrossRef]

X. Ge, Y. Kostov, and G. Rao, “High-stability non-invasive autoclavable naked optical CO2 sensor,” Biosens. Bioelectron. 18, 857-865 (2003).
[CrossRef]

H. R. Kermis, Y. Kostov, and G. Rao, “Rapid method for the preparation of a robust optical pH sensor,” Analyst 128, 1181-1186 (2003).

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Kreiter, M.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef]

Kreschmann, E.

E. Kreschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135-2136 (1968).

Kroneis, H.

O. S. Wolfbeis, E. Fuerlinger, H. Kroneis, and H. Marsoner, “Fluorimetric analysis. 1. A study on fluorescent indicators for measuring near neutral (“physiological”) pH values,” Fresenius' J. Anal. Chem. 314, 119-124 (1983).
[CrossRef]

Lakowicz, J. R.

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Observation of surface plasmon-coupled emission using thin platinum films,” Chem. Phys. Lett. 465, 92-95 (2008).
[CrossRef]

K. Ray, H. Szmacinski, J. Enderlein, and J. R. Lakowicz, “Distance dependence of surface plasmon-coupled emission observed using Langmuir-Blodgett films,” Appl. Phys. Lett. 90, 251116 (2007).
[CrossRef]

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3nm green fluorescent protein monolayer,” Biotechnol. Prog. 21, 1731-1735(2005).
[CrossRef]

D. S. Smith, Y. Kostov, G. Rao, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “First observation of surface plasmon-coupled emission due to LED excitation,” J. Fluoresc. 15, 895-900 (2005).
[CrossRef]

E. G. Matveeva, Z. Gryczynski, J. Malicka, J. Lukomska, S. Makowiec, K. W. Berndt, J. R. Lakowicz, and I. Gryczynski, “Directional surface plasmon-coupled emission: Application for an immunoassay in whole blood,” Anal. Biochem. 344, 161-167 (2005).

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal coated surfaces in optically dense samples utilizing directional surface plasmon coupled emission,” J. Fluoresc. 15, 865-871 (2005).
[CrossRef]

J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324, 153-169 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem. 324, 170-182 (2004).
[CrossRef]

Lévêque-Fort, S.

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M. P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92, 2150-2161 (2007).
[CrossRef]

Liebermann, T.

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115-130(2000).
[CrossRef]

Lubbers, D. W.

J. L. Gehrich, D. W. Lubbers, N. Opitz, D. R. Hansmann, W. W. Miller, J. K. Tusa, and M. Yafuso, “Optical fluorescence and its application to an intravascular blood gas monitoring system,” IEEE Trans. Bio-med. Eng. BME-33, 117-132(1986).
[CrossRef]

Lukomska, J.

E. G. Matveeva, Z. Gryczynski, J. Malicka, J. Lukomska, S. Makowiec, K. W. Berndt, J. R. Lakowicz, and I. Gryczynski, “Directional surface plasmon-coupled emission: Application for an immunoassay in whole blood,” Anal. Biochem. 344, 161-167 (2005).

Maccraith, B. D.

M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. Maccraith, “Experimental and theoretical evaluation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13, 054021 (2008).
[CrossRef]

Magnes, B. Z.

M. Rini, B. Z. Magnes, E. Pines, and E. T. J. Nibbering, “Real-time observation of bimodal proton transfer in acid-base pairs in water,” Science 301, 349-352 (2003).
[CrossRef]

Makowiec, S.

E. G. Matveeva, Z. Gryczynski, J. Malicka, J. Lukomska, S. Makowiec, K. W. Berndt, J. R. Lakowicz, and I. Gryczynski, “Directional surface plasmon-coupled emission: Application for an immunoassay in whole blood,” Anal. Biochem. 344, 161-167 (2005).

Malicka, J.

E. G. Matveeva, Z. Gryczynski, J. Malicka, J. Lukomska, S. Makowiec, K. W. Berndt, J. R. Lakowicz, and I. Gryczynski, “Directional surface plasmon-coupled emission: Application for an immunoassay in whole blood,” Anal. Biochem. 344, 161-167 (2005).

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal coated surfaces in optically dense samples utilizing directional surface plasmon coupled emission,” J. Fluoresc. 15, 865-871 (2005).
[CrossRef]

D. S. Smith, Y. Kostov, G. Rao, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “First observation of surface plasmon-coupled emission due to LED excitation,” J. Fluoresc. 15, 895-900 (2005).
[CrossRef]

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3nm green fluorescent protein monolayer,” Biotechnol. Prog. 21, 1731-1735(2005).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem. 324, 170-182 (2004).
[CrossRef]

Mandal, U.

S. Ghosh, S. Dey, U. Mandal, A. Adhikari, S. K. Mondal, and K. Bhattacharyya, “Ultrafast proton transfer of pyranine in a supramolecular assembly: PEO−PPO−PEO triblock copolymer and CTAC,” J. Phys. Chem. B 111, 13504-13510 (2007).
[CrossRef]

Marsoner, H.

O. S. Wolfbeis, E. Fuerlinger, H. Kroneis, and H. Marsoner, “Fluorimetric analysis. 1. A study on fluorescent indicators for measuring near neutral (“physiological”) pH values,” Fresenius' J. Anal. Chem. 314, 119-124 (1983).
[CrossRef]

Matveeva, E. G.

Z. Gryczynski, I. Gryczynski, E. G. Matveeva, N. Calander, R. Grygorczyk, I. Akopova, S. Bharill, P. Muthu, S. Klidgar, and J. Borejdo, “New surface plasmons approach to single molecule detection (SMD) and fluorescence correlation spectroscopy (FCS),” Proc. SPIE 8, 64440G.1-64440G.11(2007).

E. G. Matveeva, Z. Gryczynski, J. Malicka, J. Lukomska, S. Makowiec, K. W. Berndt, J. R. Lakowicz, and I. Gryczynski, “Directional surface plasmon-coupled emission: Application for an immunoassay in whole blood,” Anal. Biochem. 344, 161-167 (2005).

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal coated surfaces in optically dense samples utilizing directional surface plasmon coupled emission,” J. Fluoresc. 15, 865-871 (2005).
[CrossRef]

Mayer, A.

A. Mayer and S. Neuenhofer, “Luminescent labels--more than just an alternative to radioisotopes?,” Angew. Chem., Int. Ed. 33, 1044-1072 (1994).
[CrossRef]

McDonagh, C.

M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. Maccraith, “Experimental and theoretical evaluation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13, 054021 (2008).
[CrossRef]

McDonald, K.

K. Aslan, K. McDonald, M. J. R. Previte, Y. Zhang, and C. D. Geddes, “Angular dependent metal-enhanced fluorescence from silver island films,” Chem. Phys. Lett. 464, 216-219 (2008).
[CrossRef]

Mendenhall, B.

R. N. Pattison, J. Swamy, B. Mendenhall, C. Hwang, and B. Frohlich, “Measurement and control of dissolved carbon dioxide in mammalian cell culture processes using an in situ fiber optic chemical sensor,” Biotechnol. Prog. 16, 769-774(2000).
[CrossRef]

Miller, W. W.

J. L. Gehrich, D. W. Lubbers, N. Opitz, D. R. Hansmann, W. W. Miller, J. K. Tusa, and M. Yafuso, “Optical fluorescence and its application to an intravascular blood gas monitoring system,” IEEE Trans. Bio-med. Eng. BME-33, 117-132(1986).
[CrossRef]

Mills, A.

A. Mills and Q. Chang, “Fluorescence plastic thin-film sensor for carbon dioxide,” Analyst 118, 839-843(1993).

Moal, E. L.

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M. P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92, 2150-2161 (2007).
[CrossRef]

Mondal, S. K.

S. Ghosh, S. Dey, U. Mandal, A. Adhikari, S. K. Mondal, and K. Bhattacharyya, “Ultrafast proton transfer of pyranine in a supramolecular assembly: PEO−PPO−PEO triblock copolymer and CTAC,” J. Phys. Chem. B 111, 13504-13510 (2007).
[CrossRef]

S. K. Mondal, K. Sahu, S. Ghosh, P. Sen, and K. Bhattacharyya, “Excited-state proton transfer from pyranine to acetate in γ-cyclodextrin and hydroxypropyl γ-cyclodextrin,” J. Phys. Chem. A 110, 13646-13652 (2006).
[CrossRef]

Morawetz, H.

H. Morawetz, “On the versatility of fluorescence techniques in polymer research,” J. Polym. Sci., Part A 37, 1725-1735(1999).
[CrossRef]

Muthu, P.

Z. Gryczynski, I. Gryczynski, E. G. Matveeva, N. Calander, R. Grygorczyk, I. Akopova, S. Bharill, P. Muthu, S. Klidgar, and J. Borejdo, “New surface plasmons approach to single molecule detection (SMD) and fluorescence correlation spectroscopy (FCS),” Proc. SPIE 8, 64440G.1-64440G.11(2007).

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys J. 91, 2626-2635 (2006).
[CrossRef]

Nakahara, H.

O. Tsukamoto, M. Villeneuve, A. Sakamoto, and H. Nakahara, “Change in the orientation and packing upon adsorption of pyranine molecules onto cationic langmuir monolayers and Langmuir-Blodgett films,” Bull. Chem. Soc. Jpn. 80, 1723-1730 (2007).
[CrossRef]

Nakano, T.

F. Kaneko, T. Nakano, M. Terakado, K. Shinbo, K. Kato, T. Kawakami, and T. Wakamatsu, “Emission light from prism/silver/ rhodamine-B LB film and multiple surface plasmon excitations in the ATR Kretschmann configuration,” Mater. Sci. Eng. C 22, 409-412 (2002).
[CrossRef]

T. Nakano, H. Kobayashi, K. Shinbo, K. Kato, F. Kaneko, T. Kawakami, and T. Wakamatsu, “Emission light properties from Ag/rhodamine-B LB films due to surface plasmon excitations in the Kretschmann and reverse configurations,” Mater. Res. Soc. Symp. Proc. 660, JJ8.35.1-JJ8.35.6 (2001).

Neuenhofer, S.

A. Mayer and S. Neuenhofer, “Luminescent labels--more than just an alternative to radioisotopes?,” Angew. Chem., Int. Ed. 33, 1044-1072 (1994).
[CrossRef]

Nibbering, E. T. J.

M. Rini, B. Z. Magnes, E. Pines, and E. T. J. Nibbering, “Real-time observation of bimodal proton transfer in acid-base pairs in water,” Science 301, 349-352 (2003).
[CrossRef]

Oner, A.

Y. Yilmaz, N. Uysal, A. Gelir, O. Guney, D. K. Aktas, S. Gogebakan, and A. Oner, “Elucidation of multiple-point interactions of pyranine fluoroprobe during the gelation,” Spectrochim. Acta. A 72, 332-338 (2009).
[CrossRef]

Opitz, N.

J. L. Gehrich, D. W. Lubbers, N. Opitz, D. R. Hansmann, W. W. Miller, J. K. Tusa, and M. Yafuso, “Optical fluorescence and its application to an intravascular blood gas monitoring system,” IEEE Trans. Bio-med. Eng. BME-33, 117-132(1986).
[CrossRef]

Pattison, R. N.

R. N. Pattison, J. Swamy, B. Mendenhall, C. Hwang, and B. Frohlich, “Measurement and control of dissolved carbon dioxide in mammalian cell culture processes using an in situ fiber optic chemical sensor,” Biotechnol. Prog. 16, 769-774(2000).
[CrossRef]

Pekcan, Ö.

D. Kaya, Ö. Pekcan, and Y. Yilmaz, “Direct test of the critical exponents at the sol-gel transition,” Phys. Rev. E 69, 016117 (2004).
[CrossRef]

Pines, E.

M. Rini, B. Z. Magnes, E. Pines, and E. T. J. Nibbering, “Real-time observation of bimodal proton transfer in acid-base pairs in water,” Science 301, 349-352 (2003).
[CrossRef]

Pockrand, I.

I. Pockrand and A. Brillante, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499-504 (1980).
[CrossRef]

Polarz, S.

A. Thomas, S. Polarz, and M. Antonietti, “Influence of spatial restrictions on equilibrium reactions: a case study about the excimer formation of pyrene,” J. Phys. Chem. B 107, 5081-5087 (2003).
[CrossRef]

Previte, M. J. R.

K. Aslan, K. McDonald, M. J. R. Previte, Y. Zhang, and C. D. Geddes, “Angular dependent metal-enhanced fluorescence from silver island films,” Chem. Phys. Lett. 464, 216-219 (2008).
[CrossRef]

Raether, H.

E. Kreschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135-2136 (1968).

Rao, G.

R. Sai Sathish, Y. Kostov, D. S. Smith, and G. Rao, “Solution-deposited thin silver films on plastic surfaces for low-cost applications in plasmon-coupled emission sensors,” Plasmonics 4, 127-133 (2009).
[CrossRef]

D. S. Smith, Y. Kostov, and G. Rao, “Signal enhancement of surface plasmon-coupled directional emission by a conical mirror,” Appl. Opt. 47, 5229-5234 (2008).
[CrossRef]

D. S. Smith, Y. Kostov, and G. Rao, “SPCE-based sensors: ultrafast oxygen sensing using surface-plasmon coupled emission from ruthenium probes,” Sens. Actuator B 127, 432-440(2007).
[CrossRef]

D. S. Smith, Y. Kostov, G. Rao, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “First observation of surface plasmon-coupled emission due to LED excitation,” J. Fluoresc. 15, 895-900 (2005).
[CrossRef]

X. Ge, Y. Kostov, and G. Rao, “Low-cost noninvasive optical CO2 sensing system for fermentation and cell culture,” Biotechnol. Bioeng. 89, 329-334 (2005).
[CrossRef]

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3nm green fluorescent protein monolayer,” Biotechnol. Prog. 21, 1731-1735(2005).
[CrossRef]

X. Ge, Y. Kostov, and G. Rao, “High-stability non-invasive autoclavable naked optical CO2 sensor,” Biosens. Bioelectron. 18, 857-865 (2003).
[CrossRef]

H. R. Kermis, Y. Kostov, and G. Rao, “Rapid method for the preparation of a robust optical pH sensor,” Analyst 128, 1181-1186 (2003).

Ray, K.

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Observation of surface plasmon-coupled emission using thin platinum films,” Chem. Phys. Lett. 465, 92-95 (2008).
[CrossRef]

K. Ray, H. Szmacinski, J. Enderlein, and J. R. Lakowicz, “Distance dependence of surface plasmon-coupled emission observed using Langmuir-Blodgett films,” Appl. Phys. Lett. 90, 251116 (2007).
[CrossRef]

Ricolleau, C.

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M. P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92, 2150-2161 (2007).
[CrossRef]

Rini, M.

M. Rini, B. Z. Magnes, E. Pines, and E. T. J. Nibbering, “Real-time observation of bimodal proton transfer in acid-base pairs in water,” Science 301, 349-352 (2003).
[CrossRef]

Rolfe, P.

S. Zhang, S. Tanaka, Y. A. B. D. Wickramasinghe, and P. Rolfe, “Fibre-optical sensor based on fluorescent indicator for monitoring physiological pH values,” Med. Bio. Eng. Comput. 33, 152-156 (1995).
[CrossRef]

Ruckstuhl, T.

M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. Maccraith, “Experimental and theoretical evaluation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13, 054021 (2008).
[CrossRef]

Runnels, P.

R. M. Wightman, P. Runnels, and Kevin Troyer, “Analysis of chemical dynamics in microenvironments,” Anal. Chim. Acta 400, 5-12 (1999).
[CrossRef]

Sahu, K.

S. K. Mondal, K. Sahu, S. Ghosh, P. Sen, and K. Bhattacharyya, “Excited-state proton transfer from pyranine to acetate in γ-cyclodextrin and hydroxypropyl γ-cyclodextrin,” J. Phys. Chem. A 110, 13646-13652 (2006).
[CrossRef]

Sakamoto, A.

O. Tsukamoto, M. Villeneuve, A. Sakamoto, and H. Nakahara, “Change in the orientation and packing upon adsorption of pyranine molecules onto cationic langmuir monolayers and Langmuir-Blodgett films,” Bull. Chem. Soc. Jpn. 80, 1723-1730 (2007).
[CrossRef]

Sathish, R. Sai

R. Sai Sathish, Y. Kostov, D. S. Smith, and G. Rao, “Solution-deposited thin silver films on plastic surfaces for low-cost applications in plasmon-coupled emission sensors,” Plasmonics 4, 127-133 (2009).
[CrossRef]

Seitz, W. R.

Z. Zhujun and W. R. Seitz, “A fluorescence sensor for quantifying pH in the range from 6.5 to 8.5,” Anal. Chim. Acta 160, 47-55 (1984).
[CrossRef]

Sen, P.

S. K. Mondal, K. Sahu, S. Ghosh, P. Sen, and K. Bhattacharyya, “Excited-state proton transfer from pyranine to acetate in γ-cyclodextrin and hydroxypropyl γ-cyclodextrin,” J. Phys. Chem. A 110, 13646-13652 (2006).
[CrossRef]

Sepaniak, M. J.

A. D. Wellman and M. J. Sepaniak, “Magnetically-assisted transport evanescent field fluoroimmunoassay,” Anal. Chem. 78, 4450-4456 (2006).
[CrossRef]

Shinbo, K.

F. Kaneko, T. Nakano, M. Terakado, K. Shinbo, K. Kato, T. Kawakami, and T. Wakamatsu, “Emission light from prism/silver/ rhodamine-B LB film and multiple surface plasmon excitations in the ATR Kretschmann configuration,” Mater. Sci. Eng. C 22, 409-412 (2002).
[CrossRef]

T. Nakano, H. Kobayashi, K. Shinbo, K. Kato, F. Kaneko, T. Kawakami, and T. Wakamatsu, “Emission light properties from Ag/rhodamine-B LB films due to surface plasmon excitations in the Kretschmann and reverse configurations,” Mater. Res. Soc. Symp. Proc. 660, JJ8.35.1-JJ8.35.6 (2001).

Smith, D. S.

R. Sai Sathish, Y. Kostov, D. S. Smith, and G. Rao, “Solution-deposited thin silver films on plastic surfaces for low-cost applications in plasmon-coupled emission sensors,” Plasmonics 4, 127-133 (2009).
[CrossRef]

D. S. Smith, Y. Kostov, and G. Rao, “Signal enhancement of surface plasmon-coupled directional emission by a conical mirror,” Appl. Opt. 47, 5229-5234 (2008).
[CrossRef]

D. S. Smith, Y. Kostov, and G. Rao, “SPCE-based sensors: ultrafast oxygen sensing using surface-plasmon coupled emission from ruthenium probes,” Sens. Actuator B 127, 432-440(2007).
[CrossRef]

D. S. Smith, Y. Kostov, G. Rao, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “First observation of surface plasmon-coupled emission due to LED excitation,” J. Fluoresc. 15, 895-900 (2005).
[CrossRef]

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3nm green fluorescent protein monolayer,” Biotechnol. Prog. 21, 1731-1735(2005).
[CrossRef]

Stefani, F. D.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef]

Stoyanova, N.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef]

Swamy, J.

R. N. Pattison, J. Swamy, B. Mendenhall, C. Hwang, and B. Frohlich, “Measurement and control of dissolved carbon dioxide in mammalian cell culture processes using an in situ fiber optic chemical sensor,” Biotechnol. Prog. 16, 769-774(2000).
[CrossRef]

Szmacinski, H.

K. Ray, H. Szmacinski, J. Enderlein, and J. R. Lakowicz, “Distance dependence of surface plasmon-coupled emission observed using Langmuir-Blodgett films,” Appl. Phys. Lett. 90, 251116 (2007).
[CrossRef]

Tanaka, S.

S. Zhang, S. Tanaka, Y. A. B. D. Wickramasinghe, and P. Rolfe, “Fibre-optical sensor based on fluorescent indicator for monitoring physiological pH values,” Med. Bio. Eng. Comput. 33, 152-156 (1995).
[CrossRef]

Terakado, M.

F. Kaneko, T. Nakano, M. Terakado, K. Shinbo, K. Kato, T. Kawakami, and T. Wakamatsu, “Emission light from prism/silver/ rhodamine-B LB film and multiple surface plasmon excitations in the ATR Kretschmann configuration,” Mater. Sci. Eng. C 22, 409-412 (2002).
[CrossRef]

Thomas, A.

A. Thomas, S. Polarz, and M. Antonietti, “Influence of spatial restrictions on equilibrium reactions: a case study about the excimer formation of pyrene,” J. Phys. Chem. B 107, 5081-5087 (2003).
[CrossRef]

Tolosa, L.

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3nm green fluorescent protein monolayer,” Biotechnol. Prog. 21, 1731-1735(2005).
[CrossRef]

Trnavsky, M.

M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. Maccraith, “Experimental and theoretical evaluation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13, 054021 (2008).
[CrossRef]

Troyer, Kevin

R. M. Wightman, P. Runnels, and Kevin Troyer, “Analysis of chemical dynamics in microenvironments,” Anal. Chim. Acta 400, 5-12 (1999).
[CrossRef]

Tsukamoto, O.

O. Tsukamoto, M. Villeneuve, A. Sakamoto, and H. Nakahara, “Change in the orientation and packing upon adsorption of pyranine molecules onto cationic langmuir monolayers and Langmuir-Blodgett films,” Bull. Chem. Soc. Jpn. 80, 1723-1730 (2007).
[CrossRef]

Tusa, J. K.

J. L. Gehrich, D. W. Lubbers, N. Opitz, D. R. Hansmann, W. W. Miller, J. K. Tusa, and M. Yafuso, “Optical fluorescence and its application to an intravascular blood gas monitoring system,” IEEE Trans. Bio-med. Eng. BME-33, 117-132(1986).
[CrossRef]

Uttamlal, M.

M. Uttamlal and D. R. Walt, “A fiberoptic carbon-dioxide sensor for fermentation monitoring,” Bio/Technology 13, 597-601 (1995).
[CrossRef]

Uysal, N.

Y. Yilmaz, N. Uysal, A. Gelir, O. Guney, D. K. Aktas, S. Gogebakan, and A. Oner, “Elucidation of multiple-point interactions of pyranine fluoroprobe during the gelation,” Spectrochim. Acta. A 72, 332-338 (2009).
[CrossRef]

Vasilev, K.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef]

Villeneuve, M.

O. Tsukamoto, M. Villeneuve, A. Sakamoto, and H. Nakahara, “Change in the orientation and packing upon adsorption of pyranine molecules onto cationic langmuir monolayers and Langmuir-Blodgett films,” Bull. Chem. Soc. Jpn. 80, 1723-1730 (2007).
[CrossRef]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Wakamatsu, T.

F. Kaneko, T. Nakano, M. Terakado, K. Shinbo, K. Kato, T. Kawakami, and T. Wakamatsu, “Emission light from prism/silver/ rhodamine-B LB film and multiple surface plasmon excitations in the ATR Kretschmann configuration,” Mater. Sci. Eng. C 22, 409-412 (2002).
[CrossRef]

T. Nakano, H. Kobayashi, K. Shinbo, K. Kato, F. Kaneko, T. Kawakami, and T. Wakamatsu, “Emission light properties from Ag/rhodamine-B LB films due to surface plasmon excitations in the Kretschmann and reverse configurations,” Mater. Res. Soc. Symp. Proc. 660, JJ8.35.1-JJ8.35.6 (2001).

Walt, D. R.

M. Uttamlal and D. R. Walt, “A fiberoptic carbon-dioxide sensor for fermentation monitoring,” Bio/Technology 13, 597-601 (1995).
[CrossRef]

Weber, W. H.

Wellman, A. D.

A. D. Wellman and M. J. Sepaniak, “Magnetically-assisted transport evanescent field fluoroimmunoassay,” Anal. Chem. 78, 4450-4456 (2006).
[CrossRef]

Wickramasinghe, Y. A. B. D.

S. Zhang, S. Tanaka, Y. A. B. D. Wickramasinghe, and P. Rolfe, “Fibre-optical sensor based on fluorescent indicator for monitoring physiological pH values,” Med. Bio. Eng. Comput. 33, 152-156 (1995).
[CrossRef]

Wightman, R. M.

R. M. Wightman, P. Runnels, and Kevin Troyer, “Analysis of chemical dynamics in microenvironments,” Anal. Chim. Acta 400, 5-12 (1999).
[CrossRef]

Wolfbeis, O. S.

O. S. Wolfbeis, E. Fuerlinger, H. Kroneis, and H. Marsoner, “Fluorimetric analysis. 1. A study on fluorescent indicators for measuring near neutral (“physiological”) pH values,” Fresenius' J. Anal. Chem. 314, 119-124 (1983).
[CrossRef]

Yafuso, M.

J. L. Gehrich, D. W. Lubbers, N. Opitz, D. R. Hansmann, W. W. Miller, J. K. Tusa, and M. Yafuso, “Optical fluorescence and its application to an intravascular blood gas monitoring system,” IEEE Trans. Bio-med. Eng. BME-33, 117-132(1986).
[CrossRef]

Yilmaz, Y.

Y. Yilmaz, N. Uysal, A. Gelir, O. Guney, D. K. Aktas, S. Gogebakan, and A. Oner, “Elucidation of multiple-point interactions of pyranine fluoroprobe during the gelation,” Spectrochim. Acta. A 72, 332-338 (2009).
[CrossRef]

D. Kaya, Ö. Pekcan, and Y. Yilmaz, “Direct test of the critical exponents at the sol-gel transition,” Phys. Rev. E 69, 016117 (2004).
[CrossRef]

Zhang, S.

S. Zhang, S. Tanaka, Y. A. B. D. Wickramasinghe, and P. Rolfe, “Fibre-optical sensor based on fluorescent indicator for monitoring physiological pH values,” Med. Bio. Eng. Comput. 33, 152-156 (1995).
[CrossRef]

Zhang, Y.

K. Aslan, Y. Zhang, and C. D. Geddes, “Surface plasmon coupled fluorescence in the visible to near-infrared spectral regions using thin nickel films: Application to whole blood assays,” Anal. Chem. 81, 3801-3808 (2009).
[CrossRef]

K. Aslan, K. McDonald, M. J. R. Previte, Y. Zhang, and C. D. Geddes, “Angular dependent metal-enhanced fluorescence from silver island films,” Chem. Phys. Lett. 464, 216-219 (2008).
[CrossRef]

Zhujun, Z.

Z. Zhujun and W. R. Seitz, “A fluorescence sensor for quantifying pH in the range from 6.5 to 8.5,” Anal. Chim. Acta 160, 47-55 (1984).
[CrossRef]

Zink, J. I.

J. I. Zink and B. S. Dunn, “Photonics materials by the sol-gel process: optical materials,” J. Ceram. Soc. Jpn. 99, 878-893(1991).

Adv. Colloid Interface Sci. (1)

I. Capek, “Fate of excited probes in micellar systems,” Adv. Colloid Interface Sci. 97, 89-147 (2002).
[CrossRef]

Anal. Biochem. (3)

J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324, 153-169 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem. 324, 170-182 (2004).
[CrossRef]

E. G. Matveeva, Z. Gryczynski, J. Malicka, J. Lukomska, S. Makowiec, K. W. Berndt, J. R. Lakowicz, and I. Gryczynski, “Directional surface plasmon-coupled emission: Application for an immunoassay in whole blood,” Anal. Biochem. 344, 161-167 (2005).

Anal. Chem. (2)

K. Aslan, Y. Zhang, and C. D. Geddes, “Surface plasmon coupled fluorescence in the visible to near-infrared spectral regions using thin nickel films: Application to whole blood assays,” Anal. Chem. 81, 3801-3808 (2009).
[CrossRef]

A. D. Wellman and M. J. Sepaniak, “Magnetically-assisted transport evanescent field fluoroimmunoassay,” Anal. Chem. 78, 4450-4456 (2006).
[CrossRef]

Anal. Chim. Acta (3)

A. Hakonen and S. Hulth, “A high-precision ratiometric fluorosensor for pH: Implementing time-dependent non-linear calibration protocols for drift compensation,” Anal. Chim. Acta 606, 63-71 (2008).
[CrossRef]

R. M. Wightman, P. Runnels, and Kevin Troyer, “Analysis of chemical dynamics in microenvironments,” Anal. Chim. Acta 400, 5-12 (1999).
[CrossRef]

Z. Zhujun and W. R. Seitz, “A fluorescence sensor for quantifying pH in the range from 6.5 to 8.5,” Anal. Chim. Acta 160, 47-55 (1984).
[CrossRef]

Analyst (2)

H. R. Kermis, Y. Kostov, and G. Rao, “Rapid method for the preparation of a robust optical pH sensor,” Analyst 128, 1181-1186 (2003).

A. Mills and Q. Chang, “Fluorescence plastic thin-film sensor for carbon dioxide,” Analyst 118, 839-843(1993).

Angew. Chem., Int. Ed. (1)

A. Mayer and S. Neuenhofer, “Luminescent labels--more than just an alternative to radioisotopes?,” Angew. Chem., Int. Ed. 33, 1044-1072 (1994).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. M. Hiep, M. Fujii, and S. Hayashi, “Effects of molecular orientation on surface-plasmon-coupled emission patterns,” Appl. Phys. Lett. 91, 183110 (2007).
[CrossRef]

K. Ray, H. Szmacinski, J. Enderlein, and J. R. Lakowicz, “Distance dependence of surface plasmon-coupled emission observed using Langmuir-Blodgett films,” Appl. Phys. Lett. 90, 251116 (2007).
[CrossRef]

Bio/Technology (1)

M. Uttamlal and D. R. Walt, “A fiberoptic carbon-dioxide sensor for fermentation monitoring,” Bio/Technology 13, 597-601 (1995).
[CrossRef]

Biophys J. (1)

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys J. 91, 2626-2635 (2006).
[CrossRef]

Biophys. J. (1)

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M. P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92, 2150-2161 (2007).
[CrossRef]

Biosens. Bioelectron. (1)

X. Ge, Y. Kostov, and G. Rao, “High-stability non-invasive autoclavable naked optical CO2 sensor,” Biosens. Bioelectron. 18, 857-865 (2003).
[CrossRef]

Biotechnol. Bioeng. (1)

X. Ge, Y. Kostov, and G. Rao, “Low-cost noninvasive optical CO2 sensing system for fermentation and cell culture,” Biotechnol. Bioeng. 89, 329-334 (2005).
[CrossRef]

Biotechnol. Prog. (2)

R. N. Pattison, J. Swamy, B. Mendenhall, C. Hwang, and B. Frohlich, “Measurement and control of dissolved carbon dioxide in mammalian cell culture processes using an in situ fiber optic chemical sensor,” Biotechnol. Prog. 16, 769-774(2000).
[CrossRef]

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3nm green fluorescent protein monolayer,” Biotechnol. Prog. 21, 1731-1735(2005).
[CrossRef]

Bull. Chem. Soc. Jpn. (1)

O. Tsukamoto, M. Villeneuve, A. Sakamoto, and H. Nakahara, “Change in the orientation and packing upon adsorption of pyranine molecules onto cationic langmuir monolayers and Langmuir-Blodgett films,” Bull. Chem. Soc. Jpn. 80, 1723-1730 (2007).
[CrossRef]

Chem. Phys. Lett. (3)

I. Pockrand and A. Brillante, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499-504 (1980).
[CrossRef]

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Observation of surface plasmon-coupled emission using thin platinum films,” Chem. Phys. Lett. 465, 92-95 (2008).
[CrossRef]

K. Aslan, K. McDonald, M. J. R. Previte, Y. Zhang, and C. D. Geddes, “Angular dependent metal-enhanced fluorescence from silver island films,” Chem. Phys. Lett. 464, 216-219 (2008).
[CrossRef]

Colloids Surf. A (1)

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115-130(2000).
[CrossRef]

Fresenius' J. Anal. Chem. (1)

O. S. Wolfbeis, E. Fuerlinger, H. Kroneis, and H. Marsoner, “Fluorimetric analysis. 1. A study on fluorescent indicators for measuring near neutral (“physiological”) pH values,” Fresenius' J. Anal. Chem. 314, 119-124 (1983).
[CrossRef]

IEEE Trans. Bio-med. Eng. (1)

J. L. Gehrich, D. W. Lubbers, N. Opitz, D. R. Hansmann, W. W. Miller, J. K. Tusa, and M. Yafuso, “Optical fluorescence and its application to an intravascular blood gas monitoring system,” IEEE Trans. Bio-med. Eng. BME-33, 117-132(1986).
[CrossRef]

J. Biomed. Opt. (1)

M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. Maccraith, “Experimental and theoretical evaluation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13, 054021 (2008).
[CrossRef]

J. Ceram. Soc. Jpn. (1)

J. I. Zink and B. S. Dunn, “Photonics materials by the sol-gel process: optical materials,” J. Ceram. Soc. Jpn. 99, 878-893(1991).

J. Fluoresc. (2)

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal coated surfaces in optically dense samples utilizing directional surface plasmon coupled emission,” J. Fluoresc. 15, 865-871 (2005).
[CrossRef]

D. S. Smith, Y. Kostov, G. Rao, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “First observation of surface plasmon-coupled emission due to LED excitation,” J. Fluoresc. 15, 895-900 (2005).
[CrossRef]

J. Mol. Liq. (1)

T. Bryk and M. Holovko, “Hydration structure of a poly(vinyl alcohol) chain fragment: Ab initio molecular dynamics study,” J. Mol. Liq. 147, 13-16 (2009).
[CrossRef]

J. Phys. Chem. A (1)

S. K. Mondal, K. Sahu, S. Ghosh, P. Sen, and K. Bhattacharyya, “Excited-state proton transfer from pyranine to acetate in γ-cyclodextrin and hydroxypropyl γ-cyclodextrin,” J. Phys. Chem. A 110, 13646-13652 (2006).
[CrossRef]

J. Phys. Chem. B (3)

S. Ghosh, S. Dey, U. Mandal, A. Adhikari, S. K. Mondal, and K. Bhattacharyya, “Ultrafast proton transfer of pyranine in a supramolecular assembly: PEO−PPO−PEO triblock copolymer and CTAC,” J. Phys. Chem. B 111, 13504-13510 (2007).
[CrossRef]

R. Barnabas-Rodriguez and J. Estelrich, “Photophysical changes of pyranine induced by surfactants: evidence of premicellar aggregates,” J. Phys. Chem. B 113, 1972-1982 (2009).
[CrossRef]

A. Thomas, S. Polarz, and M. Antonietti, “Influence of spatial restrictions on equilibrium reactions: a case study about the excimer formation of pyrene,” J. Phys. Chem. B 107, 5081-5087 (2003).
[CrossRef]

J. Polym. Sci., Part A (1)

H. Morawetz, “On the versatility of fluorescence techniques in polymer research,” J. Polym. Sci., Part A 37, 1725-1735(1999).
[CrossRef]

J. Sol-Gel Sci. Technol. (1)

R. Gupta and N. K. Chaudhury, “Probing internal environment of sol-gel bulk and thin films using multiple fluorescent probes,” J. Sol-Gel Sci. Technol. 49, 78-87 (2009).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

T. Nakano, H. Kobayashi, K. Shinbo, K. Kato, F. Kaneko, T. Kawakami, and T. Wakamatsu, “Emission light properties from Ag/rhodamine-B LB films due to surface plasmon excitations in the Kretschmann and reverse configurations,” Mater. Res. Soc. Symp. Proc. 660, JJ8.35.1-JJ8.35.6 (2001).

Mater. Sci. Eng. C (1)

F. Kaneko, T. Nakano, M. Terakado, K. Shinbo, K. Kato, T. Kawakami, and T. Wakamatsu, “Emission light from prism/silver/ rhodamine-B LB film and multiple surface plasmon excitations in the ATR Kretschmann configuration,” Mater. Sci. Eng. C 22, 409-412 (2002).
[CrossRef]

Med. Bio. Eng. Comput. (1)

S. Zhang, S. Tanaka, Y. A. B. D. Wickramasinghe, and P. Rolfe, “Fibre-optical sensor based on fluorescent indicator for monitoring physiological pH values,” Med. Bio. Eng. Comput. 33, 152-156 (1995).
[CrossRef]

Opt. Commun. (1)

R. E. Benner, R. Dornhaus, and R. K. Chang, “Angular emission profiles of dye molecules excited by surface plasmon waves at a metal surface,” Opt. Commun. 30, 145-149(1979).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. E (1)

D. Kaya, Ö. Pekcan, and Y. Yilmaz, “Direct test of the critical exponents at the sol-gel transition,” Phys. Rev. E 69, 016117 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef]

Plasmonics (1)

R. Sai Sathish, Y. Kostov, D. S. Smith, and G. Rao, “Solution-deposited thin silver films on plastic surfaces for low-cost applications in plasmon-coupled emission sensors,” Plasmonics 4, 127-133 (2009).
[CrossRef]

Proc. SPIE (1)

Z. Gryczynski, I. Gryczynski, E. G. Matveeva, N. Calander, R. Grygorczyk, I. Akopova, S. Bharill, P. Muthu, S. Klidgar, and J. Borejdo, “New surface plasmons approach to single molecule detection (SMD) and fluorescence correlation spectroscopy (FCS),” Proc. SPIE 8, 64440G.1-64440G.11(2007).

Science (1)

M. Rini, B. Z. Magnes, E. Pines, and E. T. J. Nibbering, “Real-time observation of bimodal proton transfer in acid-base pairs in water,” Science 301, 349-352 (2003).
[CrossRef]

Sens. Actuator B (1)

D. S. Smith, Y. Kostov, and G. Rao, “SPCE-based sensors: ultrafast oxygen sensing using surface-plasmon coupled emission from ruthenium probes,” Sens. Actuator B 127, 432-440(2007).
[CrossRef]

Spectrochim. Acta. A (1)

Y. Yilmaz, N. Uysal, A. Gelir, O. Guney, D. K. Aktas, S. Gogebakan, and A. Oner, “Elucidation of multiple-point interactions of pyranine fluoroprobe during the gelation,” Spectrochim. Acta. A 72, 332-338 (2009).
[CrossRef]

Z. Naturforsch. A (1)

E. Kreschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135-2136 (1968).

Other (2)

R. P. Haugland, The Handbook: A Guide to Fluorescent Probes and Labeling Technologies (Invitrogen Corporation, 2005).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic representation of sample configuration and angle-dependent SPCE emission of the excited state populations of Py in PVA. (b) SPR angle-dependent reflectivity curves calculated for the three-layer system shown in (a), using TFCalc 3.0 software at emission wavelengths of 441, 496, and 532 nm .

Fig. 2
Fig. 2

Normalized free-space (FS) and SPCE spectra of 1 mM Py in 1% PVA. The top portion has photographs taken at the SPCE angles ( 53 ° , 58 ° , and 74 ° , left to right) of the emission and at 30 ° (extreme right) without a filter.

Fig. 3
Fig. 3

SPCE spectra of 1 mM Py in 1% PVA with observation spanning: (a)  48 ° 53 ° angles for excimer resolution, (b)  53 ° 58 ° angles resolve excimer and Py O * species, (c)  58 ° 69 ° angles projects the dominance of Py O * species, and (d)  69 ° 80 ° angles presents the emergence of PyO H * band with Py O * still being the predominant manifestation.

Metrics