Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Multiresolution infrared optical properties for Gaussian sea surfaces: theoretical validation in the one-dimensional case

Not Accessible

Your library or personal account may give you access

Abstract

The validation of the multiresolution model of sea surface infrared optical properties developed at ONERA is investigated in the one-dimensional case by comparison with a reference model, using a submillimeter discretization of the surface. Having expressed the optical properties, we detail the characteristics of each model. A set of numerical tests is made for various wind speeds, resolutions, and realizations of the sea surface. The tests show a good agreement between the results except for grazing angles, where the impact of multiple reflections and the effects of adjacent rough surfaces on shadow have to be investigated.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Multiresolution optical characteristics of rough sea surface in the infrared

Karine Caillault, Sandrine Fauqueux, Christophe Bourlier, Pierre Simoneau, and Luc Labarre
Appl. Opt. 46(22) 5471-5481 (2007)

Polarized infrared reflectivity of one-dimensional Gaussian sea surfaces with surface reflections

Hongkun Li, Nicolas Pinel, and Christophe Bourlier
Appl. Opt. 52(25) 6100-6111 (2013)

Polarized infrared emissivity of one-dimensional Gaussian sea surfaces with surface reflections

Hongkun Li, Nicolas Pinel, and Christophe Bourlier
Appl. Opt. 50(23) 4611-4621 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (30)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved