Abstract

We describe postfabrication trimming of coupling in both laterally and vertically coupled polymer microring resonators (MRRs), using photobleaching. For both cases, a tapered directional-coupler-based simple analytical model is developed to simulate the change in coupling due to a bleaching-induced decrease in refractive index. A tightly focused laser beam spot (a few kilowatts per square centimeter) is used to precisely bleach the coupling region alone. Coupling control is achieved for (1) high-Q passive rings by bleaching the vertically coupled chromophore-doped bus waveguide, and for (2) laterally coupled electro-optic ring modulators, by bleaching both the ring and the waveguide in the coupling region. The power coupling ratio (PCR) of an undercoupled high-Q MRR filter is reduced by 0.54 percentage points for the TE mode, causing the MRR finesse to increase from a value of 72 to 108. For a ring modulator, the PCR was increased by 3.5 percentage points for the TM mode, causing a 6dB increase in extinction ratio, to achieve a final value of nearly 25dB. Phase/group-delay characterization confirmed that the ring was trimmed toward critical coupling.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (23)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription