Abstract

Ellipsometry is an optical technique that is widely used for determining optical and geometrical properties of optical thin films. These properties are in general extracted from the ellipsometric measurement by solving an inverse problem. Classical methods like the Levenberg–Marquardt algorithm are generally too long, depending on direct calculation and are very sensitive to local minima. In this way, the neural network has proved to be an efficient tool for solving these kinds of problems in a very short time. Indeed, it is rapid and less sensitive to local minima than the classical inversion method. We suggest a complete neural ellipsometric characterization method for determining the index dispersion law and the thickness of a simple SiO2 or photoresist thin layer on Si, SiO2, and BK7 substrates. The influence of the training couples on the artificial neural network performance is also discussed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription