Abstract

We present the realization of an electrically tunable wave plate, which uses a nematic liquid-crystal (LC) phase retarder that allows fast and continuous control of the polarization state. This device is built using a quadripolar electrode design and transparent conductive polymer layers in order to obtain a uniform electric field distribution in the interelectrode area. With this realization, we obtain a high degree of control of the orientation of the electric field and, consequently, of the LC director. Indeed, this modulator outperforms classical bipolar LC cells in both optical path variation (>4μm) and LC rotation speed (0.4°/μs).

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Freedericksz and V. Zolina, “Forces causing the orientation of an anisotropic liquid,” Trans. Faraday Soc. 29, 919-930(1933).
    [CrossRef]
  2. S. E. Gilman, T. G. Baur, D. J. Gallagher, and N. K. Shankar, “Properties of tunable nematic liquid-crystal retarders,” Proc. SPIE 1166, 461-471 (1990).
  3. U. Efron, S. T. Wu, and T. D. Bates, “Nematic liquid crystals for spatial light modulators: recent studies,” J. Opt. Soc. Am. B 3, 247-252 (1986).
    [CrossRef]
  4. K. Hirabayashi and C. Amano, “Liquid-crystal polarization controller arrays on planar waveguide circuits,” IEEE Photonics Technol. Lett. 14, 504-506 (2002).
    [CrossRef]
  5. M. Hareng, G. Assouline, and E. Leiba, “La birefringence electriquement controlee dans les cristaux liquides nematiques,” Appl. Opt. 11, 2920-2925 (1972).
    [CrossRef] [PubMed]
  6. G. D. Sharp and K. M. Johnson, “High-speed analog complex-amplitude liquid-crystal light modulator,” Opt. Lett. 19, 1228-1230 (1994).
    [CrossRef] [PubMed]
  7. K. Hirabayashi, “Electrically controllable liquid-crystal rotatable wave plate with variable phase retardation,” Appl. Opt. 44, 3552-3559 (2005).
    [CrossRef] [PubMed]
  8. Y. Ohtera, T. Chiba, and S. Kawakami, “Liquid crystal rotatable waveplates,” IEEE Photonics Technol. Lett. 8, 390-392 (1996).
    [CrossRef]
  9. L. Dupont, J. L. de Bougrenet de la Tocnaye , M. L. Gall, and D. Penninckx, “Principle of a compact polarisation mode dispersion controller using homeotropic electroclinic liquid crystal confined single mode fibre devices,” Opt. Commun. 176, 113-119 (2000).
    [CrossRef]
  10. Y. Defosse, P. Gautier, J. de Bougrenet de la Tocnaye, F. Colliou, A. Guenot, G. Mouzer, C. Kaczmarek, and D. Labat, “Stabilized liquid crystal rotatable fractional wave-plates stack for fast polarisation analysis and control,” in “Optical Fiber Communication Conference, 2004 (OFC 2004) (IEEE, 2004), Vol. 2, paper ThF 1-3..
  11. P. Joffre, G. Illiaquer, and J. P. Huignard, “Electro-optic properties of nematic liquid crystals for phase modulation in the infrared 10.6 um,” Proc. SPIE 1126, 12-20 (1989).
  12. D. Dolfi, M. Labeyrie, P. Joffre, and J. Huignard, “Liquid crystal microwave phase shifter,” Electron. Lett. 29, 926-928(1993).
    [CrossRef]
  13. S. Kirchmeyer and K. Reuter, “Scientific importance, properties and growing applications of poly (3,4-ethylenedioxythiophene),” J. Mater. Chem. 15, 2077-2088(2005).
    [CrossRef]
  14. C. Geuzaine, P. Dular, and W. Legros, “A general environment for the treatment of discrete problems and its application to coupled finite element and boundary integral methods,” in Proceedings of the 8th International Institute for Fundamentals and Theory in Electrical Engineering (IGTE) Symposium on Numerical Field Calculation in Electrical Engineering (IGTE, 1998).
  15. B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, and R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Appl. Phys. Lett. 81, 5243-5245(2002).
    [CrossRef]
  16. J. Ouyang, C. Chu, F. Chen, Q. Xu, and Y. Yang, “High-conductivity poly (3,4-thylenedioxythiophene):poly (styrene sulfonate) film and its application in polymer optoelectronic devices,” Adv. Funct. Mater. 15, 203-208 (2005).
    [CrossRef]
  17. S. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23, 3911-3915 (1984).
    [CrossRef] [PubMed]

2005 (3)

K. Hirabayashi, “Electrically controllable liquid-crystal rotatable wave plate with variable phase retardation,” Appl. Opt. 44, 3552-3559 (2005).
[CrossRef] [PubMed]

S. Kirchmeyer and K. Reuter, “Scientific importance, properties and growing applications of poly (3,4-ethylenedioxythiophene),” J. Mater. Chem. 15, 2077-2088(2005).
[CrossRef]

J. Ouyang, C. Chu, F. Chen, Q. Xu, and Y. Yang, “High-conductivity poly (3,4-thylenedioxythiophene):poly (styrene sulfonate) film and its application in polymer optoelectronic devices,” Adv. Funct. Mater. 15, 203-208 (2005).
[CrossRef]

2002 (2)

B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, and R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Appl. Phys. Lett. 81, 5243-5245(2002).
[CrossRef]

K. Hirabayashi and C. Amano, “Liquid-crystal polarization controller arrays on planar waveguide circuits,” IEEE Photonics Technol. Lett. 14, 504-506 (2002).
[CrossRef]

2000 (1)

L. Dupont, J. L. de Bougrenet de la Tocnaye , M. L. Gall, and D. Penninckx, “Principle of a compact polarisation mode dispersion controller using homeotropic electroclinic liquid crystal confined single mode fibre devices,” Opt. Commun. 176, 113-119 (2000).
[CrossRef]

1996 (1)

Y. Ohtera, T. Chiba, and S. Kawakami, “Liquid crystal rotatable waveplates,” IEEE Photonics Technol. Lett. 8, 390-392 (1996).
[CrossRef]

1994 (1)

1993 (1)

D. Dolfi, M. Labeyrie, P. Joffre, and J. Huignard, “Liquid crystal microwave phase shifter,” Electron. Lett. 29, 926-928(1993).
[CrossRef]

1990 (1)

S. E. Gilman, T. G. Baur, D. J. Gallagher, and N. K. Shankar, “Properties of tunable nematic liquid-crystal retarders,” Proc. SPIE 1166, 461-471 (1990).

1989 (1)

P. Joffre, G. Illiaquer, and J. P. Huignard, “Electro-optic properties of nematic liquid crystals for phase modulation in the infrared 10.6 um,” Proc. SPIE 1126, 12-20 (1989).

1986 (1)

1984 (1)

1972 (1)

1933 (1)

V. Freedericksz and V. Zolina, “Forces causing the orientation of an anisotropic liquid,” Trans. Faraday Soc. 29, 919-930(1933).
[CrossRef]

Acharya, B. R.

B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, and R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Appl. Phys. Lett. 81, 5243-5245(2002).
[CrossRef]

Amano, C.

K. Hirabayashi and C. Amano, “Liquid-crystal polarization controller arrays on planar waveguide circuits,” IEEE Photonics Technol. Lett. 14, 504-506 (2002).
[CrossRef]

Assouline, G.

Baldwin, K. W.

B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, and R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Appl. Phys. Lett. 81, 5243-5245(2002).
[CrossRef]

Bates, T. D.

Baur, T. G.

S. E. Gilman, T. G. Baur, D. J. Gallagher, and N. K. Shankar, “Properties of tunable nematic liquid-crystal retarders,” Proc. SPIE 1166, 461-471 (1990).

Chen, F.

J. Ouyang, C. Chu, F. Chen, Q. Xu, and Y. Yang, “High-conductivity poly (3,4-thylenedioxythiophene):poly (styrene sulfonate) film and its application in polymer optoelectronic devices,” Adv. Funct. Mater. 15, 203-208 (2005).
[CrossRef]

Chiba, T.

Y. Ohtera, T. Chiba, and S. Kawakami, “Liquid crystal rotatable waveplates,” IEEE Photonics Technol. Lett. 8, 390-392 (1996).
[CrossRef]

Chu, C.

J. Ouyang, C. Chu, F. Chen, Q. Xu, and Y. Yang, “High-conductivity poly (3,4-thylenedioxythiophene):poly (styrene sulfonate) film and its application in polymer optoelectronic devices,” Adv. Funct. Mater. 15, 203-208 (2005).
[CrossRef]

Colliou, F.

Y. Defosse, P. Gautier, J. de Bougrenet de la Tocnaye, F. Colliou, A. Guenot, G. Mouzer, C. Kaczmarek, and D. Labat, “Stabilized liquid crystal rotatable fractional wave-plates stack for fast polarisation analysis and control,” in “Optical Fiber Communication Conference, 2004 (OFC 2004) (IEEE, 2004), Vol. 2, paper ThF 1-3..

de Bougrenet de la Tocnaye, J.

Y. Defosse, P. Gautier, J. de Bougrenet de la Tocnaye, F. Colliou, A. Guenot, G. Mouzer, C. Kaczmarek, and D. Labat, “Stabilized liquid crystal rotatable fractional wave-plates stack for fast polarisation analysis and control,” in “Optical Fiber Communication Conference, 2004 (OFC 2004) (IEEE, 2004), Vol. 2, paper ThF 1-3..

de Bougrenet de la Tocnaye, J. L.

L. Dupont, J. L. de Bougrenet de la Tocnaye , M. L. Gall, and D. Penninckx, “Principle of a compact polarisation mode dispersion controller using homeotropic electroclinic liquid crystal confined single mode fibre devices,” Opt. Commun. 176, 113-119 (2000).
[CrossRef]

Defosse, Y.

Y. Defosse, P. Gautier, J. de Bougrenet de la Tocnaye, F. Colliou, A. Guenot, G. Mouzer, C. Kaczmarek, and D. Labat, “Stabilized liquid crystal rotatable fractional wave-plates stack for fast polarisation analysis and control,” in “Optical Fiber Communication Conference, 2004 (OFC 2004) (IEEE, 2004), Vol. 2, paper ThF 1-3..

Dolfi, D.

D. Dolfi, M. Labeyrie, P. Joffre, and J. Huignard, “Liquid crystal microwave phase shifter,” Electron. Lett. 29, 926-928(1993).
[CrossRef]

Dular, P.

C. Geuzaine, P. Dular, and W. Legros, “A general environment for the treatment of discrete problems and its application to coupled finite element and boundary integral methods,” in Proceedings of the 8th International Institute for Fundamentals and Theory in Electrical Engineering (IGTE) Symposium on Numerical Field Calculation in Electrical Engineering (IGTE, 1998).

Dupont, L.

L. Dupont, J. L. de Bougrenet de la Tocnaye , M. L. Gall, and D. Penninckx, “Principle of a compact polarisation mode dispersion controller using homeotropic electroclinic liquid crystal confined single mode fibre devices,” Opt. Commun. 176, 113-119 (2000).
[CrossRef]

Efron, U.

Freedericksz, V.

V. Freedericksz and V. Zolina, “Forces causing the orientation of an anisotropic liquid,” Trans. Faraday Soc. 29, 919-930(1933).
[CrossRef]

Gall, M. L.

L. Dupont, J. L. de Bougrenet de la Tocnaye , M. L. Gall, and D. Penninckx, “Principle of a compact polarisation mode dispersion controller using homeotropic electroclinic liquid crystal confined single mode fibre devices,” Opt. Commun. 176, 113-119 (2000).
[CrossRef]

Gallagher, D. J.

S. E. Gilman, T. G. Baur, D. J. Gallagher, and N. K. Shankar, “Properties of tunable nematic liquid-crystal retarders,” Proc. SPIE 1166, 461-471 (1990).

Gautier, P.

Y. Defosse, P. Gautier, J. de Bougrenet de la Tocnaye, F. Colliou, A. Guenot, G. Mouzer, C. Kaczmarek, and D. Labat, “Stabilized liquid crystal rotatable fractional wave-plates stack for fast polarisation analysis and control,” in “Optical Fiber Communication Conference, 2004 (OFC 2004) (IEEE, 2004), Vol. 2, paper ThF 1-3..

Geuzaine, C.

C. Geuzaine, P. Dular, and W. Legros, “A general environment for the treatment of discrete problems and its application to coupled finite element and boundary integral methods,” in Proceedings of the 8th International Institute for Fundamentals and Theory in Electrical Engineering (IGTE) Symposium on Numerical Field Calculation in Electrical Engineering (IGTE, 1998).

Gilman, S. E.

S. E. Gilman, T. G. Baur, D. J. Gallagher, and N. K. Shankar, “Properties of tunable nematic liquid-crystal retarders,” Proc. SPIE 1166, 461-471 (1990).

Guenot, A.

Y. Defosse, P. Gautier, J. de Bougrenet de la Tocnaye, F. Colliou, A. Guenot, G. Mouzer, C. Kaczmarek, and D. Labat, “Stabilized liquid crystal rotatable fractional wave-plates stack for fast polarisation analysis and control,” in “Optical Fiber Communication Conference, 2004 (OFC 2004) (IEEE, 2004), Vol. 2, paper ThF 1-3..

Hareng, M.

Hess, L. D.

Hirabayashi, K.

K. Hirabayashi, “Electrically controllable liquid-crystal rotatable wave plate with variable phase retardation,” Appl. Opt. 44, 3552-3559 (2005).
[CrossRef] [PubMed]

K. Hirabayashi and C. Amano, “Liquid-crystal polarization controller arrays on planar waveguide circuits,” IEEE Photonics Technol. Lett. 14, 504-506 (2002).
[CrossRef]

Huang, C. C.

B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, and R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Appl. Phys. Lett. 81, 5243-5245(2002).
[CrossRef]

Huignard, J.

D. Dolfi, M. Labeyrie, P. Joffre, and J. Huignard, “Liquid crystal microwave phase shifter,” Electron. Lett. 29, 926-928(1993).
[CrossRef]

Huignard, J. P.

P. Joffre, G. Illiaquer, and J. P. Huignard, “Electro-optic properties of nematic liquid crystals for phase modulation in the infrared 10.6 um,” Proc. SPIE 1126, 12-20 (1989).

Illiaquer, G.

P. Joffre, G. Illiaquer, and J. P. Huignard, “Electro-optic properties of nematic liquid crystals for phase modulation in the infrared 10.6 um,” Proc. SPIE 1126, 12-20 (1989).

Joffre, P.

D. Dolfi, M. Labeyrie, P. Joffre, and J. Huignard, “Liquid crystal microwave phase shifter,” Electron. Lett. 29, 926-928(1993).
[CrossRef]

P. Joffre, G. Illiaquer, and J. P. Huignard, “Electro-optic properties of nematic liquid crystals for phase modulation in the infrared 10.6 um,” Proc. SPIE 1126, 12-20 (1989).

Johnson, K. M.

Kaczmarek, C.

Y. Defosse, P. Gautier, J. de Bougrenet de la Tocnaye, F. Colliou, A. Guenot, G. Mouzer, C. Kaczmarek, and D. Labat, “Stabilized liquid crystal rotatable fractional wave-plates stack for fast polarisation analysis and control,” in “Optical Fiber Communication Conference, 2004 (OFC 2004) (IEEE, 2004), Vol. 2, paper ThF 1-3..

Kawakami, S.

Y. Ohtera, T. Chiba, and S. Kawakami, “Liquid crystal rotatable waveplates,” IEEE Photonics Technol. Lett. 8, 390-392 (1996).
[CrossRef]

Kirchmeyer, S.

S. Kirchmeyer and K. Reuter, “Scientific importance, properties and growing applications of poly (3,4-ethylenedioxythiophene),” J. Mater. Chem. 15, 2077-2088(2005).
[CrossRef]

Labat, D.

Y. Defosse, P. Gautier, J. de Bougrenet de la Tocnaye, F. Colliou, A. Guenot, G. Mouzer, C. Kaczmarek, and D. Labat, “Stabilized liquid crystal rotatable fractional wave-plates stack for fast polarisation analysis and control,” in “Optical Fiber Communication Conference, 2004 (OFC 2004) (IEEE, 2004), Vol. 2, paper ThF 1-3..

Labeyrie, M.

D. Dolfi, M. Labeyrie, P. Joffre, and J. Huignard, “Liquid crystal microwave phase shifter,” Electron. Lett. 29, 926-928(1993).
[CrossRef]

Legros, W.

C. Geuzaine, P. Dular, and W. Legros, “A general environment for the treatment of discrete problems and its application to coupled finite element and boundary integral methods,” in Proceedings of the 8th International Institute for Fundamentals and Theory in Electrical Engineering (IGTE) Symposium on Numerical Field Calculation in Electrical Engineering (IGTE, 1998).

Leiba, E.

MacHarrie, R. A.

B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, and R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Appl. Phys. Lett. 81, 5243-5245(2002).
[CrossRef]

Mouzer, G.

Y. Defosse, P. Gautier, J. de Bougrenet de la Tocnaye, F. Colliou, A. Guenot, G. Mouzer, C. Kaczmarek, and D. Labat, “Stabilized liquid crystal rotatable fractional wave-plates stack for fast polarisation analysis and control,” in “Optical Fiber Communication Conference, 2004 (OFC 2004) (IEEE, 2004), Vol. 2, paper ThF 1-3..

Ohtera, Y.

Y. Ohtera, T. Chiba, and S. Kawakami, “Liquid crystal rotatable waveplates,” IEEE Photonics Technol. Lett. 8, 390-392 (1996).
[CrossRef]

Ouyang, J.

J. Ouyang, C. Chu, F. Chen, Q. Xu, and Y. Yang, “High-conductivity poly (3,4-thylenedioxythiophene):poly (styrene sulfonate) film and its application in polymer optoelectronic devices,” Adv. Funct. Mater. 15, 203-208 (2005).
[CrossRef]

Penninckx, D.

L. Dupont, J. L. de Bougrenet de la Tocnaye , M. L. Gall, and D. Penninckx, “Principle of a compact polarisation mode dispersion controller using homeotropic electroclinic liquid crystal confined single mode fibre devices,” Opt. Commun. 176, 113-119 (2000).
[CrossRef]

Pindak, R.

B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, and R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Appl. Phys. Lett. 81, 5243-5245(2002).
[CrossRef]

Reuter, K.

S. Kirchmeyer and K. Reuter, “Scientific importance, properties and growing applications of poly (3,4-ethylenedioxythiophene),” J. Mater. Chem. 15, 2077-2088(2005).
[CrossRef]

Rogers, J. A.

B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, and R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Appl. Phys. Lett. 81, 5243-5245(2002).
[CrossRef]

Shankar, N. K.

S. E. Gilman, T. G. Baur, D. J. Gallagher, and N. K. Shankar, “Properties of tunable nematic liquid-crystal retarders,” Proc. SPIE 1166, 461-471 (1990).

Sharp, G. D.

Wu, S.

Wu, S. T.

Xu, Q.

J. Ouyang, C. Chu, F. Chen, Q. Xu, and Y. Yang, “High-conductivity poly (3,4-thylenedioxythiophene):poly (styrene sulfonate) film and its application in polymer optoelectronic devices,” Adv. Funct. Mater. 15, 203-208 (2005).
[CrossRef]

Yang, Y.

J. Ouyang, C. Chu, F. Chen, Q. Xu, and Y. Yang, “High-conductivity poly (3,4-thylenedioxythiophene):poly (styrene sulfonate) film and its application in polymer optoelectronic devices,” Adv. Funct. Mater. 15, 203-208 (2005).
[CrossRef]

Zolina, V.

V. Freedericksz and V. Zolina, “Forces causing the orientation of an anisotropic liquid,” Trans. Faraday Soc. 29, 919-930(1933).
[CrossRef]

Adv. Funct. Mater. (1)

J. Ouyang, C. Chu, F. Chen, Q. Xu, and Y. Yang, “High-conductivity poly (3,4-thylenedioxythiophene):poly (styrene sulfonate) film and its application in polymer optoelectronic devices,” Adv. Funct. Mater. 15, 203-208 (2005).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, and R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Appl. Phys. Lett. 81, 5243-5245(2002).
[CrossRef]

Electron. Lett. (1)

D. Dolfi, M. Labeyrie, P. Joffre, and J. Huignard, “Liquid crystal microwave phase shifter,” Electron. Lett. 29, 926-928(1993).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

Y. Ohtera, T. Chiba, and S. Kawakami, “Liquid crystal rotatable waveplates,” IEEE Photonics Technol. Lett. 8, 390-392 (1996).
[CrossRef]

K. Hirabayashi and C. Amano, “Liquid-crystal polarization controller arrays on planar waveguide circuits,” IEEE Photonics Technol. Lett. 14, 504-506 (2002).
[CrossRef]

J. Mater. Chem. (1)

S. Kirchmeyer and K. Reuter, “Scientific importance, properties and growing applications of poly (3,4-ethylenedioxythiophene),” J. Mater. Chem. 15, 2077-2088(2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

L. Dupont, J. L. de Bougrenet de la Tocnaye , M. L. Gall, and D. Penninckx, “Principle of a compact polarisation mode dispersion controller using homeotropic electroclinic liquid crystal confined single mode fibre devices,” Opt. Commun. 176, 113-119 (2000).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (2)

P. Joffre, G. Illiaquer, and J. P. Huignard, “Electro-optic properties of nematic liquid crystals for phase modulation in the infrared 10.6 um,” Proc. SPIE 1126, 12-20 (1989).

S. E. Gilman, T. G. Baur, D. J. Gallagher, and N. K. Shankar, “Properties of tunable nematic liquid-crystal retarders,” Proc. SPIE 1166, 461-471 (1990).

Trans. Faraday Soc. (1)

V. Freedericksz and V. Zolina, “Forces causing the orientation of an anisotropic liquid,” Trans. Faraday Soc. 29, 919-930(1933).
[CrossRef]

Other (2)

Y. Defosse, P. Gautier, J. de Bougrenet de la Tocnaye, F. Colliou, A. Guenot, G. Mouzer, C. Kaczmarek, and D. Labat, “Stabilized liquid crystal rotatable fractional wave-plates stack for fast polarisation analysis and control,” in “Optical Fiber Communication Conference, 2004 (OFC 2004) (IEEE, 2004), Vol. 2, paper ThF 1-3..

C. Geuzaine, P. Dular, and W. Legros, “A general environment for the treatment of discrete problems and its application to coupled finite element and boundary integral methods,” in Proceedings of the 8th International Institute for Fundamentals and Theory in Electrical Engineering (IGTE) Symposium on Numerical Field Calculation in Electrical Engineering (IGTE, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Quadripolar cell cross section that illustrates the control of the electric field by tuning the electrode voltages (black thick lines). The polarized light propagation direction is along y. (b) Top view of the cell.

Fig. 2
Fig. 2

Simulation of the equipotential lines in the cell for (a) longitudinal, (b) transient, and (c) transverse electric fields. We used the following parameters for the simulation: V 0 = 10 V , e LC = 20 μm , l = 100 μm , d = 5 μm , ε LC = 20 ε 0 .

Fig. 3
Fig. 3

Theoretical and experimental curves for the transmitted intensity by the QLC cell.

Fig. 4
Fig. 4

Measurements of response times τ 2 1 for a θ 2 to θ 1 switch (solid curve) and τ 1 2 for a θ 1 to θ 2 switch (dashed curve).

Fig. 5
Fig. 5

LC response time measurement when driven with optimized voltage forms. (a) and (c) Time diagrams of the driving voltages applied on the four electrodes corresponding to, respectively, the optimized LC response time measurement in the (b) transverse-to-longitudinal case, and (d) the optimized LC response time measurement in the longitudinal-to-transverse switching.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Ψ ( V V 0 ) = tan 1 ( l e LC ( 1 V / V 0 ) ( 1 + V / V 0 ) ) ,
τ = 2 π l ρ p L e p ε LC L l e LC = 2 π R ε LC l 2 e LC ,
J s = 1 R V A V B L e x = 2 V 0 R L e x .
d θ d t = Δ ε E 2 2 η sin 2 ( Ψ θ ) ,
Γ E = P E = Δ ε E 2 2 sin 2 ( Ψ θ ) z ,
P = ε ¯ E ,
ε ¯ = ( ε o + Δ ε cos 2 θ Δ ε 2 sin 2 θ Δ ε 2 sin 2 θ ε o + Δ ε sin 2 θ ) .
ϕ ( θ ) = 2 π e LC ( n ( θ ) n o ) λ ,
n ( θ ) = n e . n o n o 2 cos 2 ( θ ) + n e 2 sin 2 ( θ ) .
I = I 0 sin 2 ( ϕ ( θ ) ϕ 0 2 ) ,

Metrics