Abstract

The methodology of using mobile scanning lidar data for investigation of smoke plume rise and high-resolution smoke dispersion is considered. The methodology is based on the lidar-signal transformation proposed recently [ Appl. Opt. 48, 2559 (2009)] . In this study, similar methodology is used to create the atmospheric heterogeneity height indicator (HHI), which shows all heights at which the smoke plume heterogeneity was detected by a scanning lidar. The methodology is simple and robust. Subtraction of the initial lidar signal offset from the measured lidar signal is not required. HHI examples derived from lidar scans obtained with the U.S. Forest Service, Fire Sciences Laboratory mobile lidar in areas polluted by wildfires are presented, and the basic details of the methodology are discussed.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Radke, J. H. Lyons, P. V. Hobbs, D. A. Hegg, D. V. Sandberg, and D. E. Ward, “Airborne monitoring and smoke characterization of prescribed fires on forest lands in Western Washington and Oregon,” Final General Technical Report PNW-GTR-251 (USDA Forest Service, 1990).
  2. P. V. Hobbs, J. S. Reid, J. A. Herring, J. D. Nance, R. E. Weiss, J. L. Ross, D. A. Hegg, R. D. Ottmar, and C. Liousse, “Particle and trace-gas measurements in the smoke from prescribed burns of forest products in the Pacific Northwest,” in Biomass Burning and Global Change (MIT Press, 1996), pp. 697-715.
  3. P. V. Hobbs, P. Sinha, R. J. Yokelson, T. J. Christian, D. R. Blake, S. Gao, T. W. Kirchstetter, T. Novakov, and P. Pilewskie, “Evolution of gases and particles from a savanna fire in South Africa,” J. Geophys. Res. 108, doi:10.1029/2002JD002352 8485 (2003).
    [CrossRef]
  4. Y. J. Kaufman, J. M. Haywood, P. V. Hobbs, W. Hart, R. Kleidman, and B. Schmid, “Remote sensing of vertical distributions of smoke aerosol off the coast of Africa,“ Geophys. Res. Lett. 30 No. (16), doi: 10.1029/2003GL017068 1831 (2003).
    [CrossRef]
  5. D. Müller, I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, and A. Stohl, “Raman lidar observation of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in 2003: Microphysical particle characterization,” J. Geophys. Res. 110, doi: 10.1029/2004JD005756, D17201(2005).
    [CrossRef]
  6. G. R. McMeeking, S. M. Kreidenweis, C. M. Carrico, J. L. Colent, D. E. Day, and W. C. Malm, “Observations of smoke-influenced aerosol during the Yosemite Aerosol Characterization Study: 2. Aerosol scattering and absorption properties,” J. Geophys. Res. 110, doi: 10.1029/2004JD005624, D18209 (2005).
    [CrossRef]
  7. W. L. Eberhard, G. T. McNice, and S. W. Troxel, “Lidar sensing of plume dispersion: analysis methods and product quality for light-scattering tracer particles,” J. Atmos. Ocean. Technol. 4 No. (4), 674-689 (1987).
    [CrossRef]
  8. W. L. Eberhard and W. R. Moninger, “Plume dispersion in the convective boundary layer. Part 1: CONDORS field experiment and example measurements,” J. Appl. Meteorol. 27 No. (5), 599-616 (1988).
    [CrossRef]
  9. R. M. Banta, L. D. Oliver, E. T. Holloway, R. A. Kropfli, B. W. Bartram, R. E. Cupp, and M. J. Post, “Smoke-column observations from two forest fires using Doppler lidar and Doppler radar,” J. Appl. Meteorol. 31 No. (11), 1328-1349(1992).
    [CrossRef]
  10. A. Lavrov, A. B. Utkin, R. Vilar, and A. Fernandes, “Application of lidar in ultraviolet, visible, and infrared ranges for early forest fire detection,” Appl. Phys. B 76, doi:10.1007/s00340-002-1053-y, 87-95 (2003).
    [CrossRef]
  11. Yu. S. Balin, A. D. Ershov, P. A. Konyaev, and D. S. Lomakin, “Monitoring of the aerosol formations travel velocity in the atmosphere by use of video and lidar data,” J. Atmos. Ocean. Opt. 17 No. (12), 885-890 (2004).
  12. V. A. Kovalev, C. Wold, A. Petkov, and Wei Min Hao, “Alternative method for determining the constant offset in lidar signal,” Appl. Opt. 48, 2559-2584 (2009).
    [CrossRef] [PubMed]
  13. L. Menut, C. Flamant, J. Pelon, and P. H. Flamant, “Urban boundary-layer height determination from lidar measurements over the Paris area,” Appl. Opt. 38, 945-954(1999).
    [CrossRef]
  14. S. H. Melfi, J. D. Spinhire, S. H. Chou, and S. P. Palm, “Lidar observations of vertically organized convection in the planetary boundary layer over the ocean,” J. Clim. Appl. Meteorol. 24, 806-821 (1985).
    [CrossRef]
  15. R. Boers and S. H. Melfi, “Cold-air outbreak during MASEX: lidar observations and boundary layer model test,” Boundary-Layer Meteorol. 39, 41-51 (1987).
    [CrossRef]
  16. C. Flamant, J. Pelon, P. H. Flamant, and P. Durant, “Lidar determination of the entrainment zone thickness and the top of the unstable marine atmospheric boundary layer,” Boundary-Layer Meteorol. 83, 247-284 (1997).
    [CrossRef]
  17. W. P. Hooper and E. W. Eloranta, “Lidar measurements of wind in the planetary boundary layer: the method, accuracy, and results from joint measurements with radiosonde and kytoon,” J. Clim. Appl. Meteorol. 25, 990-1001(1986).
    [CrossRef]
  18. A. Piironen and E. W. Eloranta, “Convective boundary layer mean depths, cloud base altitudes, cloud top altitudes, cloud coverages, and cloud shadows obtained from volume imaging lidar data,” J. Geophys. Res. 100, 25569-25576(1995).
    [CrossRef]
  19. I. M. Brooks, “Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles,” J. Atmos. Ocean. Technol. 20, 1092-1105 (2003).
    [CrossRef]
  20. H. Baars, A. Ansmann, R. Engelmann, and D. Althausen, “Continuous monitoring of the boundary-layer top with lidar,” Atmos. Chem. Phys. 8, 7281-7296 (2008).
    [CrossRef]

2009 (1)

2008 (1)

H. Baars, A. Ansmann, R. Engelmann, and D. Althausen, “Continuous monitoring of the boundary-layer top with lidar,” Atmos. Chem. Phys. 8, 7281-7296 (2008).
[CrossRef]

2005 (2)

D. Müller, I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, and A. Stohl, “Raman lidar observation of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in 2003: Microphysical particle characterization,” J. Geophys. Res. 110, doi: 10.1029/2004JD005756, D17201(2005).
[CrossRef]

G. R. McMeeking, S. M. Kreidenweis, C. M. Carrico, J. L. Colent, D. E. Day, and W. C. Malm, “Observations of smoke-influenced aerosol during the Yosemite Aerosol Characterization Study: 2. Aerosol scattering and absorption properties,” J. Geophys. Res. 110, doi: 10.1029/2004JD005624, D18209 (2005).
[CrossRef]

2004 (1)

Yu. S. Balin, A. D. Ershov, P. A. Konyaev, and D. S. Lomakin, “Monitoring of the aerosol formations travel velocity in the atmosphere by use of video and lidar data,” J. Atmos. Ocean. Opt. 17 No. (12), 885-890 (2004).

2003 (4)

A. Lavrov, A. B. Utkin, R. Vilar, and A. Fernandes, “Application of lidar in ultraviolet, visible, and infrared ranges for early forest fire detection,” Appl. Phys. B 76, doi:10.1007/s00340-002-1053-y, 87-95 (2003).
[CrossRef]

P. V. Hobbs, P. Sinha, R. J. Yokelson, T. J. Christian, D. R. Blake, S. Gao, T. W. Kirchstetter, T. Novakov, and P. Pilewskie, “Evolution of gases and particles from a savanna fire in South Africa,” J. Geophys. Res. 108, doi:10.1029/2002JD002352 8485 (2003).
[CrossRef]

Y. J. Kaufman, J. M. Haywood, P. V. Hobbs, W. Hart, R. Kleidman, and B. Schmid, “Remote sensing of vertical distributions of smoke aerosol off the coast of Africa,“ Geophys. Res. Lett. 30 No. (16), doi: 10.1029/2003GL017068 1831 (2003).
[CrossRef]

I. M. Brooks, “Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles,” J. Atmos. Ocean. Technol. 20, 1092-1105 (2003).
[CrossRef]

1999 (1)

1997 (1)

C. Flamant, J. Pelon, P. H. Flamant, and P. Durant, “Lidar determination of the entrainment zone thickness and the top of the unstable marine atmospheric boundary layer,” Boundary-Layer Meteorol. 83, 247-284 (1997).
[CrossRef]

1995 (1)

A. Piironen and E. W. Eloranta, “Convective boundary layer mean depths, cloud base altitudes, cloud top altitudes, cloud coverages, and cloud shadows obtained from volume imaging lidar data,” J. Geophys. Res. 100, 25569-25576(1995).
[CrossRef]

1992 (1)

R. M. Banta, L. D. Oliver, E. T. Holloway, R. A. Kropfli, B. W. Bartram, R. E. Cupp, and M. J. Post, “Smoke-column observations from two forest fires using Doppler lidar and Doppler radar,” J. Appl. Meteorol. 31 No. (11), 1328-1349(1992).
[CrossRef]

1988 (1)

W. L. Eberhard and W. R. Moninger, “Plume dispersion in the convective boundary layer. Part 1: CONDORS field experiment and example measurements,” J. Appl. Meteorol. 27 No. (5), 599-616 (1988).
[CrossRef]

1987 (2)

W. L. Eberhard, G. T. McNice, and S. W. Troxel, “Lidar sensing of plume dispersion: analysis methods and product quality for light-scattering tracer particles,” J. Atmos. Ocean. Technol. 4 No. (4), 674-689 (1987).
[CrossRef]

R. Boers and S. H. Melfi, “Cold-air outbreak during MASEX: lidar observations and boundary layer model test,” Boundary-Layer Meteorol. 39, 41-51 (1987).
[CrossRef]

1986 (1)

W. P. Hooper and E. W. Eloranta, “Lidar measurements of wind in the planetary boundary layer: the method, accuracy, and results from joint measurements with radiosonde and kytoon,” J. Clim. Appl. Meteorol. 25, 990-1001(1986).
[CrossRef]

1985 (1)

S. H. Melfi, J. D. Spinhire, S. H. Chou, and S. P. Palm, “Lidar observations of vertically organized convection in the planetary boundary layer over the ocean,” J. Clim. Appl. Meteorol. 24, 806-821 (1985).
[CrossRef]

Althausen, D.

H. Baars, A. Ansmann, R. Engelmann, and D. Althausen, “Continuous monitoring of the boundary-layer top with lidar,” Atmos. Chem. Phys. 8, 7281-7296 (2008).
[CrossRef]

D. Müller, I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, and A. Stohl, “Raman lidar observation of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in 2003: Microphysical particle characterization,” J. Geophys. Res. 110, doi: 10.1029/2004JD005756, D17201(2005).
[CrossRef]

Ansmann, A.

H. Baars, A. Ansmann, R. Engelmann, and D. Althausen, “Continuous monitoring of the boundary-layer top with lidar,” Atmos. Chem. Phys. 8, 7281-7296 (2008).
[CrossRef]

D. Müller, I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, and A. Stohl, “Raman lidar observation of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in 2003: Microphysical particle characterization,” J. Geophys. Res. 110, doi: 10.1029/2004JD005756, D17201(2005).
[CrossRef]

Baars, H.

H. Baars, A. Ansmann, R. Engelmann, and D. Althausen, “Continuous monitoring of the boundary-layer top with lidar,” Atmos. Chem. Phys. 8, 7281-7296 (2008).
[CrossRef]

Balin, Yu. S.

Yu. S. Balin, A. D. Ershov, P. A. Konyaev, and D. S. Lomakin, “Monitoring of the aerosol formations travel velocity in the atmosphere by use of video and lidar data,” J. Atmos. Ocean. Opt. 17 No. (12), 885-890 (2004).

Banta, R. M.

R. M. Banta, L. D. Oliver, E. T. Holloway, R. A. Kropfli, B. W. Bartram, R. E. Cupp, and M. J. Post, “Smoke-column observations from two forest fires using Doppler lidar and Doppler radar,” J. Appl. Meteorol. 31 No. (11), 1328-1349(1992).
[CrossRef]

Bartram, B. W.

R. M. Banta, L. D. Oliver, E. T. Holloway, R. A. Kropfli, B. W. Bartram, R. E. Cupp, and M. J. Post, “Smoke-column observations from two forest fires using Doppler lidar and Doppler radar,” J. Appl. Meteorol. 31 No. (11), 1328-1349(1992).
[CrossRef]

Blake, D. R.

P. V. Hobbs, P. Sinha, R. J. Yokelson, T. J. Christian, D. R. Blake, S. Gao, T. W. Kirchstetter, T. Novakov, and P. Pilewskie, “Evolution of gases and particles from a savanna fire in South Africa,” J. Geophys. Res. 108, doi:10.1029/2002JD002352 8485 (2003).
[CrossRef]

Boers, R.

R. Boers and S. H. Melfi, “Cold-air outbreak during MASEX: lidar observations and boundary layer model test,” Boundary-Layer Meteorol. 39, 41-51 (1987).
[CrossRef]

Brooks, I. M.

I. M. Brooks, “Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles,” J. Atmos. Ocean. Technol. 20, 1092-1105 (2003).
[CrossRef]

Carrico, C. M.

G. R. McMeeking, S. M. Kreidenweis, C. M. Carrico, J. L. Colent, D. E. Day, and W. C. Malm, “Observations of smoke-influenced aerosol during the Yosemite Aerosol Characterization Study: 2. Aerosol scattering and absorption properties,” J. Geophys. Res. 110, doi: 10.1029/2004JD005624, D18209 (2005).
[CrossRef]

Chou, S. H.

S. H. Melfi, J. D. Spinhire, S. H. Chou, and S. P. Palm, “Lidar observations of vertically organized convection in the planetary boundary layer over the ocean,” J. Clim. Appl. Meteorol. 24, 806-821 (1985).
[CrossRef]

Christian, T. J.

P. V. Hobbs, P. Sinha, R. J. Yokelson, T. J. Christian, D. R. Blake, S. Gao, T. W. Kirchstetter, T. Novakov, and P. Pilewskie, “Evolution of gases and particles from a savanna fire in South Africa,” J. Geophys. Res. 108, doi:10.1029/2002JD002352 8485 (2003).
[CrossRef]

Colent, J. L.

G. R. McMeeking, S. M. Kreidenweis, C. M. Carrico, J. L. Colent, D. E. Day, and W. C. Malm, “Observations of smoke-influenced aerosol during the Yosemite Aerosol Characterization Study: 2. Aerosol scattering and absorption properties,” J. Geophys. Res. 110, doi: 10.1029/2004JD005624, D18209 (2005).
[CrossRef]

Cupp, R. E.

R. M. Banta, L. D. Oliver, E. T. Holloway, R. A. Kropfli, B. W. Bartram, R. E. Cupp, and M. J. Post, “Smoke-column observations from two forest fires using Doppler lidar and Doppler radar,” J. Appl. Meteorol. 31 No. (11), 1328-1349(1992).
[CrossRef]

Day, D. E.

G. R. McMeeking, S. M. Kreidenweis, C. M. Carrico, J. L. Colent, D. E. Day, and W. C. Malm, “Observations of smoke-influenced aerosol during the Yosemite Aerosol Characterization Study: 2. Aerosol scattering and absorption properties,” J. Geophys. Res. 110, doi: 10.1029/2004JD005624, D18209 (2005).
[CrossRef]

Durant, P.

C. Flamant, J. Pelon, P. H. Flamant, and P. Durant, “Lidar determination of the entrainment zone thickness and the top of the unstable marine atmospheric boundary layer,” Boundary-Layer Meteorol. 83, 247-284 (1997).
[CrossRef]

Eberhard, W. L.

W. L. Eberhard and W. R. Moninger, “Plume dispersion in the convective boundary layer. Part 1: CONDORS field experiment and example measurements,” J. Appl. Meteorol. 27 No. (5), 599-616 (1988).
[CrossRef]

W. L. Eberhard, G. T. McNice, and S. W. Troxel, “Lidar sensing of plume dispersion: analysis methods and product quality for light-scattering tracer particles,” J. Atmos. Ocean. Technol. 4 No. (4), 674-689 (1987).
[CrossRef]

Eloranta, E. W.

A. Piironen and E. W. Eloranta, “Convective boundary layer mean depths, cloud base altitudes, cloud top altitudes, cloud coverages, and cloud shadows obtained from volume imaging lidar data,” J. Geophys. Res. 100, 25569-25576(1995).
[CrossRef]

W. P. Hooper and E. W. Eloranta, “Lidar measurements of wind in the planetary boundary layer: the method, accuracy, and results from joint measurements with radiosonde and kytoon,” J. Clim. Appl. Meteorol. 25, 990-1001(1986).
[CrossRef]

Engelmann, R.

H. Baars, A. Ansmann, R. Engelmann, and D. Althausen, “Continuous monitoring of the boundary-layer top with lidar,” Atmos. Chem. Phys. 8, 7281-7296 (2008).
[CrossRef]

Ershov, A. D.

Yu. S. Balin, A. D. Ershov, P. A. Konyaev, and D. S. Lomakin, “Monitoring of the aerosol formations travel velocity in the atmosphere by use of video and lidar data,” J. Atmos. Ocean. Opt. 17 No. (12), 885-890 (2004).

Fernandes, A.

A. Lavrov, A. B. Utkin, R. Vilar, and A. Fernandes, “Application of lidar in ultraviolet, visible, and infrared ranges for early forest fire detection,” Appl. Phys. B 76, doi:10.1007/s00340-002-1053-y, 87-95 (2003).
[CrossRef]

Flamant, C.

L. Menut, C. Flamant, J. Pelon, and P. H. Flamant, “Urban boundary-layer height determination from lidar measurements over the Paris area,” Appl. Opt. 38, 945-954(1999).
[CrossRef]

C. Flamant, J. Pelon, P. H. Flamant, and P. Durant, “Lidar determination of the entrainment zone thickness and the top of the unstable marine atmospheric boundary layer,” Boundary-Layer Meteorol. 83, 247-284 (1997).
[CrossRef]

Flamant, P. H.

L. Menut, C. Flamant, J. Pelon, and P. H. Flamant, “Urban boundary-layer height determination from lidar measurements over the Paris area,” Appl. Opt. 38, 945-954(1999).
[CrossRef]

C. Flamant, J. Pelon, P. H. Flamant, and P. Durant, “Lidar determination of the entrainment zone thickness and the top of the unstable marine atmospheric boundary layer,” Boundary-Layer Meteorol. 83, 247-284 (1997).
[CrossRef]

Gao, S.

P. V. Hobbs, P. Sinha, R. J. Yokelson, T. J. Christian, D. R. Blake, S. Gao, T. W. Kirchstetter, T. Novakov, and P. Pilewskie, “Evolution of gases and particles from a savanna fire in South Africa,” J. Geophys. Res. 108, doi:10.1029/2002JD002352 8485 (2003).
[CrossRef]

Hao, Wei Min

Hart, W.

Y. J. Kaufman, J. M. Haywood, P. V. Hobbs, W. Hart, R. Kleidman, and B. Schmid, “Remote sensing of vertical distributions of smoke aerosol off the coast of Africa,“ Geophys. Res. Lett. 30 No. (16), doi: 10.1029/2003GL017068 1831 (2003).
[CrossRef]

Haywood, J. M.

Y. J. Kaufman, J. M. Haywood, P. V. Hobbs, W. Hart, R. Kleidman, and B. Schmid, “Remote sensing of vertical distributions of smoke aerosol off the coast of Africa,“ Geophys. Res. Lett. 30 No. (16), doi: 10.1029/2003GL017068 1831 (2003).
[CrossRef]

Hegg, D. A.

P. V. Hobbs, J. S. Reid, J. A. Herring, J. D. Nance, R. E. Weiss, J. L. Ross, D. A. Hegg, R. D. Ottmar, and C. Liousse, “Particle and trace-gas measurements in the smoke from prescribed burns of forest products in the Pacific Northwest,” in Biomass Burning and Global Change (MIT Press, 1996), pp. 697-715.

L. F. Radke, J. H. Lyons, P. V. Hobbs, D. A. Hegg, D. V. Sandberg, and D. E. Ward, “Airborne monitoring and smoke characterization of prescribed fires on forest lands in Western Washington and Oregon,” Final General Technical Report PNW-GTR-251 (USDA Forest Service, 1990).

Herring, J. A.

P. V. Hobbs, J. S. Reid, J. A. Herring, J. D. Nance, R. E. Weiss, J. L. Ross, D. A. Hegg, R. D. Ottmar, and C. Liousse, “Particle and trace-gas measurements in the smoke from prescribed burns of forest products in the Pacific Northwest,” in Biomass Burning and Global Change (MIT Press, 1996), pp. 697-715.

Hobbs, P. V.

P. V. Hobbs, P. Sinha, R. J. Yokelson, T. J. Christian, D. R. Blake, S. Gao, T. W. Kirchstetter, T. Novakov, and P. Pilewskie, “Evolution of gases and particles from a savanna fire in South Africa,” J. Geophys. Res. 108, doi:10.1029/2002JD002352 8485 (2003).
[CrossRef]

Y. J. Kaufman, J. M. Haywood, P. V. Hobbs, W. Hart, R. Kleidman, and B. Schmid, “Remote sensing of vertical distributions of smoke aerosol off the coast of Africa,“ Geophys. Res. Lett. 30 No. (16), doi: 10.1029/2003GL017068 1831 (2003).
[CrossRef]

L. F. Radke, J. H. Lyons, P. V. Hobbs, D. A. Hegg, D. V. Sandberg, and D. E. Ward, “Airborne monitoring and smoke characterization of prescribed fires on forest lands in Western Washington and Oregon,” Final General Technical Report PNW-GTR-251 (USDA Forest Service, 1990).

P. V. Hobbs, J. S. Reid, J. A. Herring, J. D. Nance, R. E. Weiss, J. L. Ross, D. A. Hegg, R. D. Ottmar, and C. Liousse, “Particle and trace-gas measurements in the smoke from prescribed burns of forest products in the Pacific Northwest,” in Biomass Burning and Global Change (MIT Press, 1996), pp. 697-715.

Holloway, E. T.

R. M. Banta, L. D. Oliver, E. T. Holloway, R. A. Kropfli, B. W. Bartram, R. E. Cupp, and M. J. Post, “Smoke-column observations from two forest fires using Doppler lidar and Doppler radar,” J. Appl. Meteorol. 31 No. (11), 1328-1349(1992).
[CrossRef]

Hooper, W. P.

W. P. Hooper and E. W. Eloranta, “Lidar measurements of wind in the planetary boundary layer: the method, accuracy, and results from joint measurements with radiosonde and kytoon,” J. Clim. Appl. Meteorol. 25, 990-1001(1986).
[CrossRef]

Kaufman, Y. J.

Y. J. Kaufman, J. M. Haywood, P. V. Hobbs, W. Hart, R. Kleidman, and B. Schmid, “Remote sensing of vertical distributions of smoke aerosol off the coast of Africa,“ Geophys. Res. Lett. 30 No. (16), doi: 10.1029/2003GL017068 1831 (2003).
[CrossRef]

Kirchstetter, T. W.

P. V. Hobbs, P. Sinha, R. J. Yokelson, T. J. Christian, D. R. Blake, S. Gao, T. W. Kirchstetter, T. Novakov, and P. Pilewskie, “Evolution of gases and particles from a savanna fire in South Africa,” J. Geophys. Res. 108, doi:10.1029/2002JD002352 8485 (2003).
[CrossRef]

Kleidman, R.

Y. J. Kaufman, J. M. Haywood, P. V. Hobbs, W. Hart, R. Kleidman, and B. Schmid, “Remote sensing of vertical distributions of smoke aerosol off the coast of Africa,“ Geophys. Res. Lett. 30 No. (16), doi: 10.1029/2003GL017068 1831 (2003).
[CrossRef]

Konyaev, P. A.

Yu. S. Balin, A. D. Ershov, P. A. Konyaev, and D. S. Lomakin, “Monitoring of the aerosol formations travel velocity in the atmosphere by use of video and lidar data,” J. Atmos. Ocean. Opt. 17 No. (12), 885-890 (2004).

Kovalev, V. A.

Kreidenweis, S. M.

G. R. McMeeking, S. M. Kreidenweis, C. M. Carrico, J. L. Colent, D. E. Day, and W. C. Malm, “Observations of smoke-influenced aerosol during the Yosemite Aerosol Characterization Study: 2. Aerosol scattering and absorption properties,” J. Geophys. Res. 110, doi: 10.1029/2004JD005624, D18209 (2005).
[CrossRef]

Kropfli, R. A.

R. M. Banta, L. D. Oliver, E. T. Holloway, R. A. Kropfli, B. W. Bartram, R. E. Cupp, and M. J. Post, “Smoke-column observations from two forest fires using Doppler lidar and Doppler radar,” J. Appl. Meteorol. 31 No. (11), 1328-1349(1992).
[CrossRef]

Lavrov, A.

A. Lavrov, A. B. Utkin, R. Vilar, and A. Fernandes, “Application of lidar in ultraviolet, visible, and infrared ranges for early forest fire detection,” Appl. Phys. B 76, doi:10.1007/s00340-002-1053-y, 87-95 (2003).
[CrossRef]

Liousse, C.

P. V. Hobbs, J. S. Reid, J. A. Herring, J. D. Nance, R. E. Weiss, J. L. Ross, D. A. Hegg, R. D. Ottmar, and C. Liousse, “Particle and trace-gas measurements in the smoke from prescribed burns of forest products in the Pacific Northwest,” in Biomass Burning and Global Change (MIT Press, 1996), pp. 697-715.

Lomakin, D. S.

Yu. S. Balin, A. D. Ershov, P. A. Konyaev, and D. S. Lomakin, “Monitoring of the aerosol formations travel velocity in the atmosphere by use of video and lidar data,” J. Atmos. Ocean. Opt. 17 No. (12), 885-890 (2004).

Lyons, J. H.

L. F. Radke, J. H. Lyons, P. V. Hobbs, D. A. Hegg, D. V. Sandberg, and D. E. Ward, “Airborne monitoring and smoke characterization of prescribed fires on forest lands in Western Washington and Oregon,” Final General Technical Report PNW-GTR-251 (USDA Forest Service, 1990).

Malm, W. C.

G. R. McMeeking, S. M. Kreidenweis, C. M. Carrico, J. L. Colent, D. E. Day, and W. C. Malm, “Observations of smoke-influenced aerosol during the Yosemite Aerosol Characterization Study: 2. Aerosol scattering and absorption properties,” J. Geophys. Res. 110, doi: 10.1029/2004JD005624, D18209 (2005).
[CrossRef]

Mattis, I.

D. Müller, I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, and A. Stohl, “Raman lidar observation of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in 2003: Microphysical particle characterization,” J. Geophys. Res. 110, doi: 10.1029/2004JD005756, D17201(2005).
[CrossRef]

McMeeking, G. R.

G. R. McMeeking, S. M. Kreidenweis, C. M. Carrico, J. L. Colent, D. E. Day, and W. C. Malm, “Observations of smoke-influenced aerosol during the Yosemite Aerosol Characterization Study: 2. Aerosol scattering and absorption properties,” J. Geophys. Res. 110, doi: 10.1029/2004JD005624, D18209 (2005).
[CrossRef]

McNice, G. T.

W. L. Eberhard, G. T. McNice, and S. W. Troxel, “Lidar sensing of plume dispersion: analysis methods and product quality for light-scattering tracer particles,” J. Atmos. Ocean. Technol. 4 No. (4), 674-689 (1987).
[CrossRef]

Melfi, S. H.

R. Boers and S. H. Melfi, “Cold-air outbreak during MASEX: lidar observations and boundary layer model test,” Boundary-Layer Meteorol. 39, 41-51 (1987).
[CrossRef]

S. H. Melfi, J. D. Spinhire, S. H. Chou, and S. P. Palm, “Lidar observations of vertically organized convection in the planetary boundary layer over the ocean,” J. Clim. Appl. Meteorol. 24, 806-821 (1985).
[CrossRef]

Menut, L.

Moninger, W. R.

W. L. Eberhard and W. R. Moninger, “Plume dispersion in the convective boundary layer. Part 1: CONDORS field experiment and example measurements,” J. Appl. Meteorol. 27 No. (5), 599-616 (1988).
[CrossRef]

Müller, D.

D. Müller, I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, and A. Stohl, “Raman lidar observation of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in 2003: Microphysical particle characterization,” J. Geophys. Res. 110, doi: 10.1029/2004JD005756, D17201(2005).
[CrossRef]

Nance, J. D.

P. V. Hobbs, J. S. Reid, J. A. Herring, J. D. Nance, R. E. Weiss, J. L. Ross, D. A. Hegg, R. D. Ottmar, and C. Liousse, “Particle and trace-gas measurements in the smoke from prescribed burns of forest products in the Pacific Northwest,” in Biomass Burning and Global Change (MIT Press, 1996), pp. 697-715.

Novakov, T.

P. V. Hobbs, P. Sinha, R. J. Yokelson, T. J. Christian, D. R. Blake, S. Gao, T. W. Kirchstetter, T. Novakov, and P. Pilewskie, “Evolution of gases and particles from a savanna fire in South Africa,” J. Geophys. Res. 108, doi:10.1029/2002JD002352 8485 (2003).
[CrossRef]

Oliver, L. D.

R. M. Banta, L. D. Oliver, E. T. Holloway, R. A. Kropfli, B. W. Bartram, R. E. Cupp, and M. J. Post, “Smoke-column observations from two forest fires using Doppler lidar and Doppler radar,” J. Appl. Meteorol. 31 No. (11), 1328-1349(1992).
[CrossRef]

Ottmar, R. D.

P. V. Hobbs, J. S. Reid, J. A. Herring, J. D. Nance, R. E. Weiss, J. L. Ross, D. A. Hegg, R. D. Ottmar, and C. Liousse, “Particle and trace-gas measurements in the smoke from prescribed burns of forest products in the Pacific Northwest,” in Biomass Burning and Global Change (MIT Press, 1996), pp. 697-715.

Palm, S. P.

S. H. Melfi, J. D. Spinhire, S. H. Chou, and S. P. Palm, “Lidar observations of vertically organized convection in the planetary boundary layer over the ocean,” J. Clim. Appl. Meteorol. 24, 806-821 (1985).
[CrossRef]

Pelon, J.

L. Menut, C. Flamant, J. Pelon, and P. H. Flamant, “Urban boundary-layer height determination from lidar measurements over the Paris area,” Appl. Opt. 38, 945-954(1999).
[CrossRef]

C. Flamant, J. Pelon, P. H. Flamant, and P. Durant, “Lidar determination of the entrainment zone thickness and the top of the unstable marine atmospheric boundary layer,” Boundary-Layer Meteorol. 83, 247-284 (1997).
[CrossRef]

Petkov, A.

Piironen, A.

A. Piironen and E. W. Eloranta, “Convective boundary layer mean depths, cloud base altitudes, cloud top altitudes, cloud coverages, and cloud shadows obtained from volume imaging lidar data,” J. Geophys. Res. 100, 25569-25576(1995).
[CrossRef]

Pilewskie, P.

P. V. Hobbs, P. Sinha, R. J. Yokelson, T. J. Christian, D. R. Blake, S. Gao, T. W. Kirchstetter, T. Novakov, and P. Pilewskie, “Evolution of gases and particles from a savanna fire in South Africa,” J. Geophys. Res. 108, doi:10.1029/2002JD002352 8485 (2003).
[CrossRef]

Post, M. J.

R. M. Banta, L. D. Oliver, E. T. Holloway, R. A. Kropfli, B. W. Bartram, R. E. Cupp, and M. J. Post, “Smoke-column observations from two forest fires using Doppler lidar and Doppler radar,” J. Appl. Meteorol. 31 No. (11), 1328-1349(1992).
[CrossRef]

Radke, L. F.

L. F. Radke, J. H. Lyons, P. V. Hobbs, D. A. Hegg, D. V. Sandberg, and D. E. Ward, “Airborne monitoring and smoke characterization of prescribed fires on forest lands in Western Washington and Oregon,” Final General Technical Report PNW-GTR-251 (USDA Forest Service, 1990).

Reid, J. S.

P. V. Hobbs, J. S. Reid, J. A. Herring, J. D. Nance, R. E. Weiss, J. L. Ross, D. A. Hegg, R. D. Ottmar, and C. Liousse, “Particle and trace-gas measurements in the smoke from prescribed burns of forest products in the Pacific Northwest,” in Biomass Burning and Global Change (MIT Press, 1996), pp. 697-715.

Ross, J. L.

P. V. Hobbs, J. S. Reid, J. A. Herring, J. D. Nance, R. E. Weiss, J. L. Ross, D. A. Hegg, R. D. Ottmar, and C. Liousse, “Particle and trace-gas measurements in the smoke from prescribed burns of forest products in the Pacific Northwest,” in Biomass Burning and Global Change (MIT Press, 1996), pp. 697-715.

Sandberg, D. V.

L. F. Radke, J. H. Lyons, P. V. Hobbs, D. A. Hegg, D. V. Sandberg, and D. E. Ward, “Airborne monitoring and smoke characterization of prescribed fires on forest lands in Western Washington and Oregon,” Final General Technical Report PNW-GTR-251 (USDA Forest Service, 1990).

Schmid, B.

Y. J. Kaufman, J. M. Haywood, P. V. Hobbs, W. Hart, R. Kleidman, and B. Schmid, “Remote sensing of vertical distributions of smoke aerosol off the coast of Africa,“ Geophys. Res. Lett. 30 No. (16), doi: 10.1029/2003GL017068 1831 (2003).
[CrossRef]

Sinha, P.

P. V. Hobbs, P. Sinha, R. J. Yokelson, T. J. Christian, D. R. Blake, S. Gao, T. W. Kirchstetter, T. Novakov, and P. Pilewskie, “Evolution of gases and particles from a savanna fire in South Africa,” J. Geophys. Res. 108, doi:10.1029/2002JD002352 8485 (2003).
[CrossRef]

Spinhire, J. D.

S. H. Melfi, J. D. Spinhire, S. H. Chou, and S. P. Palm, “Lidar observations of vertically organized convection in the planetary boundary layer over the ocean,” J. Clim. Appl. Meteorol. 24, 806-821 (1985).
[CrossRef]

Stohl, A.

D. Müller, I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, and A. Stohl, “Raman lidar observation of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in 2003: Microphysical particle characterization,” J. Geophys. Res. 110, doi: 10.1029/2004JD005756, D17201(2005).
[CrossRef]

Troxel, S. W.

W. L. Eberhard, G. T. McNice, and S. W. Troxel, “Lidar sensing of plume dispersion: analysis methods and product quality for light-scattering tracer particles,” J. Atmos. Ocean. Technol. 4 No. (4), 674-689 (1987).
[CrossRef]

Utkin, A. B.

A. Lavrov, A. B. Utkin, R. Vilar, and A. Fernandes, “Application of lidar in ultraviolet, visible, and infrared ranges for early forest fire detection,” Appl. Phys. B 76, doi:10.1007/s00340-002-1053-y, 87-95 (2003).
[CrossRef]

Vilar, R.

A. Lavrov, A. B. Utkin, R. Vilar, and A. Fernandes, “Application of lidar in ultraviolet, visible, and infrared ranges for early forest fire detection,” Appl. Phys. B 76, doi:10.1007/s00340-002-1053-y, 87-95 (2003).
[CrossRef]

Wandinger, U.

D. Müller, I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, and A. Stohl, “Raman lidar observation of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in 2003: Microphysical particle characterization,” J. Geophys. Res. 110, doi: 10.1029/2004JD005756, D17201(2005).
[CrossRef]

Ward, D. E.

L. F. Radke, J. H. Lyons, P. V. Hobbs, D. A. Hegg, D. V. Sandberg, and D. E. Ward, “Airborne monitoring and smoke characterization of prescribed fires on forest lands in Western Washington and Oregon,” Final General Technical Report PNW-GTR-251 (USDA Forest Service, 1990).

Weiss, R. E.

P. V. Hobbs, J. S. Reid, J. A. Herring, J. D. Nance, R. E. Weiss, J. L. Ross, D. A. Hegg, R. D. Ottmar, and C. Liousse, “Particle and trace-gas measurements in the smoke from prescribed burns of forest products in the Pacific Northwest,” in Biomass Burning and Global Change (MIT Press, 1996), pp. 697-715.

Wold, C.

Yokelson, R. J.

P. V. Hobbs, P. Sinha, R. J. Yokelson, T. J. Christian, D. R. Blake, S. Gao, T. W. Kirchstetter, T. Novakov, and P. Pilewskie, “Evolution of gases and particles from a savanna fire in South Africa,” J. Geophys. Res. 108, doi:10.1029/2002JD002352 8485 (2003).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

A. Lavrov, A. B. Utkin, R. Vilar, and A. Fernandes, “Application of lidar in ultraviolet, visible, and infrared ranges for early forest fire detection,” Appl. Phys. B 76, doi:10.1007/s00340-002-1053-y, 87-95 (2003).
[CrossRef]

Atmos. Chem. Phys. (1)

H. Baars, A. Ansmann, R. Engelmann, and D. Althausen, “Continuous monitoring of the boundary-layer top with lidar,” Atmos. Chem. Phys. 8, 7281-7296 (2008).
[CrossRef]

Boundary-Layer Meteorol. (2)

R. Boers and S. H. Melfi, “Cold-air outbreak during MASEX: lidar observations and boundary layer model test,” Boundary-Layer Meteorol. 39, 41-51 (1987).
[CrossRef]

C. Flamant, J. Pelon, P. H. Flamant, and P. Durant, “Lidar determination of the entrainment zone thickness and the top of the unstable marine atmospheric boundary layer,” Boundary-Layer Meteorol. 83, 247-284 (1997).
[CrossRef]

Geophys. Res. Lett. (1)

Y. J. Kaufman, J. M. Haywood, P. V. Hobbs, W. Hart, R. Kleidman, and B. Schmid, “Remote sensing of vertical distributions of smoke aerosol off the coast of Africa,“ Geophys. Res. Lett. 30 No. (16), doi: 10.1029/2003GL017068 1831 (2003).
[CrossRef]

J. Appl. Meteorol. (2)

W. L. Eberhard and W. R. Moninger, “Plume dispersion in the convective boundary layer. Part 1: CONDORS field experiment and example measurements,” J. Appl. Meteorol. 27 No. (5), 599-616 (1988).
[CrossRef]

R. M. Banta, L. D. Oliver, E. T. Holloway, R. A. Kropfli, B. W. Bartram, R. E. Cupp, and M. J. Post, “Smoke-column observations from two forest fires using Doppler lidar and Doppler radar,” J. Appl. Meteorol. 31 No. (11), 1328-1349(1992).
[CrossRef]

J. Atmos. Ocean. Opt. (1)

Yu. S. Balin, A. D. Ershov, P. A. Konyaev, and D. S. Lomakin, “Monitoring of the aerosol formations travel velocity in the atmosphere by use of video and lidar data,” J. Atmos. Ocean. Opt. 17 No. (12), 885-890 (2004).

J. Atmos. Ocean. Technol. (2)

W. L. Eberhard, G. T. McNice, and S. W. Troxel, “Lidar sensing of plume dispersion: analysis methods and product quality for light-scattering tracer particles,” J. Atmos. Ocean. Technol. 4 No. (4), 674-689 (1987).
[CrossRef]

I. M. Brooks, “Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles,” J. Atmos. Ocean. Technol. 20, 1092-1105 (2003).
[CrossRef]

J. Clim. Appl. Meteorol. (2)

S. H. Melfi, J. D. Spinhire, S. H. Chou, and S. P. Palm, “Lidar observations of vertically organized convection in the planetary boundary layer over the ocean,” J. Clim. Appl. Meteorol. 24, 806-821 (1985).
[CrossRef]

W. P. Hooper and E. W. Eloranta, “Lidar measurements of wind in the planetary boundary layer: the method, accuracy, and results from joint measurements with radiosonde and kytoon,” J. Clim. Appl. Meteorol. 25, 990-1001(1986).
[CrossRef]

J. Geophys. Res. (4)

A. Piironen and E. W. Eloranta, “Convective boundary layer mean depths, cloud base altitudes, cloud top altitudes, cloud coverages, and cloud shadows obtained from volume imaging lidar data,” J. Geophys. Res. 100, 25569-25576(1995).
[CrossRef]

P. V. Hobbs, P. Sinha, R. J. Yokelson, T. J. Christian, D. R. Blake, S. Gao, T. W. Kirchstetter, T. Novakov, and P. Pilewskie, “Evolution of gases and particles from a savanna fire in South Africa,” J. Geophys. Res. 108, doi:10.1029/2002JD002352 8485 (2003).
[CrossRef]

D. Müller, I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, and A. Stohl, “Raman lidar observation of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in 2003: Microphysical particle characterization,” J. Geophys. Res. 110, doi: 10.1029/2004JD005756, D17201(2005).
[CrossRef]

G. R. McMeeking, S. M. Kreidenweis, C. M. Carrico, J. L. Colent, D. E. Day, and W. C. Malm, “Observations of smoke-influenced aerosol during the Yosemite Aerosol Characterization Study: 2. Aerosol scattering and absorption properties,” J. Geophys. Res. 110, doi: 10.1029/2004JD005624, D18209 (2005).
[CrossRef]

Other (2)

L. F. Radke, J. H. Lyons, P. V. Hobbs, D. A. Hegg, D. V. Sandberg, and D. E. Ward, “Airborne monitoring and smoke characterization of prescribed fires on forest lands in Western Washington and Oregon,” Final General Technical Report PNW-GTR-251 (USDA Forest Service, 1990).

P. V. Hobbs, J. S. Reid, J. A. Herring, J. D. Nance, R. E. Weiss, J. L. Ross, D. A. Hegg, R. D. Ottmar, and C. Liousse, “Particle and trace-gas measurements in the smoke from prescribed burns of forest products in the Pacific Northwest,” in Biomass Burning and Global Change (MIT Press, 1996), pp. 697-715.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Model profile of the particulate extinction coefficient (dotted curve) and the corresponding function of Y ( x ) ( solid curve).

Fig. 2
Fig. 2

Model profile of the particulate extinction coefficient κ p ( r ) (dotted curve) and the corresponding function of | Y 0 ( r ) | (solid curve).

Fig. 3
Fig. 3

Principle of determining locations with increased backscatter gradient in the lidar scan. Lidar is located at point A. The filled rectangles show areas with increased backscatter.

Fig. 4
Fig. 4

HHI plot showing heights and the number of heterogeneity events n ( h ) along which the increased smoke-plume gradients were revealed.

Fig. 5
Fig. 5

(a) Conventional RHI scan from data recorded at 1064 nm wavelength during the Montana I-90 Fire at 11:37 a.m. on 9 August 2005. The colored scale shows the attenuated backscatter intensity in arbitrary units. (b) HRHI scan for the same data. The colored scale shows the absolute normalized intercept in arbitrary units.

Fig. 6
Fig. 6

HHI for the same case as in Fig. 5 calculated with χ = 0.3 (filled rectangles) and the corresponding | Y 0 * ( h ) | n o r m (dashed curve).

Fig. 7
Fig. 7

Dependence of the heights h sm , min and h sm , max on the selected χ for the same case as in Fig. 5.

Fig. 8
Fig. 8

Smoke plume observed during the Tripod Complex Fire (Washington) on 21 August 2006.

Fig. 9
Fig. 9

HHI plot (filled rectangles) retrieved from the lidar scan recorded during the Tripod Complex Fire (Washington) on 21 August 2006. The dashed curve represents the corresponding normalized function | Y 0 * ( h ) | n o r m .

Fig. 10
Fig. 10

Dependence of heights h sm , min and h sm , max on the selected χ for the same case as in Fig. 9.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

P Σ ( r ) = 1 r 2 C [ β π , m ( r ) + β ( r ) π , p ] [ T m ( 0 , r ) ] 2 [ T p ( 0 , r ) ] 2 + B ,
x ( r ) = r 2 β π , m ( r ) [ T m ( 0 , r ) ] 2 .
Y ( r ) = W p ( r ) + B x ( r ) ,
d Y / d x = d / d x [ W p ( x ) + B x ] ,
Y 0 ( x ) = Y ( x ) d Y d x x .
Y ( r , φ ) = W p ( r , φ ) + B φ     x ( r , φ ) ,
Y 0 ( x , φ ) = Y φ d Y φ d x φ x φ ,
d Y φ d x φ = d d x [ W p ( x φ , φ ) + B φ x φ ] .
Y 0 * ( x , φ ) = Y 0 ( x , φ ) x ( φ ) + Δ φ ,
Y max * = max [ max | Y 0 * ( h , φ 1 ) | , max | Y 0 * ( h , φ 2 ) | , ... max | Y 0 * ( h , φ N 1 ) | , max | Y 0 * ( h , φ N ) | ] ,
| Y 0 * ( h ) | norm = | Y 0 * ( h ) | mean n ( h ) max | Y 0 * ( h ) | mean , max ,

Metrics